

Giansalvatore Mecca, Sergio Greco

SEBD 2011

Proceedings of the Nineteenth Italian
Symposium on Advanced Database Systems

Maratea, Italy

June 26-29, 2011

Organized by

Università della Basilicata, Dipartimento di Matematica e Informatica

Sponsored by:

Dipartimento di Matematica e Informatica – Università della Basilicata

Facoltà di Scienze MM FF NN – Università della Basilicata

Università della Basilicata

DEIS – Università della Calabria

Program Committee

• Giansalvatore Mecca (Program Committee Chair) - Università della Basilicata

• Annalisa Appice - Università di Bari

• Maurizio Atzori - Università di Cagliari

• Elena Baralis - Politecnico di Torino

• Ilaria Bartolini - Università di Bologna

• Domenico Beneventano - Università di Modena e Reggio Emilia

• Francesco Bonchi - Yahoo Research

• Daniele Braga - Politecnico di Milano

• Andrea Calì - University of London, Birkbeck College

• Dario Colazzo - Université Paris Sud - INRIA

• Carlo Curino - Massachusetts Institute of Technology (MIT)

• Pasquale De Meo - Università di Reggio Calabria

• Paolino Di Felice - Università dell'Aquila

• Claudia Diamantini - Università Politecnica delle Marche

• Enrico Franconi - Libera Università di Bolzano

• Filippo Furfaro - Università della Calabria

• Giorgio Ghelli - Università di Pisa

• Giovanna Guerrini - Università di Genova

• Giuseppe Manco - ICAR CNR

• Michele Melchiori - Università di Brescia

• Massimo Melucci - Università di Padova

• Paolo Papotti - Università Roma Tre

• Antonella Poggi - Università di Roma "La Sapienza"

• Elisa Quintarelli - Politecnico di Milano

• Alessandra Raffaetà - Università di Venezia

• Yannis Velegrakis - Università di Trento

• Pierangelo Veltri - Università Magna Graecia di Catanzaro

Organizing Committee

• Sergio Greco (General Chair) - Università della Calabria

• Angela Bonifati, ICAR CNR e Università della Basilicata

• Carlo Sartiani, Università della Basilicata

• Donatello Santoro, Università della Basilicata

 iii

External Reviewers

• Devis Bianchini
• Giulia Bruno
• Luca Cagliero
• Marco Carnuccio
• Federico Cavalieri
• Michelangelo Ceci
• Augusto Celentano
• Gianni Costa
• Alfredo Cuzzocrea
• Claudia D'Amato
• Nicola Fanizzi
• Fabio Fassetti
• Emilio Ferrara
• Alessandro Fiori
• Giacomo Fiumara
• Sergio Flesca
• Alberto Grand
• Luigi Grimaudo
• Massimo Guarascio
• Francesco Gullo
• Pietro Guzzi
• Matteo Interlandi
• Elio Masciari
• Antonino Nocera
• Salvatore Orlando

• Riccardo Ortale
• Francesco Pagliarecci
• Themis Palpanas
• Francesco Parisi
• Laura Po
• Luigi Pontieri
• Domenico Potena
• Alessandro Provetti
• Andrea Pugliese
• Giovanni Quattrone
• Emanuele Rabosio
• Abdul Rahman Dannaoui
• Angelo Rauseo
• Ettore Ritacco
• Domenico Rosaci
• Silvia Rota
• Carlo Sartiani
• Claudio Silvestri
• Serena Sorrentino
• Emanuele Storti
• Giuseppe Tradigo
• Maurizio Vincini

 iv

Table of Contents

Invited Talks and Tutorials

Leo Bertossi. Tutorial: Semantic Constraints for Data Quality Assessment and Cleaning............... 3
Ioana Manolescu. Tutorial: View-Based XML Rewriting ... 4
Erhard Rahm. Invited Talk: Evolution and Merging of Real-Life Ontologies 5
VS Subramahnian. Invited Talk: Querying and Reasoning about Massive Social Networks 6

Session 1: Probabilistic Databases and Data Uncertainty

Ilaria Bartolini, Paolo Ciaccia and Marco Patella. Getting the Best from Uncertain Data 9
Diego Zardetto, Monica Scannapieco, Luca Valentino and Tiziana Catarci. On Probabilistic

Record Linkage: New Methods Compared to the Fellegi-Sunter Approach 21
Davide Martinenghi and Riccardo Torlone. Answering Queries in a Relaxed Way 33

Session 2: Clustering

Elio Masciari, Giuseppe M. Mazzeo and Carlo Zaniolo. A Fast and Accurate Algorithm
for Hierarchical Clustering on Euclidean Distances (Extended Abstract) 41

Claudia Diamantini, Domenico Potena and Emanuele Storti. Clustering of Process
Schemas by Graph Mining Techniques (Extended Abstract) .. 49

Session 3: Data Mining I

Michelangelo Ceci, Alfredo Cuzzocrea and Donato Malerba. Supporting Roll-Up
and Drill-Down Operations over OLAP Data Cubes with Continuous Dimensions
via Density-Based Hierarchical Clustering ... 57

Antonella Guzzo, Luigi Moccia, Domenico Saccà and Edoardo Serra. A Decomposition
Technique for the Inverse Frequent Itemset Mining Problem .. 66

Alfredo Cuzzocrea, Dimitrios Gunopulos and Saverio Manti. Computing Multidimensional
OLAP Data Cubes over Probabilistic Relational Data: A Decomposition Approach 76

Session 4: Data Integration & Exchange I

Domenico Beneventano, Abdul Rahman Dannoui and Antonio Sala. On Provenance
of Data Fusion Queries .. 84

Andrea Calì and Andreas Pieris. On Equality-Generating Dependencies in Ontology
Querying (Extended Abstract) ... 95

Sonia Bergamaschi, Elton Domnori, Francesco Guerra, Raquel Trillo Lado and Yannis
Velegrakis. Keyword-based Search in Data Integration Systems .. 103

Session 5: Pervasive Computing & Context-Awareness

Fabio Alberto Schreiber, Letizia Tanca, Romolo Camplani and Diego Viganò.
Managing and Using Context Information within the PerLa Language 111

 v

Eugenio Di Sciascio, Michele Ruta, Floriano Scioscia and Eufemia Tinelli.
 Querying Compressed Knowledge Bases in Pervasive Computing 119

Angelo Rauseo, Davide Martinenghi and Letizia Tanca. Context-Aware Data
Tailoring through Answer Set Programming (Extended Abstract) 131

Session 6: Queries & Views

Gianluigi Greco and Francesco Scarcello. On the Power of Enforcing Local Consistency 139
Enrico Franconi and Paolo Guagliardo. A Constructive Framework for View Updating

(Extended Abstract) ... 147
Adnan Abid and Marco Tagliasacchi. Top-k Query Processing with Parallel Probing

of Data Sources ... 155

Session 7: Data Integration & Exchange II

Andrea De Francesco, Francesca Spezzano and Irina Trubitsyna. ChaseT: A Tool
For Checking Chase Termination ... 163

Sonia Bergamaschi, Domenico Beneventano, Alberto Corni, Entela Kazazi,
Mirko Orsini, Laura Po and Serena Sorrentino. The Open Source release of the
MOMIS Data Integration System .. 175

Paolo Papotti. Emerging Applications for Schema Mappings (Extended Abstract) 187

Sessione 8: Interdisciplinary Approaches I

Mamoun Abu Helou. Segmentation of Geo-Referenced Queries ... 195
Cristhian Parra, Muhammad Imran, Daniil Mirylenka, Florian Daniel, Fabio

Casati and Maurizio Marchese. A Scientific Resource Space for Advanced
Research Evaluation Scenarios .. 203

Antonio Albano and Ciro Valisena. A System to Support Teaching and Learning
Relational Database Query Languages and Query Processing .. 215

Session 9: Data Mining II

Corrado Loglisci, Michelangelo Ceci, Annalisa Appice and Donato Malerba. Relational
Disjunctive Patterns Mining for Discovering Frequent Variants in Process Models 226

Nicola Barbieri, Giuseppe Manco and Ettore Ritacco. A Probabilistic Hierarchical Approach
for Pattern Discovery in Collaborative Filtering Data (Extended Abstract) 238

Michele Risi, Maria I. Sessa, Genoveffa Tortora and Maurizio Tucci. Visualizing
Information in Data Warehouses Reports .. 246

Session 10: XML, Semistructured & Hierchical Data

Federico Cavalieri, Giovanna Guerrini and Marco Mesiti . Handling XML Updates
in Distributed Contexts .. 258

Ermelinda Oro, Massimo Ruffolo and Steffen Staab. SXPath: a Spatial Extension of XPath 266

Nicola Ferro and Gianmaria Silvello. The NESTOR Model: Properties and Applications
in the Context of Digital Archives ... 274

 vi

Session 11: Deductive Databases, Ontologies, and Description Logics

Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati, Marco Ruzzi and D. Fabio Savo.
Inconsistency-Tolerant Semantics for Description Logic Ontologies (Ext. Abs) 286

Rosamaria Barilaro, Nicola Leone, Francesco Ricca and Giorgio Terracina. Optimizing the
Distributed Evaluation of Stratified Datalog Programs via Structural Analysis 294

Michele Missikoff, Maurizio Proietti and Fabrizio Smith. Querying Business Processes and
Ontologies in a Logic Programming Environment (Ext. Abs.) ... 302

Session 12: Interdisciplinary Approaches II

Giuseppe Tradigo, Pierangelo Veltri and Gianluca Pollastri. Machine Learning
Approaches for Contact Maps Prediction in CASP9 Experiment .. 310

Paolo Atzeni, Fabio Polticelli and Daniele Toti. Automatic Discovery and Resolution of
Protein Abbreviations from Full-Text Scientific Papers: A Light-Weight Approach
Towards Data Extraction from Unstructured Biological Sources (Ext. Abs.) 317

Tiziana Catarci, Maddalena D'Addario, Paolo Felli, Laura Franceschetti, Domenico Lembo,
Massimo Mecella, Tatiana Pipan, Alessandro Russo, Annarita Vestri and Paolo Villari.
User-Centered Design for Citizens' Empowerment through the Portal of the
Italian Ministry of Health (Extended Abstract) .. 325

Session 13: Web and Network Applications

Claudio Gennaro, Giuseppe Amato, Paolo Bolettieri and Pasquale Savino. An
Approach to Content-Based Image Retrieval based on the Lucene Search
Engine Library (Extended Abstract) .. 333

Devis Bianchini, Valeria De Antonellis and Michele Melchiori. A Semantics-Enabled
Registry for Web APIs Recommendation (Extended Abstract) .. 341

Giulio Rossetti, Michele Berlingerio and Fosca Giannotti. Link Prediction su Reti
Multidimensionali .. 349

Paolino Di Felice and Matteo Orsini. Spatio-Temporal Intersection of Trajectories under
Uncertanties ... 357

Poster Session

Francesco Di Cerbo, Gabriella Dodero, Gianna Reggio, Filippo Ricca and Giuseppe Scanniello.
Assessing the Effectiveness of “Precise” Activity Diagrams
 in the Context of Business Process Modeling ... 371

Carlo Batini, Marco Comerio, Enrica Pasqua and Gianluigi Viscusi. Repositories of
Conceptual Schemas: Concepts, Constructs, Methods and Quality Dimensions 379

Pasquale De Meo, Antonino Nocera, Giovanni Quattrone and Domenico Ursino.
A Conceptual Framework and an Underlying Model for Community Detection
and Management in a Social Internetworking Scenario .. 387

Claudio Di Ciccio, Massimo Mecella, Monica Scannapieco and Diego Zardetto.
Groupware Mail Messages Analysis for Mining Collaborative Processes 395

Alfredo Cuzzocrea, Domenico Saccà and Vincenzo Rodinò. Computing Privacy Preserving
OLAP Aggregations on Data Cubes: A Constraint-Based Approach 403

 vii

Ugo Erra and Sabrina Senatore. Hand-Draw Sketching for Image Retrieval through
Fuzzy Clustering Techniques ... 411

Devis Bianchini, Francesco Pagliarecci and Luca Spalazzi. From Service Identification
to Service Selection: an Interleaved Perspective ... 419

Mikaël Ates, Francesco Buccafurri, Jacques Fayolle and Gianluca Lax. Preserving
Unlikability against Covert Channels in Multi-Party Security Protocols 427

Sonia Bergamaschi, Fabio Ferrari, Matteo Interlandi and Maurizio Vincini.
Media Presenter, a Web Platform for Multimedia Content Management 435

 viii

Invited Talks and Tutorials

Tutorial

Semantic Constraints for Data Quality Assessment and Cleaning

Leo Bertossi

School of Computer Science, Carleton University

Abstract: Data quality is an increasingly important issue and concern in

business intelligence. Data quality is most of the time a relative property since it

largely depends on additional semantic information and metadata. In this tutorial

we will review how semantic conditions expressed by means of integrity

constraints, quality constraints, and contextual information can be used to

characterize, assess and obtain quality data.

Bio Sketch: Leopoldo Bertossi has been Full Professor at the School of Computer Science,

Carleton University (Ottawa, Canada) since 2001. He is Faculty Fellow of the IBM Center for

Advanced Studies (IBM Toronto Lab). He obtained a PhD in Mathematics from the Pontifical

Catholic University of Chile (PUC) in 1988. He has been the theme leader for "Adaptive Data

Quality and Data Cleaning" of the "NSERC Strategic Network for Data Management for Business

Intelligence" (BIN), a project that involves more than fifteen academic researchers across Canada

plus several industrial partners. Prof. Bertossi's research interests include database theory, data

integration, peer data management, semantic web, intelligent information systems, data quality for

business intelligence, knowledge representation, logic programming, and computational logic.

Tutorial

View-Based XML Rewriting

Ioana Manolescu

INRIA/LRI Leo team, INRIA

Abstract: The performance of XQuery evaluation can be greatly improved by

using materialized views. To do so, one must be able, given a set of view

definitions and a query, to identify the possible ways in which the query can be

rewritten based on the views. The topic of the tutorial is to present the main

algorithmic approaches and complexity results presented in the literature,

concerning the equivalent rewriting of XML queries specified in various dialects

of XQuery, using XML materialized views.

Bio Sketch: Ioana Manolescu is a senior researcher at INRIA Saclay and the head of the Leo

group, joint with University of Paris Sud-XI, in France. Her main research interests concern

efficient management of data, in particular in distributed architectures, and applied to Web data.

Invited Talk

Evolution and merging of real-life ontologies

Erhard Rahm

Database Group, University of Leipzig

Abstract: Ontologies are in wide-spread use in diverse domains. In life sciences,

many large ontologies are used to annotate biomedical entities and perform

analysis tasks such as functional profiling or term enrichment. On the web,

simple ontologies such as web directories or product catalogs are heavily used

for improved content categorization and search. These ontologies are subject to

significant reorganizations and other evolutionary changes. There is thus an

increasing need to better deal with ontology evolution, in particular to support

the automatic detection of evolution mappings and to automate the migration of

ontology instances and ontology-based mappings. Another common task is to

combine or merge multiple related ontologies. In the talk we present new Match-

based approaches to determine a Diff and a Merge between ontologies. The

proposed COntoDiff scheme is rule-based and determines compact evolution

mapping consisting of expressive change operations. We also point out open

challenges for future work.

Bio Sketch: Erhard Rahm is a full professor for computer science at the University of Leipzig,

Germany. He chairs the database group and a new innovation lab on Web Data Integration (WDI

Lab). His Ph.D. and habilitation degrees are from the University of Kaiserslautern. He held

visiting research positions at IBM Research and at Microsoft Research. His current work areas

include data integration, metadata management and bioinformatics. Professor Rahm published

numerous peer-reviewed research papers and authored or co-edited several books, including the

2011 Springer book on "Schema Matching and Mapping". At VLDB 2011, he will receive the

VLDB 10 Year Best Paper Award for a paper on schema matching.

Invited Talk

Querying and Reasoning about Massive Social Networks

VS Subramahnian

Department of Computer Science, University of Maryland

Abstract: Companies and organizations are becoming increasingly aware of the

value of social networks to their businesses. In this talk, I will discuss results on

three kinds of problems related to social networks. First, I will briefly summarize

methods to query social networks using subgraph matching query paradigms.

Though subgraph matching is intractable, I will briefly discuss cloud based

approaches that can process complex subgraph queries on real social networks of

over one billion edges in under a second. Second, I will discuss a class of

problems called social network optimization problems - problems related to

allocating resources across a social network, taking a diffusion model of some

phenomena into account. Finally, I will discuss a class of problems called

competitive diffusion problems - how does a phenomenon diffuse across a

network when there are competing diffusions occurring at the same time. Parts of

this talk reflect joint work with Matthias Broecheler, Andrea Pugliese, and Paulo

Shakarian.

Bio Sketch: V.S. Subrahmanian is Professor of Computer Science and Director of the Center for

Digital International Government and Co-Director of the Lab for Computational Cultural

Dynamics at the University of Maryland where he has been on the faculty since 1989. He has

worked extensively on databases and artificial intelligence and has co-authored over 200 papers as

well as several books. He has served on the editorial board of several journals, has won numerous

awards, and delivered invited talks at numerous conferences. His work has been extensively cited

both in the academic literature as well as in the press.

"

"

"

"

"

"

"

"

"

Regular Papers

Getting the Best from Uncertain Data

Ilaria Bartolini, Paolo Ciaccia, and Marco Patella
DEIS - Università di Bologna, Italy

{i.bartolini,paolo.ciaccia,marco.patella}@unibo.it

Abstract. The skyline of a relation is the set of tuples that are not
dominated by any other tuple in the same relation, where tuple u domi-
nates tuple v if u is no worse than v on all the attributes of interest and
strictly better on at least one attribute. Previous attempts to extend
skyline queries to probabilistic databases have proposed either a weaker
form of domination, which is unsuitable to univocally define the skyline,
or a definition that implies algorithms with exponential complexity. In
this paper we demonstrate how, given a semantics for linearly ranking
probabilistic tuples, the skyline of a probabilistic relation can be univo-
cally defined. Our approach preserves the three fundamental properties
of skyline: 1) it equals the union of all top-1 results of monotone scoring
functions, 2) it requires no additional parameter to be specified, and 3) it
is insensitive to actual attribute scales. We also detail efficient sequential
and index-based algorithms.

1 Introduction

Uncertain data management has recently become a very active area of research,
due to the huge number of relevant applications in which uncertainty plays a key
role, such as data extraction from the Web, data integration, biometric systems,
sensor network readings, etc. Further, uncertainty might also occur as a result
of data anonymization.

According to a commonly adopted model, uncertain data can be represented
through probabilistic relations, in which each tuple has also a probability (con-
fidence) to appear [11, 12]. A probabilistic relation compactly represents a set
of possible worlds, i.e., subsets of tuples. In the general case, the formation of
possible worlds is constrained by a set of generation rules, that are used to model
correlation among tuples (e.g., a rule might state that two tuples are mutually
exclusive).

In recent years, several works have focused on extending different query types
to probabilistic databases. Among them, in this paper we concentrate on skyline
queries, whose relevance in supporting multi-criteria decision analysis is well
known [3]. The skyline of a relation R is the set of undominated (or Pareto-
optimal) tuples in R, where tuple u dominates tuple v if u is no worse than v on
all the attributes of interest, and strictly better than v on at least one attribute.
The appeal of skyline queries comes from the observation that the skyline consists
of all and only top-1 results obtainable from scoring functions that are monotone
in the skyline attributes, thus providing users with an overall picture of what
are the best alternatives in a relation. Further, unlike top-k queries, a skyline
query does not require any input parameter to be specified. Not less important

is also the fact that the skyline is insensitive to attributes’ scales, being it only
dependent on the relative ordering of tuples on each attribute.

As a motivating example, consider a traffic-monitoring application collecting
data by means of a radar, a sample of which is shown in Figure 1.1 Each radar
reading has associated a Prob value, representing the overall confidence one has
in the reading itself. A skyline query on the Time and Speed attributes would

TID Plate No Time Speed Prob

t1 X-123 11:50 145 0.4

t2 W-246 11:40 160 0.3

t3 Z-456 11:15 145 0.6

t4 H-121 11:05 137 0.4

t5 Y-324 11:00 140 0.6

t6 X-827 10:50 135 0.4

t7 C-442 10:45 155 0.5 130

135

140

145

150

155

160

165

10:33 11:02 11:31 12:00

S
p

e
e

d

Time

t1

t2

t3

t4
t6

t5

t7

Fig. 1. A probabilistic relation

return those tuples (i.e., readings) that are, at the same time, the most recent
ones and that concern high-speed cars. In the deterministic case it would be
Sky(R) = {t1, t2}, as it can be easily verified from the figure on the right. In the
probabilistic case, in which also the confidence of each tuple has to be considered,
even defining what the skyline should be is challenging.

1.1 Related Work

The first work to consider skyline queries on probabilistic data has been [10].
There, the basic idea is to compute for each tuple u the probability, PrSky(u),
that u is undominated, and then rank tuples based on these skyline probabilities.
Intuitively, PrSky(u) equals the overall probability of the possible worlds W in
which u is in the (deterministic) skyline of W . The p-skyline of a probabilistic
relation is then defined as the set of tuples whose skyline probability is at least p.
This approach is unable to preserve the basic skyline properties, since it requires
an additional parameter (the p threshold), and has no apparent relationship
with the results of top-1 queries. Subsequent works on the subject have provided
efficient algorithms to compute all skyline probabilities [1], and shown how to
compute p-skylines on uncertain data streams [14]. More recently, Lin et al.
have proposed the stochastic skyline operator [9]. Unlike p-skyline, the stochastic
skyline has the advantage of not requiring any parameter. However, this comes
at the price of an algorithmic exponential complexity, since testing stochastic
domination is an NP-complete problem. Further, the stochastic skyline equals
only a subset of possible top-1 results, namely those arising from the expectation
of multiplicative scoring functions.

1.2 Contributions

In this paper we address the problems of defining and efficiently computing the
skyline of a probabilistic relation. We start by providing in Section 3 a formal

1 A similar example was also used in previous works on top-k queries [12, 8].

 10

definition of skyline, which is based on a generalization to the probabilistic case
of the concept of domination among tuples. The P-domination relationship we
introduce to this purpose is formally grounded in order theory, and satisfies all
the properties the skyline has in the deterministic case. Since P-domination is
parametric in the semantics used to rank probabilistic tuples, this implies that,
whatever ranking semantics for top-k queries one wants to adopt, our skyline
definition will be always consistent with it, which is a remarkable property.

In Section 4 we show how the skyline can be computed in O(n3) time for
a relation with n tuples, by detailing the analysis for the case in which the
“expected rank” semantics is used for ranking tuples [5]. In Section 5 we describe
algorithms aiming to reduce the actual response time. Experimental evaluation
on large datasets shows the practical applicability of our approach.

For lack of space, we only consider probabilistic relations in which tuples are
pairwise independent, i.e., no generation rule is present; however, our results can
be also smoothly extended to the correlated case.

2 Preliminaries

We model a probabilistic relation Rp as a pair, Rp = (R, p), where R is a
relation in the standard sense, also called a deterministic relation, and p is
a function that assigns to each tuple u ∈ R a probability, p(u) ∈ (0, 1]. A
posssible world W of Rp is any subset of tuples from R. The set of possible
worlds of Rp is denoted W. The probability of possible world W is computed as:
Pr(W) =

∏
u∈W p(u)

∏
v �∈W (1− p(v)).

Given a (deterministic) relation R whose schema includes a set of numerical
attributes A = {A1, A2, . . . , Ad}, the skyline of R with respect to A, denoted
SkyA(R) or simply Sky(R), is the set of undominated tuples in R. Assuming
that on each attribute higher values are preferable, tuple u (Pareto-)dominates
tuple v, written u ≻ v, iff it is u.Ai ≥ v.Ai for each Ai ∈ A and there exists at
least one attribute Aj such that u.Aj > v.Aj . Thus:

Sky(R) = {u ∈ R | ∄ v ∈ R : v ≻ u} (1)

If neither u ≻ v nor v ≻ u hold, then u and v are indifferent, written u ∼ v.
A scoring function s() on the attributes A, s : dom(A) → ℜ, is monotone

iff u.Ai ≥ v.Ai (i = 1, . . . , d) implies s(u) ≥ s(v). Although it is folklore that
Sky(R) equals the union of top-1 results of monotone scoring functions, this
is imprecise because of the non-deterministic nature of top-1 queries. For in-
stance, consider the max function, which is monotone, and R = {(3, 4), (1, 4)}.
Although (3, 4) ≻ (1, 4), it is max{3, 4} = max{1, 4}, thus (1, 4) might be (non-
deterministically) returned as the top-1 result. To obviate the problem, in this
paper we only consider monotone functions that are also domination-preserving,
i.e., u ≻ v implies s(u) > s(v).2 In the following, we always implicitly assume
that a monotone function is also domination-preserving.

2 Domination-preserving monotone functions are exactly those functions that Fagin
et al. call strictly monotone in each argument [6].

 11

3 The Skyline of a Probabilistic Relation

In order to define the skyline of a probabilistic relation we start by rewriting
Equation 1 as:

Sky(Rp) = {u ∈ R | ∄ v ∈ R : v ≻p u } (2)

in which the only difference with the deterministic case is that ≻ is substituted
by ≻p. We call ≻p probabilistic domination, or P-domination for short. Note that
≻p is a binary relation in the standard sense, i.e., no probability is present in ≻p.

In order to define P-domination so as to preserve all skyline properties, we
approach the problem by considering things from an order-theoretic viewpoint.
In order-theoretic terms, ≻ is a strict partial order, i.e., an irreflexive (∀u : u 	≻ u)
and transitive (∀u, v, t : u ≻ v ∧ v ≻ t ⇒ u ≻ t) relationship on the domain of
skyline attributes. A linear order ⋗ is a strict partial order that is also connected,
i.e., for any two distinct tuples u and v, either u⋗ v or v⋗u.3 A linear order ⋗
is called a linear extension of ≻ iff u ≻ v ⇒ u⋗ v, i.e., ⋗ is compatible with ≻.
Notice that a linear extension of ≻ can be obtained by ordering tuples with a
monotone scoring function and then breaking ties arbitrarily.

Let Ext(≻) denote the set of all linear extensions of ≻. A fundamental result
in order theory, derived from Szpilrajn’s Theorem [13], asserts that any strict par-
tial order ≻ equals the intersection of its linear extensions,≻=

⋂
{⋗ |⋗ ∈ Ext(≻)}.

This is the first ingredient needed to define P-domination.
Our second ingredient comes from the observation that each linear order ⋗

on the tuples of R can be used to define a corresponding linear order on the
probabilistic tuples of Rp. Indeed, this has been the subject of several recent
works aiming to support top-k queries on uncertain data, which has lead to
different, alternative semantics for ranking tuples that come with both a score
and a probability [12, 15, 5]. In abstract terms, each of these semantics can be
viewed as a probabilistic ranking function Ψ that, given a linear order ⋗ on
the tuples of R and a probability function p, yields a probabilistic linear order
⋗p = Ψ(⋗, p) on the probabilistic tuples of Rp. In practice, any ranking semantics
assigns to each tuple u a value ψ(u), so that u ⋗p v iff ψ(u) > ψ(v).4

We are now ready to define P-domination:

Definition 1 (P-domination). Let Rp = (R, p) be a probabilistic relation, and
let ≻ be the Pareto-domination relationship on the tuples in R when considering
the skyline attributes A. Let Ψ be a probabilistic ranking function on Rp. For
any two tuples u and v in Rp, we say that u P-dominates v, written u ≻p v,
iff for each linear extension ⋗ of ≻, with associated probabilistic linear order
⋗p = Ψ(⋗, p), it is u ⋗p v, that is:

u ≻p v ⇐⇒ u ⋗p v, ∀ ⋗p = Ψ(⋗, p),⋗ ∈ Ext(≻) (3)

3 To denote linear orders over tuples we use the symbol ⋗ in place of the usual >, and
reserve the latter for the standard order on real numbers.

4 In the most general case, Ψ might also depend on the actual scores of the tuples,
rather that only on their ordering. This has no influence on the results we derive.

 12

The diagram in Figure 2 summarizes how ≻p is conceptually obtained: from ≻
we obtain a set of linear orders, and for each of them a corresponding probabilistic
linear order. The intersection of such probabilistic rankings yields P-domination.

≻
Ext(≻)
−−−−→ {⋗}⏐⏐�Ψ,p

⏐⏐�Ψ,p

≻p

⋂

←−−− {⋗p}

Fig. 2. How P-domination is obtained

From Definition 1 three major results follow:5

Theorem 1. For any probabilistic ranking function Ψ , the corresponding P-domination
relationship ≻p is a strict partial order.

Theorem 2. Let Sky(Rp) be the skyline of Rp, for a given probabilistic ranking
function Ψ . A tuple u belongs to Sky(Rp) iff there exists a monotone scoring
function s() such that u is the top-1 tuple according to the probabilistic linear
order ⋗p = Ψ(⋗, p), where ⋗ is the linear order induced by s() on R.

A further important property of Sky(Rp) is that, as in the deterministic
case, it is insensitive to actual attribute values, rather it only depends on the
relative ordering on each skyline attribute.

Theorem 3. Let Rp = (R, p) be a probabilistic relation, and Sp = (S, p) be
another probabilistic relation, in which S is obtained from R through an isomor-
phism φ that preserves Pareto domination (i.e., for any two tuples u, v ∈ R it is
u ≻ v if and only if φ(u) ≻ φ(v)), and p(u) = p(φ(u)) for all u ∈ R. Then, for
any probabilistic ranking function Ψ , it is Sky(Rp) = Sky(Sp).

4 Computing P-domination

Definition 1 cannot be directly used to check P-domination, since it requires to
enumerate all linear extensions of the Pareto dominance relationship, and these
can be exponential in the number of tuples.6 In the following we first sketch how,
independently of the specific probabilistic ranking function Ψ , P-domination can
be checked without materializing the linear extensions of ≻, after that we detail
the analysis for the case of in which Ψ is the “expected rank” semantics [5].

Consider a linear extension ⋗ of ≻, and let ψ⋗(u) be the numerical value
that Ψ assigns to tuple u. According to Definition 1, for u ≻p v to hold it has to
be ψ⋗(u) > ψ⋗(v) for all linear extensions ⋗ of ≻, that is:

u ≻p v ⇐⇒ min
⋗∈Ext(≻)

{
ψ⋗(u)

ψ⋗(v)

}
> 1 (4)

5 For lack of space, all formal results are stated without proof.
6 If Rp consists of n pairwise indifferent tuples, then ≻ is empty and Ext(≻) has size
n!, since each permutation is compatible with ≻.

 13

The key idea for efficiently checking the above inequality is to determine which
is the linear order that is the most unfavorable one for u with respect to v. If
ψ⋗(u) > ψ⋗(v) holds for this “extremal” order, then it will necessarily hold
for all other orders compatible with ≻. Regardless of the specific probabilistic
ranking function Ψ , the two relevant cases to consider here are:

u ≻ v: When u dominates v, we can restrict the analysis to those linear orders
for which it is u⋗ v; starting from this we analyze how other tuples should
be arranged in the linear order so as to minimize the ratio ψ⋗(u)/ψ⋗(v).

u 	≻ v: If u does not dominate v, then the worst case for u and the best one for
v corresponds to a linear order in which: 1) u⋗ t only for those tuples t that
u dominates, and 2) t′ ⋗ v only for those tuples t′ that dominate v.

4.1 P-domination with Expected Ranks

According to [5], the result of a top-k query on a probabilistic relation Rp is
based on the concept of expected rank. Given a linear order ⋗ on the tuples of
R, the rank of u in a possible world W with |W | tuples is the number of tuples
in W that precedes u, that is:

rankW,⋗(u) =

{
| {t ∈ W | t⋗u} | if u ∈ W

|W | otherwise

Thus, ranks range from 0 to |W | −1, and tuples not in W have rank |W |. The
expected rank of u is then defined as ER⋗(u) =

∑
W∈W rankW,⋗(u)× Pr(W).

As in [5], we consider that if two tuples have a same expected rank value, a
tie-breaking rule is applied so that expected ranks define a linear order. Let ⋗p

be such linear order, i.e.,: u ⋗p v iff ER⋗(u) < ER⋗(v).
As explained in [5], the expected rank of a tuple u can be computed as:

ER⋗(u) = p(u)×
∑

t⋗u

p(t) + (1− p(u))×
∑

t �=u

p(t) (5)

where the first term is the expected rank of u in a possible world in which u
appears, and the second sum is the expected size of a possible world in which u
does not appear.

Let P be the overall probability of all the tuples in R, P =
∑

t∈R p(t), and
let H⋗(u) =

∑
t⋗u p(t) be the overall probability of those tuples that are better

than u according to ⋗. A key observation that will be exploited in the following
is that, for any linear order ⋗ that extends ≻, it is H⋗(u) ∈ [H−(u), H+(u)],
where the two bounds are respectively defined as:

H−(u) =
∑

t≻u

p(t) H+(u)=
∑

u �≻t
t �=u

p(t) = P − p(u)−
∑

u≻t

p(t)

Notice that H−(u) is the best possible case for u, in which only those tuples that
dominate u are also better than u according to ⋗, whereas the worst possible

 14

case for u is given by a linear order in which u is better only of those tuples that
it dominates. Equation 5 can then be compactly rewritten as:

ER⋗(u) = p(u)×H⋗(u) + (1− p(u))× (P − p(u))

According to Definition 1, it has to be ER⋗(u) < ER⋗(v) for each linear order
⋗ that extends ≻, i.e.:

max
⋗∈Ext(≻)

{
p(u)×H⋗(u) + (1− p(u))× (P − p(u))

p(v)×H⋗(v) + (1− p(v))× (P − p(v))

}
< 1

Let Pu,v = P − p(u) − p(v). Substituting, simplifying, and rearranging terms,
above inequality can be equivalently written as:

u ≻p v ⇔
p(u)

p(v)
> max

⋗∈Ext(≻)

{
Pu,v + 1−H⋗(v)

Pu,v + 1−H⋗(u)

}
(6)

The two cases to be considered for Equation 6 are dealt with as follows.

u ≻ v: Since u dominates v, and domination is transitive, it is H⋗(v) ≥ H⋗(u)+
p(u) for each ⋗ ∈ Ext(≻). This ensures that the right-hand side of Equation 6
is strictly less than 1, which immediately yields the first P-domination rule:

u ≻ v ∧
p(u)

p(v)
≥ 1 (Rule 1)

Note that this perfectly matches the intuition that a more likely and better tuple
should probabilistically dominate a less likely and worse tuple.

When p(u) < p(v), we can maximize the right-hand side of Equation 6 as
follows. For any tuple t such that u ≻ t, yet t is indifferent to v, t ∼ v, we set
v⋗ t, so as not to increase the value of H⋗(v). For a tuple t which is indifferent to
both u and v there are two alternatives to consider: either t⋗u⋗ v or u⋗ v⋗ t.
In the first case we would add p(t) to both H⋗(v) and H⋗(u), but this would
lower the ratio in the right-hand side of Equation 6. Thus, we conclude that the
second alternative is the one to be chosen. Finally, consider a tuple t such that
t ≻ v, yet t ∼ u. In this case we set t⋗u, so as to increase the value of H⋗(u)
(notice that H⋗(v) already includes p(t), since t ≻ v).

Combining the above cases, it is evident that it is H⋗(v) = H−(v). On the
other hand, for H⋗(u) we have to add to H−(u) the mass of probability of all
those tuples t such that t ≻ v and t ∼ u, that is: H⋗(u) = H−(u) +

∑
t≻v
t∼u

p(t).

By partitioning the set of tuples that dominate v depending on their relationship
with respect to u, the following identity is derived:

H−(v) = H−(u) + p(u) +
∑

t≻v
t∼u

p(t) +
∑

t≻v
u≻t

p(t)

Letting IbP (u, v) =
∑

t≻v
u≻t

p(t) to stand for the in-between mass of probability of

those tuples that dominate v and are dominated by u we obtain:

H⋗(u) = H−(v)− IbP (u, v)− p(u)

 15

from which we get the second P-domination rule:

u ≻ v ∧
p(u)

p(v)
>

Pu,v + 1−H−(v)

Pu,v + 1−H−(v) + IbP (u, v) + p(u)
(Rule 2)

Rule 2 generalizes Rule 1, which is therefore redundant. However we keep it
since, unlike Rule 2, it can be checked without the need to compute any bound.

u 	≻ v: P-domination can occur even when u 	≻ v, provided p(u) > p(v). In this
case it is immediate to see that the right-hand side of Equation 6 is maximized
by setting H⋗(v) = H−(v) and H⋗(u) = H+(u), thus:

u 	≻ v ∧
p(u)

p(v)
>

Pu,v + 1−H−(v)

Pu,v + 1−H+(u)
(Rule 3)

Example 1. Table 1 lists the probabilities of the tuples in Figure 1, whose overall
probability is P = 3.2, together with their H− and H+ bounds. As an example
of how bounds are computed consider tuple t3. Since t3 is dominated only by t1
and t2, it is H

−(t3) = p(t1)+ p(t2) = 0.7. The tuples dominated by t3 are t4, t5,
and t6, thus H

+(t3) = P − p(t3) − p(t4) − p(t5) − p(t6) = 1.2. A case to which
Rule 1 applies concerns tuples t1 and t4, since it is t1 ≻ t4 and p(t1) ≥ p(t4),
thus t1 ≻p t4. Rule 2 is used to discard tuple t5, which is P-dominated by t1
(notice that here it is p(t1) < p(t5), and IbP (t1, t5) = 0.6). A case in which Rule
3 is satisfied regards tuples t3 and t2 (notice that t2 is part of the deterministic
skyline). An exhaustive analysis shows that Sky(Rp) = {t1, t3, t7}. ⊓⊔

tuple t1 t2 t3 t4 t5 t6 t7

probability 0.4 0.3 0.6 0.4 0.6 0.4 0.5

H− 0 0 0.7 1.3 1.3 2.3 0.3

H+ 0.8 0.4 1.2 2.4 2.2 2.8 2.7

Table 1. Probabilities and bounds for the dataset in Figure 1

5 Algorithms

The skyline of a probabilistic relation Rp consisting of n tuples can be computed
in O(n3) time, since checking P-domination between two tuples is in O(n). The
basic idea to reduce the actual running time is to use a 2-phase algorithm, whose
general schema goes as follows. In the first phase, for each tuple u we compute
the bounds H−(u) and H+(u), which requires O(n2) time overall. In the second
phase we actually compare tuples, and also compute the in-between probabilities,
IbP (u, v), for all pairs of tuples such that u ≻ v yet p(u) < p(v).

We consider several variants of this basic schema. As a preliminary observa-
tion, it has to be remarked that the pre-processing step of topologically sorting
the input relation Rp, so that a tuple u dominating v can never follow v, which
is commonly used in the deterministic case [2, 4] (since it leads to a reduction
of the number of comparisons and simplifies the management of the result set,

 16

that can only grow in size), would not provide such guarantees in our scenario.
This is because, as explained in Section 4, it could well be the case that u ≻p v
even if u 	≻ v. However, as detailed below, sorting can be exploited to speed up
the computation of the H− and H+ bounds and of the quantities IbP (u, v).

The baseline algorithm for computing the bounds H−(u) and H+(u) pre-
cisely follows their definition, given in Section 4, thus tuples in Rp are sequen-
tially accessed and compared with all already encountered tuples. The number
of comparisons is thus n(n−1)/2. Topologically sorting Rp only slightly reduces
the running time, since if v follows u in the order then we can only conclude
that v is not needed to compute H−(u).

Once all bounds are computed, the second phase of the algorithm can start,
in which tuples are actually compared. Algorithm 1 resembles the well-known
BNL algorithm for computing the skyline of a (non-probabilistic) relation [3].
Each tuple u of Rp is compared to all the tuples v currently in the skyline: for
this, the quantity IbP (u, v) (or IbP (v, u)) is computed at line 5/6 (only if u ≻ v,
or v ≻ u, and Rule 1 of P-domination fails). If u ≻p v, then v can be dropped
from Sky(Rp) (line 7); otherwise, if v ≻p u, then u cannot be part of the skyline
(line 8) and the loop terminates.

Algorithm 1 Tuple comparison

Input: probabilistic relation Rp, each tuple u in Rp includes boundsH+(u) andH−(u)
Output: Sky(Rp), the skyline of Rp

1: Sky(Rp) ← ∅
2: for all tuples u ∈ Rp do
3: insert ← true
4: for all tuples v ∈ Sky(Rp) do
5: if u ≻ v ∧ p(u) < p(v) then IbP (u, v) ← computeIbP (Rp, u, v)
6: else if v ≻ u ∧ p(v) < p(u) then IbP (v, u) ← computeIbP (Rp, v, u)

7: if u ≻p v then Sky(Rp) ← Sky(Rp) \ {v}
8: else if v ≻p u then insert ← false, continue (goto 9)

9: if insert then Sky(Rp) ← Sky(Rp) ∪ {u}

Again, a topological sort of Rp guarantees that the test at line 5 in Algo-
rithm 1 is never satisfied, thus we could obtain a faster execution of the algo-
rithm. The computation of the value IbP (u, v) can be performed in a trivial
way by following the definition in Section 4, i.e., by checking if any tuple t in
Rp satisfies u ≻ t ≻ v. If Rp is topologically sorted, then all such tuples can
only be found between u and v, i.e., if i and k, respectively, are the indices of
u and v in the sorted Rp, then we need only to check those tuples tj such that
i < j < k. As an alternative implementation, we could also exploit a spatial
index, able to efficiently solve window queries, i.e., to find all tuples included
in a hyper-rectangular region of the attribute space A. In particular, we use an
R-tree [7] for retrieving all tuples in a window whose opposite vertices consist of

 17

the coordinates of tuples v and u, respectively: IbP (u, v) can then be computed
by simply summing up probabilities of result tuples.7

6 Experimental Evaluation

In this section we experimentally analyze the efficiency of the proposed algo-
rithms for the computation of the skyline of a probabilistic relation. For this,
we synthetically generated 100,000 4-D tuples with uniformly distributed coor-
dinates and probability. We then contrasted the performance of the algorithms
described in Section 5 when varying the data dimensionality d (only the first
2-4 coordinates are used for checking domination) and/or the data cardinality n
(only a fraction of the dataset is used).

As a first result, we show in Table 2 the size of Sky(Rp) for different values of
d and n: this demonstrates the fact that, at least for these datasets, the skyline
has always a reasonable size, thus it makes sense to actually investigate the
efficiency of alternative algorithms for computing it.

d \ n 20K 40K 60K 80K 100K

2 24 29 29 32 30
3 126 154 173 186 172
4 435 619 666 781 792

Table 2. The size of Sky(Rp) for different values of d and n

In our next experiment, we evaluate the effect of topologically sorting the
dataset in the first phase of the algorithm, when the H− and the H+ bounds are
computed. As expected, sorting Rp only leads to a minor time saving: on average,
the sort-based version of the algorithm is only 4% faster, with a maximum time
saving of 10% (for d = 3 and n = 40K).

We then compare the performance of three variants of Algorithm 1. The vari-
ants we tested are as follows: the naive variant uses a simple loop for computing
IbP (u, v), sorted exploits a topological sort of Rp, so that only tuples between u
and v are checked, and index uses an R-tree built on Rp. Figure 3 shows elapsed
times for the three algorithms. As a first observation, we note that the index algo-
rithm is consistently better than naive, saving around 70% of time, and that this
does not depend on the data cardinality: such saving is the one provided by the
index in computing the IbP (u, v) values. A second, more interesting, evidence is
that performance of the sorted algorithm actually improves when incrementing
the dataset size: this behavior is likely due to the use of cache memory, since
the comparison of consecutive tuples with a same skyline tuple requires checking
almost the same sets of tuples, thus likely producing several cache hits.

Our final experiment investigates the effect of the three rules for checking
P-domination between tuples. In Figure 4 (a) we show effectiveness of each rule

7 Using a spatial index for the computation of the H− and H+ bounds would not
be efficient, since it would require solving window queries with very low selectivity,
unless A has a high dimensionality; in that case, however, the curse of dimensionality
would hinder index performance.

 18

0

50

100

150

200

250

300

350

2 3 4

tim
e
 (
s)

d

naive
sorted
index

(a)

0

50

100

150

200

250

300

350

400

20 40 60 80 100

tim
e
 (
s)

n x 1000

naive
sorted
index

(b)

Fig. 3. Execution times for the three variants of Algorithm 1 vs. (a) dataset dimen-
sionality (n = 40K) and (b) dataset cardinality (d = 3)

for the naive algorithm (according to our experiments, this is basically indepen-
dent of the specific algorithm variant): P-domination tests linearly increase with
n, as in the case of BNL-like algorithms; moreover, the most effective rule is
the cheapest Rule 1 (about 40% of cases are solved with this rule), while the
effectiveness of Rule 2 is less than 0.1%, so low that the graph is unable to show
it. In about 40% of cases, finally, the compared tuples are indifferent. Figure 4
(b) shows the average number of IbP (u, v) values that should be computed for a
tuple u: clearly, this happens whenever both Rules 1 and 3 fail, as already noted
in Section 5. As the figure suggests, sorting Rp has almost no effect on reduc-
ing the number of times IbP (u, v) should be computed, but only, as previously
observed, on the average number of tuples to be checked in each calculation.

0

2

4

6

8

10

12

14

16

20 40 60 80 100

#
 P

-d
o
m

 x
 1

M

n x 1000

~ 3 2 1

(a)

0

10

20

30

40

50

60

70

20 40 60 80 100

a
v
g
. #

 I
b
P

 p
e
r

tu
p
le

n x 1000

naive

sorted

(b)

Fig. 4. Effectiveness of P-domination rules (a) and average number of IbP calculations
per tuple (b) vs. dataset cardinality (d = 3)

7 Conclusions

In this paper we have presented a new definition of skyline for probabilistic
relations, based on an appropriate definition of P-domination, i.e., domination
between tuples having a confidence/probability value. We have also proved that,
unlike previous definitions, ours maintains all the nice properties that skylines
have in the deterministic scenario. We have provided alternative algorithms for
the efficient computation of the skyline and evaluated their performance through
some preliminary experiments over synthetically generated datasets.

 19

Although we elaborated our analysis for the case of independent tuples, the
definition of P-domination can be smoothly extended to the correlated case,
i.e., where possible worlds are generated through a set of generation rules. This
requires opportunely adapting domination rules in Section 4.1 and algorithms in
Section 5, the latter maintaining the same time complexity of the independent
case.

Besides a thorough experimentation with other datasets (either with different
distributions of coordinates and probabilities or real ones, if available), our cur-
rent and future work includes considering alternative formulations of resolution
algorithms. As a matter of fact, all our algorithms share the same 2-phase struc-
ture: we expect to attain even better performance by comparing some tuples as
early as possible.

References

1. Atallah, M.J., Qi, Y.: Computing all Skyline Probabilities for Uncertain Data. In:
PODS 2009. pp. 279–287. Providence, RI (Jun 2009)

2. Bartolini, I., Ciaccia, P., Patella, M.: Efficient Sort-Based Skyline Evaluation. ACM
TODS 33(4), 1–45 (2008)

3. Börzsönyi, S., Kossmann, D., Stocker, K.: The Skyline Operator. In: ICDE 2001.
pp. 421–430. Heidelberg, Germany (Apr 2001)

4. Chomicki, J., Godfrey, P., Gryz, J., Liang, D.: Skyline with Presorting. In: ICDE
2003. Bangalore, India (Mar 2003)

5. Cormode, G., Li, F., Yi, K.: Semantics of Ranking Queries for Probabilistic Data
and Expected Ranks. In: ICDE 2009. pp. 305–316. Shanghai, China (Apr 2009)

6. Fagin, R., Lotem, A., Naor, M.: Optimal Aggregation Algorithms for Middleware.
In: PODS 2001. pp. 216–226. Santa Barbara, CA (May 2001)

7. Guttman, A.: R-trees: A Dynamic Index Structure for Spatial Searching. In: SIG-
MOD 1984. pp. 47–57. Boston, MA (Jun 1984)

8. Li, J., Saha, B., Deshpande, A.: A Unified Approach to Ranking in Probabilistic
Databases. In: VLDB 2009. pp. 502–513. Lyon, France (Aug 2009)

9. Lin, X., Zhang, Y., Zhang, W., Cheema, M.A.: Stochastic Skyline Operator. In:
ICDE 2009. Hannover, Germany (Apr 2011)

10. Pei, J., Jiang, B., Li, X., Yuan, Y.: Probabilistic Skylines on Uncertain Data. In:
VLDB 2007. pp. 15–26. Vienna, Austria (Sep 2007)

11. Sarma, A.D., Benjelloun, O., Halevy, A.Y., Widom, J.: Working Models for Un-
certain Data. In: ICDE 2006. Atlanta, GA (Apr 2006)

12. Soliman, M.A., Ilyas, I.F., Chang, K.C.C.: Top-k Query Processing in Uncertain
Databases. In: ICDE 2007. pp. 896–905. Istanbul, Turkey (Apr 2007)

13. Szpilrajn, E.: Sur l’Extension de l’Ordre Partiel. Fundamenta Mathematicae 16,
386–389 (1930)

14. Zhang, W., Lin, X., Zhang, Y., Wang, W., Yu, J.X.: Probabilistic Skyline Operator
over Sliding Windows. In: ICDE 2009. pp. 1060–1071. Shanghai, China (Mar 2009)

15. Zhang, X., Chomicki, J.: On the Semantics and Evaluation of Top-k Queries in
Probabilistic Databases. In: DBRank 2008. pp. 556–563. Cancun, Mexico (Apr
2008)

 20

On Probabilistic Record Linkage: New Methods

Compared to the Fellegi-Sunter Approach

Diego Zardetto1, Monica Scannapieco2, Luca Valentino1, and Tiziana Catarci3

1 Istat, Italy, {zardetto,luvalent}@istat.it
2 Istat and Sapienza - Univ. Roma, Italy, {scannapi}@istat.it
3 Sapienza - Univ. Roma, Italy, catarci@dis.uniroma1.it

Abstract. Record Linkage (RL) aims at identifying pairs of records coming from

different sources and representing the same real world entity. Several methods

have been proposed to face RL problems and many independent software imple-

mentations of traditional methods exist. However, none of the available systems

seems to be at the same time fully automated and very effective. In this paper

we describe and test a new RL software that, instead, possesses both these abili-

ties: the MAERLIN system. MAERLIN implements a novel suite of methods for

RL, based on Mixture Models. Such methods allow our system to obtain accurate

and reliable results without relying on domain knowledge, thus not jeopardizing

automation. The system adopts a two-component Beta mixture model and finds

Maximum Likelihood estimates of mixture parameters by means of an original

Perturbative Fitting technique. Then, it obtains a probabilistic clustering of record

pairs into Matches and Unmatches by finding optimal classification rules under

arbitrary matching constraints through a purposefully designed Evolutionary Al-

gorithm. In this paper, we provide an overview of the MAERLIN system. Then,

we describe the RELAIS toolkit, which includes a state-of-the-art implementa-

tion of the traditional Fellegi-Sunter method for probabilistic RL. Finally, we

provide an extensive experimental analysis comparing MAERLIN to RELAIS.

Specifically, we present several experiments on challenging real-world RL in-

stances arising from distinct application domains. The obtained results show the

significant effectiveness and robustness of the methods underlying MAERLIN

and also reveal interesting findings arising from the aforementioned comparative

evaluation.

1 Introduction

Record Linkage (RL) deals with the problem of identifying pairs of records coming

from different sources and representing the same real world entity. Integration of differ-

ent data sources and improvement of the quality of single sources are only some of the

real application scenarios that need to solve the RL problem. In Official Statistics, to

cite just a single example, the need of performing a RL task arises whenever one tries to

integrate statistical survey data with data coming from administrative archives, due to

lacking or unreliable common record identifiers. Several methods have been proposed

to face RL problems and many independent software implementations of traditional

methods exist. However, none of the available systems seems to be at the same time

fully automated and very effective. Indeed, the following pattern emerges: (i) RL sys-

tems incorporating domain knowledge – e.g., via clerically prepared training sets or

fine-tuned parameters – can reach high effectiveness, but at the price of jeopardizing

automation; (ii) fully automated RL systems – like approximate join algorithms, gen-

erally biased toward the goal of high efficiency – tend to perform poorly with respect

to accuracy (see, e.g., [6]). In this paper we describe and test a new RL software that,

instead, possesses both the aforementioned abilities: the MAERLIN system.

MAERLIN (the acronym stands for Mixture-based Automated Effective Record

LINkage) implements the novel suite methods (based on Mixture Models) proposed in

[10] and has been developed in R [8]. MAERLIN structures the decision phase of a RL

process into two consecutive tasks. First, it estimates mixture parameters by fitting the

adopted model to observed distance measures between record pairs. Then, it obtains

a probabilistic clustering of record pairs into Matches and Unmatches by exploiting

the fitted model. More specifically, MAERLIN uses a mixture model with component

densities belonging to the Beta family and finds Maximum Likelihood estimates of

mixture parameters by means of an original Perturbative Fitting technique. Moreover,

it can solve the clustering problem according to both Maximum Likelihood and Mini-

mum Cost objectives under arbitrary matching constraints (One-to-One, One-to-Many,

Many-to-One and Many-to-Many restrictions can all be handled). To accomplish this

task, MAERLIN searches optimal decision rules through a purposefully designed con-

strained Evolutionary Algorithm.

In the paper we also outline the main functionalities of the RELAIS (REcord

Linkage At IStat) system. RELAIS is a toolkit including techniques for each phase of

a RL process, i.e. search space reduction, string comparison, decision, matching con-

straints enforcement, etc. The project was launched in 2006 and is currently at its 2.1

release4, distributed as an open source project. RELAIS includes a state-of-the-art im-

plementation of the traditional Fellegi-Sunter method [4] for probabilistic RL, and this

has been selected as the matter of comparison with MAERLIN.

We have conducted an extensive experimental analysis comparing MAERLIN to

RELAIS. Specifically, we present several experiments on challenging real-world RL

instances. Such instances have been deliberately selected to verify MAERLIN robust-

ness against variations of the main characteristics of the RL problem, including: data

set sizes, match rate, number and discrimination power of variables used to compute

distance measures, and error rates affecting such variables. For the same reason, the

data we use as experimental test bed have been retrieved from sources belonging to

distinct application domains, e.g., Official Statistics surveys, bibliographic databases,

and e-commerce websites. The obtained results not only show the significant effective-

ness and robustness of the methods underlying MAERLIN, but also reveal interesting

findings arising from the aforementioned comparative evaluation.

2 MAERLIN: Overall Picture of the System

The goal of a RL system is to identify record pairs representing the same real world

entity; such pairs are named Matches according to a consolidated jargon. At a very high

4 www.istat.it/strumenti/metodi/software/analisi dati/relais

 22

level of abstraction, every RL workflow can be seen as the sequence of two fundamental

processes: a comparison process followed by a decision process (see, e.g., Figure 1).

The comparison process takes as input the datasets to be linked (generally two, though

a single dataset is actually compared against itself in deduplication applications) and

performs some kind of distance (or, equivalently, similarity) measure on record pairs.

The subsequent decision process takes such computed measures as input and, by apply-

ing to them a rule of some kind, eventually classifies each record pair as belonging to

the class of Matches (M) or to the one of Unmatches (U). Needless to say, in almost

all real-world applications, both the comparison process and the decision process ac-

tually encompass several complex subprocesses (see, e.g., Figure 3 where a scheme of

MAERLIN decision process is reported).

As will be concisely discussed in Section 3, most of the original methodological

contributions implemented in the MAERLIN system have been embedded in its de-

cision engine. On the basis of these methods, MAERLIN can be defined, adopting a

traditional terminology, as a system for (i) unsupervised, (ii) probabilistic, (iii) fully

automated RL. Indeed: (i) MAERLIN does not require any clerically prepared train-

ing set, as opposed to supervised techniques for RL (mostly based on machine learn-

ing algorithms); (ii) MAERLIN assumes that the pairwise measures computed in the

comparison phase obey a well defined statistical model, and exploits the statistical in-

ference machinery to draw conclusion on the unknown class-membership of each pair;

(iii) MAERLIN does not require any human intervention to set and/or fine-tune crucial

parameters, like similarity thresholds to be exceeded by matching record pairs.

Fig. 1. MAERLIN (simplified) workflow for a general Record Linkage Process

As depicted in Figure 1, MAERLIN decision engine expects as input a matrix with

values representing pairwise distances normalized in the [0, 1] interval. Besides this

weak functional requirement, the system does not rely on any restrictive assumption

concerning the number or the type of the attributes (matching variables) to be used to

compare records, or the individual distance functions to be applied to those attributes.

 23

Therefore, MAERLIN comparison engine allows the user (see the dashed input in Fig-

ure 1): (i) to select an arbitrary set of matching variables among those common to the

input datasets; (ii) to select and combine freely the distance functions to be used on

individual matching variables (several string metrics are supported, e.g. Equality, Lev-

enshtein, Jaro, JaroWinkler, etc.); (iii) to specify (optionally) a set of reliability weights

for the matching variables. Whenever more than one matching variable is used, the

system adopts a simple averaging procedure to obtain a scalar distance value: first dis-

tances measured on individual variables are transformed into standardized scores, then

a weighted mean of such scores is computed, lastly the obtained scalar values are nor-

malized in [0, 1].
As for large input datasets it is generally not feasible to compute pairwise distances

for the whole cartesian product, MAERLIN provides a standard blocking technique to

reduce the comparison space. This means that only distances corresponding to pairs

with identical blocking variables are actually computed and passed to the decision en-

gine. If the selected blocking variables are accurate (i.e., almost not affected by errors),

such technique is expected to quickly filter-out pairs belonging, with high probability,

to the U class.

3 MAERLIN: Overview of the Underlying Methods

MAERLIN implements a novel suite of methods for RL, based on mixture models.

These are statistical models that allow to represent a probability distribution as a convex

combination of other distributions (see, e.g., [7]). A thorough motivation and descrip-

tion of such methods has been already provided elsewhere. Due to space limitations,

here we shall restrict ourselves to a very concise outline, referring the reader to [10] for

further details.

Real-world data are always affected by a wide variety of unpredictable errors: this is

precisely the reason why the RL problem is non-trivial. As already stated, RL methods

invariably rely on distance (or similarity) measures between record pairs. Due to the

stochastic nature of every real-world data generating process, such pairwise distances

can be seen as (realizations of) a random variable. Thus, the intuition behind the use

of mixtures models is that the observed distances arise from a superposition of two

distinct probability distributions: the one stemming from the subpopulation of Matches

and the other from that of Unmatches. The ultimate aim of this statistical perspective is

to exploit the mixture model for classification purposes, i.e., to bring to light the hid-

den grouping of the pairs in the underlying M and U classes. The trick is simple: the

distance is viewed as an observable auxiliary random variable that can be used to make

inference on a latent interest random variable, namely the class-membership indicator

of the pairs. The whole picture is founded upon the hypothesis that the probability dis-

tribution of the distance is significantly different inside the M and U classes. Luckily

this is almost always the case in real application scenarios, because typically errors af-

fect data at moderate rates. Whenever such condition holds, the shapes of the M and U

distance densities are indeed very different: (i) Unmatches tend to be concentrated at

higher distances than Matches, which furthermore generally exhibit their own distinc-

tive peak at zero distance; (ii) M and U densities show only a relatively small overlap.

 24

These qualitative features are so general that one can rightly consider them as a piece

of prior knowledge about the underlying (unknown) M and U distance probability dis-

tributions: we refer to it as PK1. Besides PK1, another piece of prior knowledge is

readily available in RL applications, namely that Matches are rare as compared to Un-

matches. This property is easily understood for 1:1 RL5, but remains true even when

the data sets to be linked do contain duplicated records. We refer to this second kind of

prior knowledge as PK2. Figure 2 exemplifies in a clear-cut way the excellent agree-

ment between the aforementioned basic assumptions PK1 and PK2 and sample data

coming from a real-world RL instance.

Fig. 2. Pairwise-distances coming from a real-world RL instance (Rest data sets, see Section

6). Upper panel: distance histogram of the whole unlabeled data (176,423 pairs). Lower panel:

superimposed distance histograms for Match pairs (blue, dark) and Unmatch pairs (red, light);

note that a 500 times y-axis zoom was needed to detect the feeble signal arising from the few

Matches (112 pairs).

The decision engine coded inside MAERLIN is able to exploit PK1 and PK2 suc-

cessfully when facing practical RL tasks. MAERLIN represents the probability density

function of the distance as a two-component Beta6 mixture. The system structures the

decision phase of a RL process into two consecutive tasks, as schematically depicted

5 Indeed, if data sets A and B do not contain duplicated records the Match rate, i.e. the ratio

between the cardinalities of M and A × B, cannot exceed the value 1/ max(|A|, |B|). This

value is very small in almost all the RL problems, even when blocking techniques have been

applied.
6 The Beta is appropriate because: 1) it has bounded support; 2) it is flexible; 3) it can represent

positively and negatively skewed distributions, in compliance with PK1; 4) it is controlled by

shape parameters, so that PK1 can be translated easily into a set of constraints acting on the

parameter space.

 25

in Figure 3. First, it finds (constrained) Maximum-Likelihood estimates for the mix-

ture parameters by fitting the model to the observed distance measures between pairs.

Then, it obtains a probabilistic clustering of the pairs into Matches and Unmatches by

exploiting the fitted model.

Fig. 3. A Schematic view of MAERLIN decision engine.

The fitting phase is the crucial one, as it implicitly determines the quality of the

subsequent clustering results. However, it represents a very hard task; indeed, the prob-

lem of fitting a mixture model is always difficult, but it is even more severe in RL

applications. This is due to the huge class-skew inherent in RL problems, where the

very few (and unidentified) distance measures stemming from Matches risk to be com-

pletely overwhelmed by the bulk of those stemming from Unmatches. To overcome

this difficulty MAERLIN exploits an original fitting technique inspired by Perturbation

Theory (see, e.g., [1]) and designed to take advantage from both PK1 and PK2. The

technique is coded as a Two-Step algorithm, with the M class mixing weight (which

is guaranteed to be ≪ 1, due to PK2) playing the role of the perturbative expansion

parameter7. The First-Step concentrates on the U component mixture parameters and

is specifically aimed at “factorizing” the leading contribution arising from Unmatches.

The Second-Step strives to increase the Likelihood achieved in the previous step by

using the remaining mixture parameters in a “smart way”; that is, M density parameters

are tuned in such a way as to better fit the behavior of the distance distribution exactly

in those regions where, thanks to PK1, values stemming from Matches are more likely

to be found.

In the clustering phase MAERLIN searches an optimal classification rule such that

each pair can be assigned, based on its observed distance value, either to the M or to the

7 Stated in Perturbation Theory jargon: First-Step and Second-Step optimization algorithms are

respectively in charge of solving the zeroth-order and first-order perturbative approximations

of the original constrained ML optimization problem.

 26

U class. The system can minimize either the probability of classification error (Maxi-

mum Likelihood objective) or, alternatively, the expected classification cost (Minimum

Cost objective), while satisfying arbitrary matching constraints (1:1, 1:N, N:1 or N:M)8.

If no constraints are imposed (i.e. for N:M matching), the applied classification rules

depend in a quite straightforward way on posterior estimates of class membership prob-

abilities and reflect classical Decision Theory results (see, e.g., [3]). For instance, the

Maximum Likelihood objective leads to the well known “Maximum a Posteriori (MAP)

rule”, see Figure 3. When, on the contrary, matching constraints are imposed, MAER-

LIN faces directly the full-complexity constrained optimization problem by means of a

purposefully designed Evolutionary Algorithm [10].

4 Overview of the RELAIS Toolkit

The RELAIS toolkit idea is based on the consideration that the RL process is applica-

tion dependent. Indeed, available tools do not provide a satisfying answer to the various

requirements that different applications can exhibit. A RL process typically consists of

different phases; the implementation of each phase can be performed according to a

specific technique or on the basis of a specific decision model. For instance, choosing

which decision model to apply is not immediate: the usage of a probabilistic decision

model can be more appropriate for some applications but it can be less appropriate for

others, for which an empirical decision model could prove more successful (or more

easy to use). Furthermore, even using the same decision model, in different applica-

tion scenarios, a comparison function could fit better than others. Therefore, we claim

that no RL process, deriving from the choice and combination of a specific technique

for each phase, is the best for all applications. The RELAIS toolkit is composed by a

collection of techniques for each phase of the RL procedure that can be dynamically

combined in order to build the best RL workflow. As an example, if it is known that the

datasets to compare have poor quality, it is suitable the usage of comparison functions

ensuring high precision (e.g. Jaro distance); as a further example, if no specific error-

rates are required by the application, it can be appropriate the usage of an empirical

decision model. Some phases of the RL process can be missing: for instance the search

space reduction phase makes sense only for huge data volumes, or for applications that

have time constraints. The principal RELAIS functionalities (see [9] for details) are:

– Data profiling, in which a set of quality metadata (completeness, accuracy, con-

sistency, categories, frequency distribution, entropy) are calculated starting from

input data. These metadata help the user in the critical phase of choosing the best

blocking or matching variables.

– Search Space Reduction which, besides the cross product of the input datasets,

makes available a blocking method and the Sorted Neighbourhood method.

– Comparison Functions, currently including Equality, Numeric Comparison, 3-

Grams, Dice, Jaro, JaroWinkler, Levenshtein and Soundex.

8 These constraints arise whenever one knows in advance that both (1:1) or either (1:N or N:1)

of the data sets to be matched do not contain duplicates. N:M matching actually means absence

of constraints.

 27

– Deterministic Linkage, which permits to specify complex boolean decision rules.

It can be adopted, in alternative or in combination with probabilistic methods.

– Probabilistic Linkage, which implements the Fellegi-Sunter method [4].

– Optimal One-to-One Matching, in which one-to-one matching constraints between

the two input data sets are enforced by solving a Linear Programming problem

trough the Simplex method.

– Greedy One-to-One Matching, applicable if the optimal solution is not able to reach

a result due to computational limitations. With this strategy, local choices, based

on a sort of the matching probabilities, are performed to enforce the one-to-one

matching constraints.

As anticipated, the RELAIS functionality that will be used for comparison with MAER-

LIN is the traditional Fellegi-Sunter probabilistic RL method.

5 Probabilistic RL approaches: MAERLIN versus Fellegi-Sunter

On the whole, i.e. when taking into account both the fitting phase and the clustering

phase, MAERLIN approach differs very much from the Fellegi-Sunter (FS) method.

Since the FS method is by far the best known approach in the probabilistic RL literature,

and as in Section 6 we shall experimentally compare MAERLIN with the state-of-the-

art software implementation of FS provided by RELAIS, here we quickly list some of

the differences:

Modeled Variable. As opposed to MAERLIN scalar distance, FS uses a k-vector

variable whose components represent agreement/disagreement outcomes obtained

when comparing record pairs on k matching fields. Thus, despite FS based soft-

wares are usually able to exploit continuous string-similarity functions, they require

the user to specify agreement thresholds in order to eventually map continuous val-

ues to 0 or 1 (by the way, this also applies to RELAIS).

Statistical Model. FS assumes that the components of the comparison vector are

conditionally independent; the resulting model can, thus, be thought as a two-

component mixture where each component is a product of k Bernoulli distribu-

tions. Modern FS implementations, including RELAIS, generally rely on the EM

algorithm [2] to estimate the 2k + 1 parameters of the model. This is to be com-

pared to MAERLIN two-component Beta mixture model, whose 5 parameters are

estimated via our Two-Step Perturbative Fitting algorithm.

Classification Rule. FS decision model has a third class (besides M and U), namely

the Possible Match class. Unlike MAERLIN, FS classification rule is neither based

on Maximum Likelihood nor on Minimum Cost, but rather minimizes the expect

number of Possible Matches at fixed misclassification error rates. As a matter of

fact, systems based on FS, including RELAIS, are generally unable to automati-

cally apply such rule, therefore requiring a human intervention to set the crucial

classification thresholds. This is at odds with MAERLIN, whose decision engine is

parameter-free and fully automated.

Matching Constraints. Few papers on FS based applications, e.g. [5], tackled the 1:1

problem by using Simplex-based algorithms (as anticipated, this is also the choice

 28

adopted by RELAIS). Such solution has to be compared to MAERLIN Cluster-

ing Evolutionary Algorithm which is able to manage every kind of matching con-

straints.

6 Experiments

Here we present some experiments on challenging real-world RL instances to validate

our system. All experiments have been run in an ordinary PC environment, equipped

with: Windows XP 64 Operating System, 4 GB RAM, 2 GHz CPU. We shall describe

5 RL instances involving very different data sources. Such instances have been delib-

erately selected to verify MAERLIN robustness against variations of the main char-

acteristics of the RL problem. These include: data set sizes, Match rate (i.e. fraction

of pairs that are Matches), type of records to be matched, number and discrimination

power of variables used to compute distance measures, error rates affecting such vari-

ables. For the same reason, the data we use as experimental test bed have been retrieved

from sources belonging to distinct application domains, e.g., Official Statistics surveys,

bibliographic databases, and e-commerce websites. Finally, we shall provide a detailed

comparison between MAERLIN and RELAIS.

6.1 Experimental Setup

We first introduce the quality measures we adopt to assess the effectiveness of a RL sys-

tem, then we describe the testing strategy we use for comparing MAERLIN to RELAIS,

and finally we provide a concise description of the studied RL instances.

Quality measures. We choose to rely on traditional Precision (Prec) and Recall (Rec)

measures. Whenever a single quality measure is needed, we select the F-measure,

F=2/(Prec-1+Rec-1). Notice that the F-measure is a conservative quality measure, as

it can reach an high value only when both Precision and Recall are high.

Comparison protocol. The main issues influencing our testing strategy are related to

the intrinsic asymmetry between the automated, parameter-free nature of MAERLIN,

and the need of incorporating into RELAIS some kind of domain-knowledge in the form

of user-specified thresholds (recall the discussion of Section 5). To get rid of this asym-

metry, we determined a comparison protocol that deliberately gives a big advantage to

RELAIS, thus producing a severe test bed for our MAERLIN system. The protocol is

as follows. An expert RELAIS user was allowed to perform, on every selected RL task,

multiple runs with several different parameter settings (matching variables + similarity

functions + agreement thresholds + classification thresholds). After each run, he was

allowed to evaluate the quality scores obtained by RELAIS and to modify accordingly

the parameters to be used in the next run, thus progressively tuning them. At the end

of the cycle, only the best parameter configuration was retained, and the corresponding

Precision, Recall, and F-measure results accepted and reported as RELAIS benchmark

scores. On the contrary, no tuning was allowed when running MAERLIN, not even in

the comparison phase: MAERLIN was constrained to use the same matching variables

 29

Table 1. Relevant Features of RL instances

RL Data Origin Matching Variables Data/Error Nature Pairs Number of Match Rate

Instance (nA×nB) Matches

Rest Riddle name, address, Real/Real 176,423 112 6.3·10−4

city, type (331 × 533)
Cens SecondString surname, name, Artificial/Artificial 176,008 327 1.9·10−3

midinit, (392 × 449)
number, street

Bib Leipzig Univ title, author, Real/Real 6,001,104 2,224 3.7·10−4

year (2,294 × 2,616)
E-comm Leipzig Univ name, price, Real/Real 1,157,776 1,076 9.3·10−4

description (1,076 × 1,076)
PES Istat surname, name, Real/Real 32,876,434,096 172,621 5.3·10−6

birth.dd, birth.mm, (180,133 × 182,512)
birth.yyyy, sex

and distance functions corresponding to the best parameter configuration found for RE-

LAIS, without any possibility of specifying reliability weights for the variables. For

the sake of absolute clarity, we stress here that no way can the described protocol sur-

reptitiously determine an advantage for MAERLIN, indeed: (i) RELAIS best choices

for matching variables and distance functions are generally found to be suboptimal for

MAERLIN (unsurprisingly as MAERLIN and FS methods differ both in the modeled

variable and in the adopted statistical model); (ii) the most influential parameters in the

RELAIS tuning/optimisation cycle, that is the agreement thresholds and (mainly) the

classification thresholds, are simply absent from MAERLIN framework.

RL instances. Table 1 reports some basic information concerning the RL instances

we selected, to which we refer as Rest, Cens, Bib, E-comm and PES. All such in-

stances imply 1:1 constraints and, with the only exception of Cens, involve real-world

data. These problems are all hard, as indicated by (though not exclusively due to) their

very low Match rates. The Rest instance involves restaurant data affected by real-world

errors, coming from Zagat’s and Fodor’s guidebooks (available at the RIDDLE9 reposi-

tory). For this instance, four matching variables were used and the Levenshtein distance

was applied to all. The Cens datasets, originally provided by W. Winkler, contain syn-

thetic census-like records (available with the SECONDSTRING package10). The cor-

responding RL instance relies on five matching variables and applies the Levenshtein

distance. The Bib instance deals with bibliographic data covering the same sets of com-

puter science conferences and journals, retrieved from the DBLP and ACM digital li-

braries (available at the website of the Leipzig University11). Three matching variables

were used for comparison, again by applying uniformly the Levenshtein distance. The

E-comm datasets (again retrieved from the Leipzig University website) contain records

describing products of the same category available for sale at the Abt.com and Buy.com

online shops. Due to the unstructured nature of the original web sources, the quality of

E-comm data is very low (heterogeneous representations of product names and de-

scriptions, misspellings, missing product prices, extraction errors). RELAIS faced this

9 www.cs.utexas.edu/users/ml/riddle/index.html
10 www.cs.utexas.edu/users/ml/riddle/data/secondstring.tar.gz
11 dbs.uni-leipzig.de/en/research/projects/object matching

 30

Table 2. Precision, Recall and F-measure Results: MAERLIN vs. RELAIS

RL Instance PrecMAERLIN PrecRELAIS ΔPrec(%) RecMAERLIN RecRELAIS ΔRec(%) FMAERLIN FRELAIS ΔF(%)

Rest 0.925 0.839 +10.2% 0.875 0.884 −1.0% 0.899 0.861 +4.4%
Cens 0.994 0.952 +4.4% 0.988 0.979 +0.9% 0.991 0.965 +2.6%
Bib 0.987 0.986 +0.1% 0.970 0.949 +2.2% 0.978 0.967 +1.2%

E-Comm 0.968 0.288 +236.3% 0.455 0.642 −29.0% 0.619 0.398 +55.8%
PES 0.999 0.998 +0.1% 0.992 0.962 +3.1% 0.996 0.980 +1.6%

Average⋆ 0.976 0.944 +3.4% 0.956 0.944 +1.3% 0.966 0.943 +2.4%
Performance

RL task by using 3-grams on name and description and a numeric comparison

function on price. As the 3-grams distance is not already supported in MAERLIN,

our system exploited instead the cosine distance between TF-IDF weights vectors. The

PES instance involves data coming from the Post Enumeration Survey (PES) carried

out by the Italian National Institute of Statistics to estimate the coverage rate of the

2001 population Census. Therefore, this RL task required the matching of two lists of

people, the first collected by the Census and the second by the PES. Six matching vari-

ables were used and again the Levenshtein distance was chosen. PES comparison-space

was so huge (about 33 billions of pairwise distances, see Table 1) that both systems had

to perform a preliminary blocking step. The enumeration area code was selected as

blocking variable. From a computational complexity point of view, the net result was

to transform the original, global RL task (which was not affordable) into a sequence of

smaller, independent RL subtasks, one for each block. The overall number of processed

blocks was 1,098. Correspondingly, the size of the comparison-space decreased from

about 33 billions to about 86 millions pairs.

6.2 Results

The results of our experiments are collectively shown in Table 2, with Δ{Prec,Rec,F}

expressing the percent performance gain (or loss) of MAERLIN versus RELAIS with

respect to a given quality measure. It has to be stressed that, since for E-comm we could

not employ the same distance functions when running MAERLIN and RELAIS, and as

this is a possible source of bias when comparing the systems, we excluded that instance

from the computation of average performances (whence the superscript ⋆).

A first look to the average Precision (0.976), Recall (0.956), and F-measure (0.966)

scores achieved by MAERLIN immediately reveals the remarkable effectiveness of our

system. Moreover, MAERLIN exhibits also a very good robustness, with F-measures

scores falling significantly below 0.9 only for the E-comm instance. Turning the atten-

tion to the comparative evaluation, we observe that: (i) MAERLIN always outperforms

RELAIS with respect to Precision; (ii) MAERLIN outperforms RELAIS with respect

to Recall in 3 cases out of 5; (iii) MAERLIN F-measure scores are always higher than

the ones achieved by RELAIS. These results are clearly summarized in the average

performance values (last row of Table 2), with MAERLIN showing some effectiveness

gain as compared to RELAIS for all the adopted quality measures. The small amount of

such relative improvements (+3.4% Precision, +1.3% Recall, +2.4% F-measure) should

not be misleading: indeed, our comparison protocol was deliberately biased in favor of

 31

RELAIS, which in turn is a very good RL system in itself. The PES instance demon-

strates the practical feasibility of MAERLIN approach when dealing with very large

amounts of data. Indeed, besides excellent quality scores, our system also exhibits a

very satisfactory behavior with respect to computational efficiency: the overall execu-

tion time for processing about 86 millions of pairs, partitioned into 1,098 blocks, was

293 minutes (i.e. less than 5 hours) corresponding to an average processing time of

about 2 ·10−4 seconds per pair. Even if MAERLIN superseded once more RELAIS

(+55.8% F-measure), the E-comm task turned out to be challenging for both systems.

This is not surprising, given the unstructured nature of the original web sources and

the resulting extremely poor quality of the variables used for comparison, whose values

are actually bulky and heterogeneous agglomerates of words. Apparently, the task of

linking data crawled from the web needs further improvements, perhaps to figure out

some new and more sophisticated distance function.

7 Conclusions

In this paper, we presented the MAERLIN RL system. Several original contributions

enable MAERLIN to be at the same time effective and fully automated. We validated

our system by testing its Precision, Recall and F-measure scores on challenging real-

world problems arising from very different application domains. MAERLIN obtained

excellent results, outperforming constantly the traditional Fellegi-Sunter approach as

implemented by the RELAIS system. This proved as well the remarkable robustness

of the methods implemented by the MAERLIN system. The system is currently in the

alpha testing phase and is planned to be released as a standard R package on CRAN (the

Comprehensive R Archive Network)12. Moreover, since RELAIS, as a toolkit, gives

the possibility of integrating new techniques, we also plan to include MAERLIN into

RELAIS as an alternative decision method for probabilistic RL.

References

1. Bender, C., Orszag, S.: Advanced Mathematical Methods for Scientists and Engineers:

Asymptotic methods and perturbation theory. Springer, N. Y. (1999)
2. Dempster, A., Laird, N., Rubin, D.: Maximum-likelihood from incomplete data via the em

algorithm. JRSS, SERIES B 39(1) (1977)
3. Duda, R., Hart, P., Stork, D.: Pattern Classification. John Wiley & Sons (2000)
4. Fellegi, I., Sunter, A.: A theory for record linkage. JASA 64 (1969)
5. Jaro, M.: Advances in record-linkage methodology as applied to matching the 1985 census

of tampa, florida. JASA 84 (1989)
6. Kopcke, H., Thor, A., Rahm, E.: Evaluation of entity resolution approaches on real-world

match problems. In: VLDB (2010)
7. McLachlan, G., Peel, D.: Finite Mixture Models. John Wiley & Sons (2000)
8. R-Development-Core-Team: R: A Language and Environment for Statistical Computing. R

Foundation for Statistical Computing (2011)
9. RELAIS-Development-Team: RELAIS Manual Version 2.1. Istat (2010)

10. Zardetto, D., Scannapieco, M., Catarci, T.: Effective automated object matching. In: ICDE

(2010)

12 cran.r-project.org

 32

Answering Queries in a Relaxed Way

Davide Martinenghi1 and Riccardo Torlone2

1Dip. di Elettronica e Informazione
Politecnico di Milano, Italy
martinen@elet.polimi.it

2Dip. di Informatica e Automazione
Università Roma Tre, Italy
torlone@dia.uniroma3.it

Abstract. Traditional information search in which queries are posed
against a known and rigid schema over a structured database is shift-
ing towards a Web scenario in which schemas are vague or absent. In
this framework, query answering needs to be relaxed with the goal of
matching user requests with accessible data. In this paper, we propose a
logical model and an abstract query language as a foundation for query-
ing data sets with vague schemas. The model is a natural extension of
the relational model in which data domains are organized in taxonomies,
simple classifications of values arranged in a hierarchical structure. The
query language is a conservative extension of relational algebra where
special operators allow the specification of relaxed queries over vaguely
structured information.

1 Introduction

There are today many application scenarios in which user queries do not match
the structure and the content of data repositories, given the nature of the applica-
tion domain or because the schema is not available. This happens for instance in
location-based search (find an opera concert in Paris next summer), multifaceted
product search (find a cheap blu-ray player with an adequate user rating), and
multi-domain search (find a DB conference for which a cheap travel solution
exists). In these situations, the query is usually relaxed to accommodate user’s
needs, and query answering relies on finding the best match between the user
request and the available data.

In spite of this trend towards “schema-agnostic” applications, the support
of current database technology for query relaxation is quite limited. The only
examples are in the context of semi-structured information, in which schemas
and values are varied and/or missing [1]. Conversely, the above mentioned ap-
plications can benefit from applying traditional relational database technology
enhanced with a support for the management of query relaxation.

To this aim, in this paper we present a logical data model and an abstract
query language supporting query relaxation over relational data. Our approach
relies on the availability of taxonomies, that is, simple ontologies in which terms
used in schemas and data are arranged in a hierarchical structure according to
a generalization-specialization relationship. The data model is a natural exten-
sion of the relational model in which data domains are organized in hierarchies,

according to different levels of detail: this guarantees a smooth implementation
of the approach with current database technology. In this model data and meta-
data can be expressed at different levels of detail. This is made possible by a
partial order relationship defined both at the schema and at the instance level.

The query language is called Taxonomy-based Relational Algebra (TRA)
and is a conservative extension of relational algebra. TRA includes two special
operators that extend the capabilities of standard selection and join by relating
values occurring in tuples with values in the query using the taxonomy. In this
way, we can formulate relaxed queries that refer to attributes and terms different
from those occurring in the actual database.

The rest of the paper is organized as follows. In Section 2 we present the data
model. TRA, the query language for this model, is illustrated in Section 3. In
Section 4 we compare our approach with related works and finally, in Section 5,
we draw some conclusions and sketch future works.

2 A Data Model with Taxonomies

2.1 Hierarchical domains and t-relations

The basic construct of our model is the hierarchical domain or simply the h-
domain, a collection of values arranged in a containment hierarchy. Each h-
domain is described by means of a set of levels representing the domain of
interest at different degrees of granularity.

Definition 1 (H-domain). An h-domain h is composed of:

– a finite set L = {l1, . . . , lk} of levels, each of which is associated with a set
of values called the members of the level and denoted by M(l);

– a partial order ≤L on L having a bottom element, denoted by ⊥L, and a
top element, denoted by ⊤L, such that: (i) M(⊥L) contains a set of ground
members whereas all the other levels contain members that represent groups
of ground members, and (ii) M(⊤L) contains only a special member m⊤ that
represents all the ground members;

– a family CM of containment mappings cmapl2l1 : M(l1) → M(l2) for each
pair of levels l1 ≤L l2 satisfying the following consistency conditions:

Example 1. The h-domain time has a bottom level whose (ground) members
are timestamps and a top level whose only member, anytime, represents all
possible timestamps. Other levels can be day, week, month, quarter, season and
year, where day ≤L month ≤L quarter ≤L year and day ≤L season. A possible
member of the Day level is 23/07/2010, which is mapped by the containment
mappings to the member 07/2010 of the level month and to the member Summer
of the level season.

As should be clear from Definition 1, in this paper we consider a general notion
of taxonomy in which, whenever l1 ≤L l2 for two levels in an h-domain, then the
set of ground members for l1 is contained in the set of ground members for l2.

 34

Actually, a partial order ≤M can also be defined on the members M of an
h-domain h: it is induced by the containment mappings as follows.

Definition 2 (Poset on members). Let h be an h-domain and m1 and m2 be
members of levels l1 and l2 of h, respectively. We have that m1 ≤M m2 if: (i)
l1 ≤L l2 and (ii) cmapl2l1(m1) = m2.

Example 2. Consider the h-domain of Example 1. Given the members m1 =
29/06/2010 and m2 = 23/08/2010 of the level day, m3 = 06/2010 and m4 =
08/2010 of the level month, m5 = 2Q 2010 and m6 = 3Q 2010 of the level
quarter, m7 = 2010 of the level year, and m8 = Summer of the level season, we
have: m1 ≤M m3 ≤M m5 ≤M m7, m2 ≤M m4 ≤M m6 ≤M m7, and m1 ≤M m8

and m2 ≤M m8.

The main construct of the data model is the t-relation, a natural extension
of a relational table built over taxonomies of values.

Definition 3 (T-relation). Let H be a set of h-domains. We denote by S =
{A1 : l1, . . . , Ak : lk} a t-schema (schema over taxonomies), where each Ai is a
distinct attribute name and each li is a level of some h-domain in H. A t-tuple
t over a t-schema S = {A1 : l1, . . . , Ak : lk} is a function mapping each attribute
Ai to a member of li. A t-relation r over S is a set of t-tuples over S.

Given a t-tuple t over a t-schema S and an attribute Ai occurring in S on level
li, we will denote by t[Ai : li] the member of level li associated with t on Ai. For
a subset S′ of S, we will denote by t[S′] the restriction of t to S′. Finally, for
simplicity, we will often not make any distinction in the following between the
name of an attribute of a t-relation and the name of the corresponding h-domain.

Example 3. As an example, a t-schema over the h-domains time, location
and weather conditions can be the following: S = {T ime : day, Location :
city,Weather : brief}. A possible t-relation over this schema is the following:

r1 =

Time: day Location: city Weather: brief
11/05/2010 Rome Sunny t1,1
24/04/2009 Milan Cloudy t1,2
24/07/2010 New York Showers t1,3

Then we have: t1,1[Location:city] = Rome.

A partial order relation on both t-schemas and t-relations can be also defined in
a natural way.

Definition 4 (Poset on t-schemas). Let S1 and S2 be t-schemas over a set
of h-domains H1 and H2 respectively. We have that S1 ≤S S2 if: (i) H1 ⊆ H2,
and (ii) for each Ai : li ∈ S1 there is an element Ai : lj ∈ S2 such that li ≤L lj.

Definition 5 (Poset on t-tuples). Let t1 and t2 be t-tuples over S1 and S2

respectively. We have that t1 ≤t t2 if: (i) S1 ≤S S2, and (ii) for each Ai : li ∈ S1

there is an element Ai : lj ∈ S2 such that t1[Ai : li] ≤M t2[Ai : lj].

 35

Note that, in these definitions, we assume that levels of the same h-domain
occur in different t-schemas with the same attribute name: this strongly simplifies
the notation that follows without loss of expressibility. Basically, it suffices to use
as attribute name the role played by the h-domain in the application scenario
modeled by the t-schema.

Example 4. Consider the following t-relations:

S1 = Title:cultural-event Time:day Location:theater
r1 = Romeo & Juliet 13/04/2011 La Scala t1,1

Carmen 24/05/2011 Opéra Garnier t1,2
Requiem 28/03/2011 La Scala t1,3
La bohème 09/01/2011 Opéra Garnier t1,4

S2 = Title:event Time:quarter Location:city Ticket:website
r2 = Concert 1Q 2011 Milan tkts.com t2,1

Ballet 2Q 2011 Milan tkts.com t2,2
Sport 3Q 2011 Rome allsport.it t2,3
Opera 2Q 2011 Paris billet.fr t2,4

Then, it is easy to see that: (i) S1 ≤S S2, and (ii) t1,1 ≤t t2,2, t1,2 ≤t t2,4,
t1,3 ≤t t2,1, and t1,4 ≤t t2,4.

In the following, for the sake of simplicity, we will often make no distinction
between the name of an attribute and the corresponding level.

3 Querying with Taxonomies

In this section we present TRA (Taxonomy-based Relational Algebra) an exten-
sion of relational algebra over t-relations. This language provides insights on the
way in which data can be manipulated taking advantage of available taxonomies
over those data. Moreover, for its procedural nature, it can be profitably used to
specify query optimization. The goal is to provide a solid foundation to querying
databases in a relaxed way using taxonomies.

Similarly to what happens with the standard relational algebra, the operators
of TRA are closed, that is, they apply to t-relations and produce a t-relation
as result. In this way, the various operators can be composed to form the t-
expressions of the language.

TRA is a conservative extension of basic relational algebra (RA) and so it
includes its standard operators: selection (σ), projection (π), and natural join
(⊲⊳). It also includes some variants of these operators that are obtained by
combining them with the following two new operators.

Definition 6 (Upward extension). Let r be a t-relation over S, A be an
attribute in S over a level l, and l′ be a level such that l ≤L l′. The upward

extension of r to l′, denoted by ε̂
A:l′

A:l (r), is the t-relation over S∪{A : l′} defined

as follows: ε̂
A:l′

A:l (r) = {t | ∃t
′ ∈ r : t[S] = t′, t[A : l′] = cmapl

′

l (t
′[A : l])}

 36

Definition 7 (Downward extension). Let r be a t-relation over S, A be an
attribute in S over a level l, and l′ be a level such that l′ ≤L l. The downward
extension of r to l′, denoted by ε̌

A:l
A:l′(r), is the t-relation over S∪{A : l′} defined

as follows: ε̌
A:l
A:l′(r) = {t | ∃t

′ ∈ r : t[S] = t′, t′[A : l] = cmapll′(t[A : l′])}

For simplicity, in the following we will often simply write ε̂
l′

l or ε̌
l′

l , when there
is no ambiguity on the attribute name associated with the corresponding levels.

Example 5. Consider the t-relations r1 and r2 from Example 4. The result of

ε̂
city

theater(r1) is the following t-relation.

S3 = Title:cultural-event Author:artist Time:day Location:theater Location:city
r3 = Romeo & Juliet Prokofiev 13/04/2011 La Scala Milan t3,1

Carmen Bizet 24/05/2011 Opéra Garnier Paris t3,2
Requiem Verdi 28/03/2011 La Scala Milan t3,3
La bohème Puccini 09/01/2011 Opéra Garnier Paris t3,4

The result of ε̌
quarter
month (r2) is the following t-relation.

S4 = Title:event Time:quarter Location:city Time:month

r4 = Concert 1Q 2011 Milan Jan 2011 t4,1
Concert 1Q 2011 Milan Feb 2011 t4,2
Concert 1Q 2011 Milan Mar 2011 t4,3
Sport 3Q 2011 Rome Jul 2011 t4,4
Sport 3Q 2011 Rome Aug 2011 t4,5
Sport 3Q 2011 Rome Sep 2011 t4,6
.

The main rationale behind the introduction of the upward extension is the need
to relax a query with respect to the level of detail of the queried information.
For example, one might want to find events taking place in a given country, even
though the events might be stored with a finer granularity (e.g., city). Similarly,
the downward extension allows the relaxation of the answer with respect to the
level of detail of the query. For instance, a query about products available in a
given day may return the products available in that day’s month. Both kinds of
extensions meet needs that arise naturally in several application domains.

For this purpose, we introduce two new operators for the selection that lever-
age the available taxonomies; they can reference an h-domain that is more gen-
eral or more specific than those referenced by the underlying data.

Definition 8 (Upward selection). Let r be a t-relation over S, A be an
attribute in S defined over l, m be a member of l′ with l ≤L l′, and θ ∈
{=, <,>,≤, ≥, �=}: the upward selection of r with respect to Aθm on level
l, denoted by σ̂A:l θm(r), is the t-relation over S defined as follows:

σ̂A:l θ m(r) = {t ∈ r | cmapl
′

l (t[A : l]) θm}

Definition 9 (Downward selection). Let r be a t-relation over S, A be
an attribute in S defined over l, m be a member of l′ with l′ ≤L l, and
θ ∈ {=, <,>, ≤,≥, �=}: the downward selection of r with respect to Aθm on
level l, denoted by σ̌A:l θ m(r), is the t-relation over S defined as follows:

σ̌A:l θ m(r) = {t ∈ r | cmapll′(m) θ t[A : l]}

 37

In the following, we will often simply write σ̂Aθm and σ̌Aθm, without explicitly
indicating the name of the level, when this is unambiguously determined by the
corresponding attribute.

Example 6. Consider again the t-relations r1 and r2 from Example 4. We have
that: σ̂City=Milan(r1) = {t1,1, t1,3} and σ̌Day=13/03/2011(r2) = {t2,1}.

It can be easily seen that these operators can be obtained by composing
the upward or downward extension, the (standard) selection, and the projection
operators, as shown in (1) and (2) below.

σ̂A:l θ m(r) = πS(σA:l′ θm(ε̂
A:l′

A:l (r))) (1)

σ̌A:l θ m(r) = πS(σA:l′ θm(ε̌
A:l
A:l′(r))) (2)

Finally, we introduce two new join operators. Their main purpose is to com-
bine information stored at different levels of granularity.

Definition 10 (Upward join). Let r1 and r2 be two t-relations over S1 and
S2 respectively, and let S be an upper bound of a subset S̄1 of S1 and a subset
S̄2 of S2. The upward join of r1 and r2 with respect to S on S̄1 and S̄2, denoted
by r1⊲̂⊳S:S̄1,S̄2

r2, is the t-relation over S1 ∪ S2 defined as follows:

r1⊲̂⊳S:S̄1,S̄2
r2 = { t | ∃t1 ∈ r1, ∃t2 ∈ r2, ∃t

′over S : t1[S̄1] ≤t t
′,

t2[S̄2] ≤t t
′, t[S1] = t1, t[S2] = t2}

Definition 11 (Downward join). Let r1 and r2 be two t-relations over S1 and
S2 respectively, and let S be a lower bound of a subset S̄1 of S1 and a subset S̄2

of S2. The downward join of r1 and r2 with respect to S on S̄1 and S̄2, denoted
by r1⊲̌⊳S:S̄1,S̄2

r2, is the t-relation over S1 ∪ S2 defined as follows:

r1⊲̌⊳S:S̄1,S̄2
r2 = { t | ∃t1 ∈ r1, ∃t2 ∈ r2, ∃t′over S : t′ ≤t t1[S̄1],

t′ ≤t t2[S̄2], t[S1] = t1, t[S2] = t2}

Example 7. Consider the t-relation r1 from Example 4 and the following t-
relation.

S5 = Company:airline-company Location:airport
r5 = Alitalia Linate t5,1

Air France Roissy t5,2

The result of r1⊲̂⊳cityr5 is the following t-relation:

S6 = Event:cultural-event Author:artist Time:day Location:theater Company:airline-company Location:airport
r6 = Romeo & Juliet Prokofiev 24/04/2011 La Scala Alitalia Linate t6,1

Carmen Bizet 24/05/2011 Opéra Garnier Air France Roissy t6,2
Requiem Verdi 24/03/2011 La Scala Alitalia Linate t6,3
La bohème Puccini 09/01/2011 Opéra Garnier Air France Roissy t6,4

Now, consider the following t-relations.

S7 = Loc:theater Time:year Price:money

r7 = La Scala 2011 150 t7,1

S8 = Loc:theater Time:month Discount:perc.
r8 = La Scala 03/2011 10% t8,1

La Scala 06/2011 20% t8,2

 38

The result of r7⊲̌⊳theater,dayr8 is the following t-relation:

S9 = Loc:theater Time:year Price:money Time:month Discount:perc.
r9 = La Scala 2011 150 03/2011 10% t9,1

La Scala 2011 150 06/2011 20% t9,2

Also in this case, both the upward join and the downward join can be obtained by
combining the upward extension or the downward extension, and the (standard)
join. Equation (3) below shows this for the upward join, where S = {A1 :
l1, . . . , An : ln}, Si ⊇ S̄i ⊇ {A1 : l1i , . . . , A

n : lni } for i = 1, 2, and P is a predicate
requiring pairwise equality in both sides of the join for all fields added by the
extensions.

r1⊲̂⊳S:S̄1,S̄2
r2 = πS1S2(ε̂

A1:l1

A1:l11
· · · ε̂

An:ln

An:ln1
(r1)⊲⊳P ε̂

A1:l1

A1:l12
· · · ε̂

An:ln

An:ln2
(r2)) (3)

Equation (4) below shows this for the downward join, where S ⊇ {A1 :
l1, . . . , An : ln}, Si ⊇ S̄i ⊇ {A1 : l1i , . . . , A

n : lni } for i = 1, 2, and P is as
above.

r1⊲̌⊳S:S̄1,S̄2
r2 = πS1S2(ε̌

A1:l11
A1:l1 · · · ε̌

An:ln1
An:ln(r1)⊲⊳P ε̌

A1:l12
A1:l1 · · · ε̌

An:ln2
An:ln(r2)) (4)

As in the standard relational algebra, it is possible to build complex expres-
sions combining several TRA operators thanks to the fact that TRA is closed,
i.e., the result of every application of an operator is a t-relation.

In [8] we have identified a number of equivalence rules for the operators of
TRA that provide a formal foundation for the algebraic optimization of relaxed
queries in our model. For instance, it is possible to prove the following equivalence
indicating that a upward selection can be “pushed” through an upward join on
the side that involves the attribute-level pair used in the selection.

σ̂A:l θm(r1⊲̂⊳Cup:C1,C2r2) = (σ̂A:l θ mr1)⊲̂⊳Cup:C1,C2r2 (5)

4 Related work

The approach proposed in this paper is focused on the relaxation of queries to a
less restricted form with the goal of accommodating user’s needs. This problem
has been investigated in several research areas under different perspectives.

In the database area, query relaxation has been addressed in the context of
XML and semi-structured databases, with the goal of combining database style
querying and keyword search [1] and for querying databases with natural lan-
guage interfaces [7]. Malleable schemas [4, 9] deals with vagueness and ambigu-
ity in database querying by incorporating imprecise and overlapping definitions
of data structures. An alternative formal framework relies on multi-structural
databases [5], where data objects are segmented according to multiple distinct
criteria in a lattice structure and queries are formulated in this structure. The
majority of these approaches rely on non-traditional data models, whereas we
refer on a simple extension of the relational model. Moreover, none of them
consider relaxation via taxonomies, which is our concern.

 39

Query relaxation is also used in location-based search [3], but in the typical
IR scenario in which a query consists of a set of terms and query evaluation is
focused in the ranked retrieval of documents. This is also the case of the approach
in [2], where the authors consider the problem of fuzzy matching queries to items.
Actually, in the information retrieval area, which is however clearly different
from ours, document taxonomies have been already used in, e.g., [6], where the
authors focus on classifying documents into taxonomy nodes and developing the
scoring function to make the matching work well in practice.

5 Conclusion

In this paper, we have presented a logical model and an algebraic language as
a foundation for querying databases using taxonomies. In order to facilitate the
implementation of the approach with current technology, they rely on a natural
extension of the relational model. The hierarchical organization of data allows the
specification of queries that refer to values at varying levels of details, possibly
different from those available in the underlying database. We have also studied
the interaction between the various operators of the query language as a formal
foundation for the optimization of taxonomy-based queries.

Several interesting directions of research can be pursued within the frame-
work presented in this paper. In particular, we plan to develop methods for the
automatic identification of the level in which two heterogeneous t-relations can
be joined for integration purposes. Also, we are currently studying the impact of
our model on the complexity of query answering. On the practical side, we plan
to study how the presented approach can be implemented, in particular whether
materialization of taxonomies is convenient.

References

1. B. Fazzinga, S. Flesca, and F. Furfaro. XPath Query Relaxation Through Rewrit-
ing Rules. In IEEE TKDE, vol. 99, 2010.

2. A. Z. Broder, M. Fontoura, V. Josifovski, and L. Riedel. A semantic approach to
contextual advertising. In Proc. of SIGIR, pages 559-566, 2007.

3. Y.-Y. Chen, T. Suel, and A. Markowetz. Efficient query processing in geographic
web search engines. In Proc. of SIGMOD, pag. 277–288, 2006.

4. X. Dong and A. Y. Halevy. Malleable schemas: A preliminary report. In Proc. of
WebDB, pages 139–144, 2005.

5. R. Fagin, R. V. Guha, R. Kumar, J. Novak, D. Sivakumar, and A. Tomkins. Multi-
structural databases. In Proc. of PODS, pag. 184–195, 2005.

6. M. Fontoura, V. Josifovski, R. Kumar, C. Olston, A. Tomkins, and S. Vassilvitskii.
Relaxation in text search using taxonomies. Proc. of VLDB, 1(1): 672–683, 2008.

7. Y. Li, H. Yang, and H. V. Jagadish. NaLIX: A generic natural language search
environment for XML data. TODS 32(4): art. 30, 2007.

8. D. Martinenghi and R. Torlone. Querying Databases with Taxonomies. In Proc.
of ER, pag. 377–390, 2010.

9. X. Zhou, J. Gaugaz, W. Balke, and W. Nejdl. Query relaxation using malleable
schemas. In Proc. of SIGMOD, pag. 545–556, 2007.

 40

A Fast and Accurate Algorithm for Hierarchical
Clustering on Euclidean Distances

(Extended Abstract)

Elio Masciari1, Giuseppe M. Mazzeo1, and Carlo Zaniolo2

1 ICAR-CNR – Institute of Italian National Research Council
{masciari,mazzeo}@icar.cnr.it

2 UCLA – University of California Los Angeles
zaniolo@cs.ucla.edu

Abstract. A simple hierarchical clustering algorithm is proposed that
is faster and more accurate than existing algorithms, including k-means
and its recently proposed refinements. The algorithm consists of a di-
visive phase and an agglomerative phase; during these two phases, the
samples are repartitioned using a least quadratic distance criterion pos-
sessing unique analytical properties that we exploit to achieve a very
fast computation. CLUBS derives optimal clusters without requiring in-
put from users, and it is robust and impervious to noise, while providing
better speed and accuracy than methods, such as BIRCH, that are en-
dowed with the same critical properties.

1 Introduction

Many clustering algorithms have been proposed over the years [6], including algo-
rithms for partition-based clustering (e.g. k-means[8]), density based clustering
(e.g. DBScan[3]), hierarchical methods (e.g. BIRCH [11]) and grid-based meth-
ods (e.g. STING [10]), to mention only a few. Even so, the clustering remains a
many-facet problem, and there is no single algorithm that ensures speed, repeata-
bility, and quality of results. For instance, the old k-means algorithm remains
one of the most widely used algorithms due to its superior speed. But k-means
does not achieve good repeatability of results, since different choices of the of
the initial k points will produce different results, thus falling short of the ‘un-
supervised learning’ ideal. Indeed, k-means’ shortcomings have motivated much
research work [9, 1, 2], seeking to reduce the variability of the results by careful
seeding of the initial k points. These approaches also improves the quality of the
results, by maximizing inter-cluster distances, and minimizing the intra-cluster
similarities (formal measures of quality will be discussed later). As noted by vari-
ous authors and textbooks ([7, 6]) hierarchical clustering algorithms can produce
the best performances both in terms of clustering quality and repeatability, and
find important results in domains such as biology, medicine, and image process-
ing, but they also tend to be computationally expensive. This has motivated a
significant research line that attempted to overcome the computational inefficien-
cies of these algorithms while preserving their desirable properties. For instance

in [5] a fast agglomerative clustering method is proposed that uses approximate
nearest neighbor graph for reducing the number of distance calculations required
and thus the complexity of the clustering algorithm. In this paper we instead
observe that, for the frequent situations where Euclidean distance is used as the
measure of similarity, its analytical properties can be exploited to design a hi-
erarchical clustering algorithm that achieves superior performance in the three
dimensions of speed, repeatability and cluster quality.

The new algorithm is called CLUBS (for CLustering Using Binary Splitting)
and operates in two phases which are both carried out in a completely unsu-
pervised mode. The first phase of CLUBS is divisive, as the original set is split
recursively into miniclusters through successive binary splits: the algorithm’s
second phase is agglomerative since these miniclusters are recombined into the
final result.

2 Background
We are given a set D of N points in a d-dimensional space; we assume without
loss of generality, that all dimensions of D have the same size. The number of
non-zero elements of D will be denoted as N . A range ρi on the i-th dimension
of D is an interval [l..u], such that 1 ≤ l ≤ u ≤ n. Boundaries l and u of ρi are
denoted by lb(ρi) (lower bound) and ub(ρi) (upper bound), respectively. The size
of ρi will be denoted as size(ρi) = ub(ρi)−lb(ρi)+1. A block b (of D) is a d-tuple
〈ρ1, . . . , ρd〉 where ρi is a range on the dimension i, for each 1 ≤ i ≤ d. Informally,
a block represents a “hyper-rectangular” region of D. A block b of D with all
zero elements is said to be a null block. The volume of a block b = 〈ρ1, . . . , ρd〉 is
given by size(ρ1)× . . .×size(ρd) and will be denoted as vol(b). Given a point in
the multidimensional space x = 〈x1, . . . , xd〉, we say that x belongs to the block
b (written x ∈ b) if lb(ρi) ≤ xi ≤ ub(ρi) for each i ∈ [1..d].

Given a block b = 〈ρ1, . . . , ρd〉, let x be a coordinate on the i-th dimension
of b such that lb(ρi)≤x<ub(ρi). Coordinate x divides the range ρi of b into

ρlow
i = [lb(ρi)..x] and ρ

high
i = [(x + 1)..ub(ρi)], thus partitioning b into blow =

〈ρ1, . . . , ρ
low
i , . . . , ρd〉 and bhigh = 〈ρ1, . . . , ρ

high
i , . . . , ρd〉. The pair 〈blow, bhigh〉 is

said to be the binary split of b along the dimension i at the position x; dimension i

and coordinate x are said to be the splitting dimension and the splitting position,
respectively.

Informally, a binary partition can be obtained by performing a binary split
on D (thus generating the two sub-blocks Dlow and Dhigh), and then recursively
partitioning these two sub-blocks with the same binary hierarchical scheme.

Definition 1. Given a d-dimensional data distribution D with volume nd, a
binary partition BP of D is a binary tree such that the root of BP is the block
〈[1..n], . . . , [1..n]〉 and for each internal node p of BP the pair of children of p is
a binary-split of p.

Given a dataset DS cluster analysis aims at producing a clustering C =
{C1, · · · , Cn} that is a subset of the set of all subsets of DS such that C contains
disjoint (non-overlapping) subsets, covering the whole object set (we refer in this
paper exclusively to hard clustering problem, where every data point belongs to

 42

one and only one cluster). Consequently, every point x ∈ DS is contained in
exactly one and only one set Ci. These sets Ci are called clusters.

Definition 2. Let Cs be a cluster (set) of N d-dimensional points. Let S =
(S1, . . . , Sd) =

∑

p∈Cs
p be the vector representing the sum of points in Cs. The

center of Cs is C0
s = S

N
. Let Q = (Q1, . . . , Qd), where Qi =

∑

p∈C p2
i , be a

vector whose ithcoordinate is the sum of the squared ithcoordinates of the points
in S. The SSQ of Cs is defined as:
SSQ(Cs) =

∑

p∈Cs
dist2(p,C0

s) =
∑

p∈C

∑d

i=1(pi − C0
s)2 =

∑d

i=1

∑

p∈C(pi −

C0
s)2 =

∑d
i=1

∑

p∈C(p2
i −2 ·pi ·C

0
s +(C0

s)2) =
∑d

i=1

∑

p∈C p2
i −2 ·C0

s ·
∑

p∈C pi +

N · (C0
s)2)

Since N is the number of points in C and
∑

p∈C pi = C0
s · N

we have that:
∑d

i=1

∑

p∈C p2
i −

∑d

i=1

(
∑

p∈C pi)
2

N
.

Finally from the definition of Qi and Si we obtain:

SSQ(Cs) =
∑d

i=1(Qi −
S2

i

N
) (1)

Therefore, to quickly compute the SSQ of a cluster, we need only to store Q,
S, and N . To select an optimal binary partition, we need to estimate the SSQ
reduction obtained by this split. Suppose to split a cluster Cs at a given position
j, represented by 〈Q, S, N〉 into two clusters Cs′ and Cs′′ represented respectively
by 〈Q1, S1, N1〉, and 〈Q2, S2, N2〉. Thus, the SSQ reduction is the non negative
value ΔSSQ that can be obtained by simply summing up the SSQ difference in
all dimensions (the mathematical steps are omitted for the sake of simplicity):

ΔSSQ(i, j) =

d∑

i=1

ΔSSQi(j) (3)

3 Our proposal
Among hierarchical algorithms, bottom-up approaches tend to be more accurate
but have a higher computational cost than the top-down approaches. Thus, in
CLUBS, the agglomerative step is only used on mini-clusters generated by a first
divisive process. Top-down partitioning exploiting greedy algorithms has been
widely used in multidimensional data compression due to its efficiency. Here we
use a similar divisive approach to minimize the SSQ among the data belong-
ing to clusters. Thus, our clustering algorithm consists of two steps, where in
the first step we use binary hierarchical partitioning to produce a set of mini-
clusters and in the second step, we pairwise merge the mini-clusters so obtained
in a bottom-up fashion. In both steps the clusters are defined by a hierarchical
partition of the multi-dimensional space. The partition can be compactly repre-
sented by a binary tree, where: i) each node is associated with a range of the
multi-dimensional domain; ii) the root is associated with the whole data do-
main; iii) for each inner node n, its children are associated with a pair of ranges
representing a (rectangular) partition of n. Each node maintains summary in-
formation about points inside its range, to expedite the clustering computation.

 43

The top-down splitting works as follows. As auxiliary structure, we maintain a
priority queue of clusters whose elements are ordered on the basis of the SSQ of
each cluster. At each iteration, the algorithm performs the following two steps:
A) select the cluster Cs that exhibits the highest SSQ (i.e. the one on top of
the priority queue), and then B) partition this Cs in such a way that the SSQ
reduction, denoted ΔSSQ, is maximized. For step B, we use formula (3) to com-
pute ΔSSQ(i, j) for each dimension i and for each cutting position j; then we
choose the position j that guarantees the maximum ΔSSQ. This computation
can be done very efficiently since we pre-compute Q and S, and therefore we
need a single scan of the data. We repeat these two steps, A and B above, while
ΔSSQ is greater than the average SSQ. We recall that the partition (i.e., the
cluster tree) is built by exploiting a greedy strategy. To this end, the tree is
constructed top-down, by means of leaf-node splitting. At each step, the leaf
with the largest SSQ is chosen, and it is split as to maximize the SSQ reduction,
denoted ΔSSQ . Being SSQ a measure of a range skewness, we perform splits
as long ΔSSQ remains “significant”. After the early splits that yield large SSQ
reductions, the values of ΔSSQ become smaller and smaller, until after n splits
both SSQ and ΔSSQ become 0 (since each point has become its own cluster).
Thus, the average SSQ reduction per split is SSQ0/n, and we will compare this
value against the current δSSQ to decide when we should stop splitting.

The splitting process just described is tied to the grid partitioning and thus
may cause a non-optimal splitting of some clusters. The successive phase over-
comes this limitation since the merging is performed considering all the possible
pairs of adjacent mini-clusters, and recombining those that offer the best SSQ
reduction. This agglomerative process offers significant advantages. One is that
it merges clusters in different grid partitions, thus overcoming non optimal splits
obtained in the first phase. The second critical advantage is that the computa-
tional complexity of this bottom-up step is very low since the number of merging
steps is related to the number of clusters that is very low compared to usual
dataset sizes. The final advantage is that this phase also halts automatically,
producing an algorithm that does not require any seeding or other parameters
from the user.

Figure 1 provides a more formal description of the CLUBS algorithm. We use
the initializeTree to load the dataset into the root of the auxiliary tree structure
BT exploited for partitioning. Once the tree structure has been initialized the
topdownsplitting step starts. In particular, the root of BT is added to a priority
queue whose ordering criterion is based on the SSQ values of clusters stored in
the queue. The initial cluster assignment performed by initializeClusters is com-
posed by the root r of BT and the initial SSQ is the one computed on r. The
function computeAverageDeltaSSQ averages the actual SSQ for all the points
in the cluster. The function computeWeightedDeltaSSQ is applied to the cluster
Cs that is currently on top of the priority queue. The weightedΔSSQ is com-
puted as the average gain of SSQ obtained by splitting Cs as explained above
for ΔSSQ; thus, we pre-compute the partial sums (S and Q) for a given splitting
point (w.r.t., the coordinates ordering) and reassign the splitting point on the

 44

Input:

A dataset DS of n points
Output:

A set of clusters C.
Vars:

An auxiliary binary tree BT ;
An initial cluster assignment C′.
Method: CLUBS
1: BT := initializeTree(DS);
2: C′ := topDownSplitting(BT);
3: C := bottomUpMerging(C′);
4: return C;

Function topDownSplitting(BT) : C′;
Vars:

A priority queue PQ;
A boolean finished;
A double ∆SSQ;
A double avgDeltaSSQ;
Method:
1: PQ := add(BT.root());
2: C′ = initializeClusters;
3: finished = false;
4: avg∆SSQ = computeAverageDeltaSSQ();
5: while !finished do begin

6: Cs = PQ.get();
7: weighted∆SSQ = computeWeightedDeltaSSQ(Cs);
8: if (weighted∆SSQ > avg∆SSQ) then

9: C′ := update(C′);
10: else finished = true;
11: end while

12: return C′;

Function bottomUpMerging(C′) : C;
Vars:

A pair of cluster Pair;
A double avgDeltaSSQ;
A double minInc;
Method:
1: C := C′;
2: Pair := selectBestPair(C′);
3: minInc := computeSSQIncrease(Pair);
4: avgDeltaSSQ = computeAverageDeltaSSQ();
5: while minInc < avgDeltaSSQ do begin

6: C := merge(Pair);
7: Pair := selectBestPair(C);
8: minInc := computeSSQIncrease(Pair);
9: end while;
13: return C;

Fig. 1. The CLUBS clustering algorithm

 45

basis of these partial sums. In order to improve the effectiveness of splits, the
value of ΔSSQ is raised to a power of p, p < 1, thus obtaining weightedΔSSQ

value. If weightedΔSSQ is greater than avgDeltaSSQ computed by computeAv-
erageDeltaSSQ then we proceed with the split, otherwise we do not. We use
values of p that are less than 1, since for p ≥ 1 we would end up splitting
clusters where the gain does not exceeds the Average ΔSSQ associated with
a random distribution. This would result in a large number of small clusters,
where both intra-cluster and inter-cluster distances are small. We instead seek
values of p that reduce the former while magnifying the latter, after a deep ex-
perimental evaluation not reported here due to space limitations, we determined
that the best value is p = 0.8. When no more top-down splits are possible, the
topDownSplitting ends and we begin the bottomUpMerging. In order to obtain
more compact clusters, we select (by running selectBestPair) the pair of clus-
ters that, if merged, yields the least SSQ increase (that is assigned to minInc
by function computeSSQIncrease). This merging step is repeated until minInc
becomes larger than avgDeltaSSQ.

4 Experimental Evaluation
An extensive set of experiments was executed to evaluate the performance of
CLUBS. In particular, we compared our method with BIRCH [11], K-means++ [1](we
refer to it as KM++) and k*-means [2] (we refer to it as SMART). For the last
three algorithms (i.e., the k-means based ones) we performed 20 runs (same as
[1]) and we report the average and worst values for these runs. Comparisons with
the basic k-means algorithm were also executed; they confirmed the significant
improvements brought by KM++ [1], which we will thus use to compare against.
All algorithms were implemented using the Java language Version 6 on a Intel
Core Duo 2GHz equipped with 4GB RAM.

Our test suite encompasses a large number of widely used benchmarks over
a wide spectrum of different characteristics. The first group of datasets are all
publicly available3 and can be divided in three subgroups as follows: Birch: This
benchmark contains three datasets having 100,000 tuples arranged in 100 clusters
of different shapes4; A: This dataset contains synthetic 2-d data with varying
number of clusters and vectors. In particular A1 contains 3000 tuples arranged
in 20 clusters, A2 contains 5250 tuples arranged in 35 clusters and A3 contains
7500 tuples arranged in 50 clusters; S: This dataset contains synthetic 2-d data
with 5000 tuples and 15 Gaussian clusters with varying degrees of overlap. We
also validated CLUBS on experimental datasets from UCI [4], including the US
Census Data (1990) consisting of 2458285 tuples over 68 attributes cleaned and
preprocessed for mining.

We performed several experiments in different stressing settings where CLUBS
performances were very good, due to space limitations we report here a subset
of these experiments. Table 1 shows the running times of the various algorithms
on our synthetic datasets as we increase the the number of tuples from 3, 000

3 http://cs.joensuu.fi/sipu/datasets/
4 We keep the dataset names used by the authors, while we use all caps for the names

of algorithms.

 46

to 100, 000: the datasets are assuming 30 clusters and a Gaussian distribution
for points. We see that, as the number of tuples grows, CLUBS outperforms
the other methods in terms of speed: KM++ is a close second and SMART
and BIRCH are significantly slower–typically by a factor of four or five. Table
1 compares the speed and accuracy of our four algorithms on Birch, A and S
datasets. We report the running times in seconds, and the accuracy measured by
the SSQ value produced (the smaller the SSQ the higher the accuracy, i.e., the
quality of clusters). Although the datasets present very different characteristics
and statistics, CLUBS consistently outperforms the other algorithms, in both
speed and accuracy, as shown in Table 1.

Table 1. Performances for our test datasets

Algorithm Birch Datasets

Birch1 Birch2 Birch3
SSQ time SSQ time SSQ time

CLUBS 5.05E+13 23.703 1.77E+12 33.406 2.51E+13 21.281
BIRCH 5.67E+13 89.671 1.78E+12 93.433 2.86E+13 87.247
KM++ 6.41E+13 28.441 1.76E+12 36.118 3.01E+13 27.874
SMART 8.91E+13 78.145 1.81E+12 88.154 3.66E+13 88.643

Algorithm A Datasets

A1 A2 A3
SSQ time SSQ time SSQ time

CLUBS 1.43E+10 0.875 2.41E+10 1.063 3.71E+10 1.375
BIRCH 1.51E+10 1.469 2.46E+10 2.86 3.78E+10 5.012
KM++ 1.57E+10 0.991 2.51E+10 1.112 3.82E+10 1.216
SMART 2.11E+10 1.332 2.67E+10 2.434 3.85E+10 4.781

Algorithm S Datasets

S1 S2 S3
SSQ time SSQ time SSQ time

CLUBS 7.34E+12 8.125 7.87E+12 10.812 6.42E+12 12.313
BIRCH 8.01E+12 49.774 8.99E+12 52.446 6.55E+12 56.881
KM++ 7.87E+12 7.214 8.81E+12 10.443 7.11E+12 12.741
SMART 9.15E+12 25.153 1.08E+13 37.134 7.75E+13 42.166

The best accuracy is obtained for the Birch2 data set where the data is
arranged in a large number of small clusters; this large number results in a
smaller SSQ than for other data sets where there are fewer clusters. The best
speed is obtained for Birch3, where the data set is arranged in many big clusters,
a situation that reduces the number of partition steps taken by the algorithms.
Finally, the Birch1 data set contains well-spaced clusters that are less compact:
this results in the faster speed, and larger SSQ values seen in Table 1. The
A data sets contain a relatively small number of tuples (ranging from 3000 to
7500) and several compact clusters uniformly distributed in the 2-D space. This
situation makes the outcomes for dataset A less sensitive to the initial center
assignment when executing k-means and other algorithms based on k-means.
Nevertheless, as shown in Table 1, CLUBS provides better performance in both
execution times and accuracy. For this data sets, BIRCH obtains an accuracy
that is nearly as good as CLUBS, but it is significantly worse in terms of speed.

In the S data sets, the samples are arranged in several (up to 15) clusters
which are globular in shape inasmuch as they have been generated using a Gaus-
sian distribution. This is the ideal situation for the KM++ algorithm [1] that in
fact achieves somewhat better average speed than CLUBS on data sets S1 and
S2 (but not on S3). For these larger data sets, the BIRCH algorithm runs signif-
icantly slower. In terms of accuracy, CLUBS consistently outperforms the other
algorithms. Also, it is important to remember that for KM++, Table 1 reports
the average speed: the worst case speed can be significantly worse, particularly
in the presence of noise, as it will be discussed in later sections.

 47

Table 2. Performances for UCI Census datasets

Algorithm UCI Dataset

SSQ time
CLUBS 4.47E+10 43.114
BIRCH 4.96E+10 112.634
KM++ 5.84E+11 52.667
SMART 6.05E+11 109.459

In Table 2, we report the results obtained on the UCI Census Dataset [4],
consisting of about 2.5 millions of relational tuples with 68 attributes. The table
shows clearly that CLUBS outperforms all other algorithms in terms of accuracy
and speed. For instance, on this large data set, CLUBS is three time faster than
BIRCH, an algorithm that was designed for scalability. Even more remarkably,
CLUBS is an order of magnitude more accurate than KM++, a very significant
difference in view of the fact that KM++ was given as input k = 162, i.e., the
optimal number of clusters determined by CLUBS. Thus, the results on this
large and widely used dataset confirm the superior performance of CLUBS over
other clustering methods, both in terms of accuracy and speed (even when the
crippling problem of determining the correct k for KM++ is ignored).

References

1. D. Arthur and S. Vassilvitskii. k-means++: the advantages of careful seeding. In
In Proc. of Symposium on Discrete Algorithms (SODA), pages 1027–1035, 2007.

2. Y.M. Cheung. k*-means: A new generalized k-means clustering algorithm. Pattern
Recognition Letters, 24(15):2883–2893, 2003.

3. M. Ester, H.P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for
discovering clusters in large spatial databases with noise. In In Proc. of Knowledge
Discovery And Data Mining (KDD), 1996.

4. A. Frank and A. Asuncion. UCI machine learning repository, 2010.
5. P. Franti, O. Virmajoki, and V. Hautamaki. Fast agglomerative clustering using a

k-nearest neighbor graph. IEEE Trans. Pattern Anal. Mach. Intell., 28:1875–1881,
November 2006.

6. J. Han and M. Kamber. Data Mining: Concepts and Techniques. Morgan Kauf-
mann, 2000.

7. A.K. Jain, M.N. Murty, and P.J. Flynn. Data clustering: a review. ACM Computing
Surveys, 31, September 1999.

8. J. B. MacQueen. Some methods for classification and analysis of multivariate ob-
servations. In 5-th Berkeley Symposium on Mathematical Statistics and Probability,
pages 281–297, 1967.

9. R. Ostrovsky, Y. Rabani, L. J. Schulman, and C. Swamy. The effectiveness of
lloyd-type methods for the k-means problem. In In Proc. of IEEE Symposium on
Foundations of Computer Science (FOCS), 2006.

10. W. Wang, J. Yang, and R. R. Muntz. Sting: A statistical information grid approach
to spatial data mining. In In Proc. of Very Large Data Base (VLDB), pages 186–
195, 1997.

11. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering
method for very large databases. In In Proc. of Special Interest Group on Man-
agement Of Data (SIGMOD), pages 103–114, 1996.

 48

Enwuvgtkpi"qh"Rtqeguu"Uejgocu"d{"
Itcrj"Okpkpi"Vgejpkswgu"

*Gzvgpfgf"Cduvtcev+"

Encwfkc"Fkcocpvkpk."Fqogpkeq"Rqvgpc."cpf"Gocpwgng"Uvqtvk"
"

Fkrctvkogpvq"fk"Kpigipgtkc"Kphqtocvkec."Iguvkqpcng"g"fgnn)Cwvqoc¦kqpg"ÐO0"RcpvkÑ."
Wpkxgtukv§"Rqnkvgepkec"fgnng"Octejg"/"xkc"Dtgeeg"Dkcpejg."82353"Cpeqpc."Kvcn{"

}fkcocpvkpk."rqvgpc."uvqtvk’Bfkkic0wpkxro0kv"

Cduvtcev0"Kp"vjku"yqtm."yg"hqewu"qp"vjg"cpcn{uku"qh"rtqeguu"uejgocu"kp"qtfgt"vq"
gzvtcev"eqooqp"uwduvtwevwtgu0"Kp"rctvkewnct."yg"tgrtgugpv"rtqeguugu"cu"itcrju."
cpf"yg"crrn{"c"itcrj/dcugf"jkgtctejkecn"enwuvgtkpi"vgejpkswg" vq"itqwr"ukoknct"
uwd/rtqeguugu" vqigvjgt" cv" fkhhgtgpv" ngxgnu" qh" cduvtcevkqp0"Yg" fkuewuu" fkhhgtgpv"
tgrtgugpvcvkqp"ejqkegu"qh"rtqeguu"uejgocu"vjcv"ngcf"vq"fkhhgtgpv"qwveqogu0""

3"""Kpvtqfwevkqp"

Rtqeguu" Okpkpi" *RO+" ku" vjg" crrnkecvkqp" qh" kpfwevkxg" vgejpkswgu" vq" gzvtcev" igpgtcn"
mpqyngfig" cdqwv" dwukpguu" rtqeguugu" htqo" rtqeguu" kpuvcpegu0" Kp" uvcvg" qh" vjg" ctv" tg/
ugctej." kpuvcpegu"ctg" vtcegu"qh" twppkpi"rtqeguugu" tgeqtfgf" kp" vjg"gxgpv" nqiu"qh"GTR."
Yqtmhnqy"Ocpcigogpv"U{uvgou"qt"qvjgt"gpvgtrtkug"u{uvgou."cpf"vjg"iqcn"qh"RO"ku"vq"
fkuvknn" c" uvtwevwtgf"rtqeguu" fguetkrvkqp." htqo" vjg" ugv" qh" tgcn"gzgewvkqpu." tgrtgugpvkpi"
vjg"rtqeguu"uejgoc"]3_0"Vjku"okpkpi"vcum"ecp"dg"gzrnqkvgf"vq"uwrrqtv"rtqeguu"ocrrkpi"
cevkxkvkgu."eqphqtocpeg"ejgemkpi."fgvgevkqp"qh"cpqocnqwu"dgjcxkqtu."cpf"uq"hqtvj"]4_0"

Kp"vjku"rcrgt"yg"eqpukfgt"c"pqxgn"rtqeguu"okpkpi"vcum<"ikxgp"c"ugv"qh"rtqeguu"uejg/
ocu." fkueqxgt" enwuvgtu" qh" ukoknct" *uwd/+rtqeguugu" cpf" vjgkt" tgncvkqpujkru0" Cnvjqwij"
enwuvgtkpi"qh" nqi" vtcegu"jcu" tgegkxgf"pqvcdng"cvvgpvkqp" kp" vjg" nkvgtcvwtg"cu"c"ogcpu" vq"
gpjcpeg"vjg"swcnkv{"qh"fkueqxgtgf"rtqeguu"uejgocu"]5.6.7_."vq"vjg"dguv"qh"qwt"mpqyn/
gfig"vjg"crrnkecvkqp"qh"enwuvgtkpi"vgejpkswgu"vq"rtqeguu"uejgocu"vjgougnxgu"ku"eqo/
rngvgn{"pgy0"Kv"ecp"hkpf"crrnkecvkqp"kp"gpvgtrtkug"kpvgitcvkqp"cv"vjg"rtqeguu"ngxgn="cu"c"
ocvvgt" qh" hcev." ikxgp" c" ugv" qh" rtqeguugu" ykvj" vjg" ucog" iqcnu" cpf" korngogpvgf" kp"
fkhhgtgpv" eqorcpkgu." vjg"rtqrqugf"RO" vcum" jgnru" vq"gpnkijvgp"qxgtncrrkpi." eqorng/
ogpvct{"cpf"jgvgtqigpgqwu"uvtwevwtgu."yjkej"ctg"wughwn"rcvvgtpu"vq"ftkxg"vjg"kpvgitc/
vkqp0"Hwtvjgtoqtg." tgewttgpv"eqooqp"uwdrtqeguugu"ecp"dg" gzrnqkvgf" vq"fghkpg" tghgt/
gpeg"rtqvqv{rg"rtqeguugu"cpf"dguv"rtcevkegu"*qt"eqooqp"dcf"rtcevkegu+0""

Kp"qtfgt"vq"cejkgxg"vjg"iqcn."yg"fkuewuu"vjg"crrnkecvkqp"qh"UWDFWG"]8_."c"jkgtct/
ejkecn"itcrj"enwuvgtkpi"cniqtkvjo0"Itcrj"enwuvgtkpi"vgejpkswgu"jcxg"dggp"eqpukfgtgf"
ukpeg"rtqeguu"uejgocu"jcxg"c"kpjgtgpv"itcrj"uvtwevwtg."yjkng"jkgtctejkecn"enwuvgtkpi"kp"
igpgtcn." cpf" UWDFWG" kp" rctvkewnct." cnnqyu" vq" ceeqwpv" hqt" vjg" kpjgtgpv" cduvtcevkqp"
uvtwevwtg"v{rkecn"qh"rtqeguugu"*htqo"xgt{"igpgtcn"ocetq/rtqeguugu"fqyp"vq"ukorng"ce/
vkxkvkgu+0" Cnvjqwij" rtqeguu" uejgocu" ecp" dg" uggp" cu" itcrju." vjg" crrnkecvkqp" qh"

UWDFWG"tgswktgu"uqog"ejqkegu" kp" vgtou"qh"jqy"vq"tgrtgugpv"eqorngz"hnqy"eqpvtqn"
uvtwevwtgu."nkmg"rctcnngn"cpf"cnvgtpcvkxg"gzgewvkqp"qh"cevkxkvkgu"qt"ogtikpi0""

Vq"vjku"gpf."chvgt"rtgugpvkpi"vjg"ogvjqfqnqi{"kp"Ugevkqp"4"yg"fkuewuu"fkhhgtgpv"tgr/
tgugpvcvkqp" ejqkegu0" Vjgp" kp" Ugevkqp" 5" uqog" gxcnwcvkqp" kpfgzgu" ctg" kpvtqfwegf" cpf"
gzrgtkogpvcn"tguwnvu"ctg"tgrqtvgf0"Hkpcnn{."Ugevkqp"6"dtkghn{"fkuewuugu"vjg"tguwnvu"cpf"
rquukdng"crrnkecvkxg"uegpctkqu0""

4"Ogvjqfqnqi{"

Ikxgp"c"ugv"qh"fktgevgf"itcrju"Ik"?">Pk."Ck@"yjgtg"Pk" ku" vjg"ugv"qh"pqfgu"cpf"Ck"Ø"
PkzPk" ku"vjg"ugv"qh"*rquukdn{"ncdgngf+"cteu."UWDFWG"igpgtcvgu"c"enwuvgtkpi"ncvvkeg"qh"
v{rkecn"uwduvtwevwtgu0"Kp"kvu"gzcev"ocvejkpi"xgtukqp."itcrju"ctg"kvgtcvkxgn{"cpcn{¦gf"vq"
fkueqxgt"cv"gcej"uvgr"c"enwuvgt"qh"kuqoqtrjke"uwduvtwevwtgu0"Vjg"enwuvgt"ku"vjgp"wugf"vq"
eqortguu" vjg"itcrju."d{" uwduvkvwvkpi" vq"gcej"qeewttgpeg"qh" vjg" uwduvtwevwtg"c"ukping"
pqfg0"Vjg"eqortguugf"itcrju"ctg"rtgugpvgf"vq"UWDFWG"cickp."cpf"vjg"rtqeguu"ku"tg/
rgcvgf"wpvkn"pq"oqtg"eqortguukqp"ku"rquukdng0"Vjg"qwvrwv"enwuvgtu"vwtp"qwv"vq"fghkpg"c"
ncvvkeg"yjgtg"vjg"enwuvgtu"ctg"nkpmgf"kh"c"enwuvgt"crrgctu"kp"vjg"fghkpkvkqp"qh"cpqvjgt0"Cv"
gcej"uvgr."vjg"uwduvtwevwtg"ku"ejqugp"qp"vjg"dcuku"qh"kvu"eqortguukqp"ecrcdknkv{."ogcu/
wtgf"d{"vjg"Okpkowo"Fguetkrvkqp"Ngpivj"*OFN+"jgwtkuvkeu0"Vjg"fguetkrvkqp"ngpivj"qh"
c"itcrj"ku"ogcuwtgf"d{"vjg"pwodgt"qh"dkvu"pggfgf"vq"tgrtgugpv" kvu"cflcegpe{"ocvtkz0"
Vjg"cniqtkvjo"jcu"dggp"uweeguuhwnn{"crrnkgf" vq"cpcn{¦g"uvtwevwtgf"qdlgevu" kp"ugxgtcn"
fqockpu" *ugg"jvvr<11ckncd0yuw0gfw1uwdfwg1+" vjcpmu" vq" vjg" hngzkdknkv{" kv" ikxgu" vq" tgrtg/
ugpv"eqorngz"qdlgevu"kp"vgtou"qh"ocvjgocvkecn"itcrj"uvtwevwtgu."cpf"uwiiguvkpi"kv"cu"c"
rtqokukpi"vgejpkswg"vq"cpcn{¦g"rtqeguu"uejgocu0"

C"rtqeguu"uejgoc"fguetkdgu"vjg"hnqy"qh"yqtm"rgthqtogf"d{"c"egtvckp"pwodgt"qh"ce/
vqtu0"Vjg"mkpfu"qh" hnqy" kpenwfg" ukorng" ugswgpegu"qh"cevkxkvkgu" *UGS+."cpf"qrgtcvqtu"
wugf"vq"oqfgn"rctcnngnk¦cvkqp"*jgtgchvgt"ecnngf"URNKV+"cpf"ogtikpi"*LQKP+"qh"cevkxk/
vkgu0"Kp"rctvkewnct."c"URNKV/CPF"ogcpu"vjcv"vjg"gpf"qh"cp"cevkxkv{"uvctvu"cnn"vjg"nkpmgf"
cevkxkvkgu."yjkng"kp"c"URNKV/ZQT"qpn{"qpg"yknn"dg"gzgewvgf0"U{oogvtkecnn{."c"LQKP/
CPF"kpfkecvgu"vjcv"cp"cevkxkv{"dgikpu"yjgp"cnn"vjg"rtgxkqwu"cevkxkvkgu"ctg"vgtokpcvgf="
yjkng"kp"c"LQKP/ZQT"vjg"eqorngvkqp"qh"c"ukping"cevkxkv{"ku"pggfgf0"Hkiwtg"3"ujqyu"cp"
gzcorng"qh"rtqeguu"wukpi"uqog"qh"vjg"fguetkdgf"qrgtcvqtu"kp"DROP"pqvcvkqp0""
"

"
Hki0" 30" Cp" gzcorng" qh" rtqeguu" uejgoc0" Cevkxkv{" cvv3" ku" hqnnqygf" d{" dqvj" cvv4" cpf" cvv5"

*URNKV/CPF+."cpf"cvv7"ku"uvctvgf"yjgp"cvv6"qt"cvv5"ctg"eqorngvgf"*LQKP/ZQT+0"

Vjg"crrnkecvkqp"qh"UWDFWG"vq"dwukpguu"rtqeguugu"tgswktgu"vq"rgthqto"c"ocrrkpi"
htqo" vjg" tkejgt" rtqeguu" itcrj" vq" ukorngt" fktgevgf" itcrju0"Cu"yg"yknn" ugg." fkhhgtgpv"
tgrtgugpvcvkqp" ejqkegu" oc{" kphnwgpeg" vjg" hkpcn" enwuvgtkpi" tguwnv0" Yjkng" kv" uggou"

 50

uvtckijvhqtyctf"vq"tgrtgugpv"vjg"UGS"qrgtcvqt"d{"cp"cte"kp"vjg"itcrj."vjg"tgrtgugpvc/
vkqp"qh"qvjgt"qrgtcvqtu"ku"pqv"uvtckijvhqtyctf0"Yg"rtgugpv"jgtg"vjtgg"fkhhgtgpv"oqfgnu."
pcogf"C."D."cpf"E"tgurgevkxgn{."cpf"ejctcevgtk¦gf"d{"cp"kpetgcukpi"ngxgn"qh"eqorcev/
pguu"qh"vjg"itcrj."ykvjqwv"nquu"qh"kphqtocvkqp0"Kp"vjg"C"oqfgn."cp{"qrgtcvqt"ku"tgrtg/
ugpvgf"d{"c"pqfg"ecnngf"qrgtcvqt."yjkej"ku"nkpmgf"vq"cpqvjgt"pqfg"urgekh{kpi"vjg"CPF"
qt"ZQT"pcvwtg"qh"vjg"qrgtcvqt0"Kp"vjku"oqfgn"lqkp"cpf"urnkv"ctg"fkuvkpiwkujcdng"d{"vjg"
pwodgt"qh"kpiqkpi"cpf"qwviqkpi"cteu"*qpg"qwviqkpi"cte"cpf"ugxgtcn" kpiqkpi"cteu" hqt"
lqkp."vjg"qrrqukvg"hqt"urnkv+0"Kp"vjg"D"oqfgn"vjg"pqfg"qrgtcvqt"ku"tgrncegf"d{"fkhhgtgpv"
pqfgu"qpg"hqt"gcej"mkpf"qh"qrgtcvqt0"Hkpcnn{."vjg"E"oqfgn"ukornkhkgu"vjg"itcrj"d{"tg/
oqxkpi"dqvj"lqkp"cpf"urnkv"pqfgu<"ukpeg"LQKP/ZQT"cpf"URNKV/ZQT"qrgtcvqtu"tgrtg/
ugpv"fkhhgtgpv"cnvgtpcvkxg"gzgewvcdng"rcvju."qpg"hqt"gcej"kpiqkpi"*qwviqkpi+"cevkxkv{"qh"
c" lqkp" *urnkv+"qrgtcvqt."ZQT"pqfgu"ecp"dg"tgoqxgf"d{" kpfkxkfwcvkpi"cnn" vjg"rquukdng"
cnvgtpcvkxg" rcvju" kp" vjg" rtqeguu." cpf" igpgtcvkpi" c"itcrj" hqt" gcej" rcvj0" Kp" vjku"yc{."
vjgtg" ku" pq" codkiwkv{" cdqwv" vjg" CPF" pcvwtg" qh" cteu" ngcxkpi" *gpvgtkpi+" c" pqfg." uq"
CPF"pqfgu"ecp"dg"tgoqxgf"vqq0"Hkiwtg"4"ujqyu"vjg"tgrtgugpvcvkqp"qh"vjg"rtqeguu"kp"
Hkiwtg"3"ykvj"tgurgev"vq"C."D"cpf"E"oqfgnu0"Pqvg"vjcv"vjg"vjtgg"tgrtgugpvcvkqpu"jqnf"
vjg" ucog" kphqtocvkqp." cpf" vjg" ncuv" rtqfwegu" vyq" eqorcev" itcrju" *qpg" hqt" gcej" zqt"
rcvj+0"Pqvg"cnuq"vjg"wug"qh"ncdgngf"cteu"kp"vjg"E"oqfgn"qh"Hkiwtg"4"vq"ockpvckp"kphqt/
ocvkqp"cdqwv"fqockp"cpf"tcpig"pqfgu0"Vjku"ku"pgeguuct{"vq"iwctcpvgg"vjg"eqttgev"kp/
vgtrtgvcvkqp" qh" vjg" hkpcn" ncvvkeg" chvgt" vjg" eqortguukqp" rgthqtogf" d{" UWDFWG0" Kv" ku"
uvtckijvhqtyctf" vq" ugg" vjcv" vjgug" tgrtgugpvcvkqp" uvtcvgikgu"ecp"dg" ukorn{"gzvgpfgf" vq"
kpenwfg"qvjgt"DROP"eqpuvtwevu"cu"ygnn"*kp"hcev."vjg"hktuv"vyq"ctg"fktgevn{"tgncvgf"vq"vjg"
crrtqcej"rtgugpvgf"kp"]9_+0"

"

"
oqfgn"C"

"
oqfgn"D"

"
oqfgn"E"

"
Hki0"40"Vjg"tgrtgugpvcvkqp"qh"vjg"rtqeguu"uejgoc"kp"Hkiwtg"3"kp"eqphqtokv{"ykvj"vjg"vjtgg"

rtqrqugf"oqfgnu"

51

5"""Gzrgtkogpvcn"Gxcnwcvkqp"

Yg" gzrgtkogpvgf" vjg" ogvjqfqnqi{" qp" c" ugv" qh" rtqvqv{rg" rtqeguugu" fguetkdkpi" g/
uekgpeg"cevkxkvkgu0"Kp"rctvkewnct."yg"wug"c"ugv"qh"fcvc"okpkpi"rtqeguugu"hqt"vjg"encuukhk/
ecvkqp"vcum"rtqfwegf"kp"vjg"MFFXO"rtqlgev"*jvvr<11dqqng0fkkic0wpkxro0kv+0"Cevkxkvkgu"
ctg"ejqugp"coqpi"43"cniqtkvjou"qh"fkhhgtgpv"mkpf"*encuukhkecvkqp."rtg/rtqeguukpi"cpf"
rquv/rtqeguukpi+"vq"igpgtcvg"c"ugv"qh"62"fkhhgtgpv"rtqvqv{rg"rtqeguugu0"Yg"cnuq"rtgugpv"
rtgnkokpct{"tguwnvu"qh"cp"gzrgtkogpvcvkqp"qxgt"c"ugv"qh"tgcn"yqtmhnqyu"vcmgp"htqo"vjg"
g/uekgpeg" rtqlgev" O{Gzrgtkogpv" *jvvr<11yyy0o{gzrgtkogpv0qti+." yjkej" fghkpgu" c"
eqnncdqtcvkxg" ygd" rncvhqto" gpcdnkpi" tgugctejgtu" vq" ujctg." cppqvcvg." eqoogpv." fku/
eqxgt"yqtmhnqyu0"

Kp" qtfgt" vq" gxcnwcvg" vjg" tguwnvkpi" UWDFWG" ncvvkeg" ykvj" fkhhgtgpv" tgrtgugpvcvkqp"
uvtcvgikgu"cpf"vjg"rqvgpvkcnkv{"qh"vjg"crrtqcej."yg"kpvtqfweg"uqog"kpfgzgu<"eqorngvg/
pguu." tgrtgugpvcvkxgpguu" cpf" ukipkhkecpeg0" Eqorngvgpguu" ogcuwtgu" vjg" pwodgt" qh"
qtkikpcn" itcrj" gngogpvu" uvknn" rtgugpv" kp" vjg" hkpcn" ncvvkeg30" Kv" ku" gzrtguugf" cu"

KK

QQ
CP
CPE

-
-

? ."yjgtg"K"ku"vjg"ugv"qh"kprwv"itcrju"cpf"Q"ku"vjg"hkpcn"ncvvkeg0"Pqfg"eqo/

rngvgpguu"ku"cnuq"eqpukfgtgf0"Yjkng"eqorngvgpguu"ogcuwtgu"c"swcnkv{"qh"vjg"yjqng"ncv/
vkeg."vjg"qvjgt"kpfgzgu"cnnqyu"vq"kpfkxkfwcnn{"gxcnwcvg"gcej"enwuvgt0""

Vjg" tgrtgugpvcvkxgpguu" qh" c" uwduvtwevwtg" ogcuwtgu" vjg" pwodgt" qh" kprwv" itcrju"
jqnfkpi"vjg"ikxgp"uwduvtwevwtg"cv"ngcuv"qpeg0"Oqtg"rtgekugn{."tgrtgugpvcvkxgpguu"qh"vjg"

uwduvtwevwtg" kU ku<" I
+U*I

k
k+U*T ? ."yjgtg" +U*I k "ku"vjg"pwodgt"qh"rtqeguugu"jqnfkpi" kU "

kp"itcrj"I0"Jkij"xcnwgu"qh" +U*T k "kpfkecvg"Uk"cu"c"v{rkecn"uwdrtqeguu0""
Hkpcnn{."ukipkhkecpeg" ku"c"swcnkvcvkxg" kpfgz" vjcv"gxcnwcvgu" vjg"ogcpkpi"qh"c"enwuvgt"

ykvj" tgurgev" vq" vjg"fqockp0"Vjku" kpfgz"cnnqyu"wu" vq"fkutgictf" vjqug"enwuvgtu" vjcv"ctg"
xgt{"tgrtgugpvcvkxg."dwv"fq"pqv"eqpvckp"wughwn"mpqyngfig0""

"
" C"Oqfgn" D"Oqfgn" E"Oqfgn"
Eqorngvgpguu" ;9'" ;6'" ;4'"
Pqfgu"Eqorngvgpguu" ;;'" ;;'" ;:'"
Tgrtgugpvcvkxgpguu"qh"jkij"ngxgn"enwuvgtu" 9'Î"89'" :'/53'" :'/62'"
Ukipkhkecpeg"qh"vqr"ngxgn"enwuvgtu" /"/" -" -"-"

Vcdng"30"Eqorctkuqp"qh"ncvvkegu"qdvckpgf"htqo"itcrju"tgrtgugpvgf"kp"ceeqtfcpeg"ykvj"vjg"C."D"
cpf"E"oqfgnu0"

"
Kp"Vcdng"3."yg"u{pvjgvkecnn{"ujqy"tguwnvu"qh"gzrgtkogpvcvkqpu"qxgt"MFFXO"rtqvq/

v{rg"rtqeguugu"kp"vgtou"qh"kpfgzgu"xcnwgu0"Kp"rctvkewnct."enwuvgtu"kpfgzgu"ctg"tgrqtvgf"
qpn{" hqt" jkij" ngxgn" enwuvgtu."yjkej" tgrtgugpv" vjg"oquv" eqooqp" uwduvtwevwtgu0" Htqo"
Vcdng"3." kv" tguwnvu" vjcv"cnn"oqfgnu"ctg"ejctcevgtk¦gf"d{"jkij"eqorngvgpguu."gxgp" kh"E"
oqfgn"ngcfu" vq"c"unkijv"fgetgcug"kp"vjg"xcnwg"qh"uwej"kpfgz0"Vjg"nqy"ukipkhkecpeg"qh"
vqr" ngxgn"enwuvgtu"qdvckpgf"wukpi"C"oqfgn" ku"fwg" vq" vjg" hcev" vjcv"oquv" htgswgpv" uwd/

"" """""""""""""""""""
3"Cu"c"ocvvgt"qh"hcev."fwtkpi"vjg"ncvvkeg"igpgtcvkqp."UWDFWG"fkuectfu"vjqug"uwduvtwevwtgu"jcx/
kpi"nqy"eqortguukqp"ecrcdknkv{0""Vjku"oc{"ngcf"vq"nqqug"uqog"pqfg"qt"cte0"

 52

uvtwevwtgu"ctg"pqfgu"tgrtgugpvkpi"kpfkxkfwcn"qrgtcvqtu."ykvjqwv"tghgtgpegu"vq"kpxqnxgf"
cevkxkvkgu0"Vjg"jkijguv"xcnwgu"qh"tgrtgugpvcvkxgpguu"hqt"C"oqfgn"cnuq"fgrgpfu"qp"vjg"
jkij"htgswgpe{"qh"vqr"ngxgn"enwuvgtu0"Vjg"E"oqfgn"ku"vjcv"cnnqykpi"vq"cejkgxg"qxgtcnn"
dguv" tguwnvu." tgrqtvkpi" cu" vqr" ngxgn" enwuvgtu" jkij/htgswgpe{" uwduvtwevwtgu" vjcv" ctg"
eqooqp"kp" kprwv"itcrju"cpf"ctg"ukipkhkecpv" kp" vjg"fqockp<" vjg{"ctg"cevwcnn{"mpqyn/
gfig"rcvvgtpu0""

Hkiwtg"5"ujqyu"uqog"qh"vjgug"mpqyngfig"rcvvgtpu0"Yg"ecp"ugg"vjcv"vjg"oquv"wugf"
encuukhkecvkqp"cniqtkvjou"kp"vjg"ugv"qh"fcvc"okpkpi"rtqeguugu"ctg"DXS"cpf"E6070"Hwt/
vjgtoqtg." vjg"rtcevkeg"qh"crrn{kpi"rtg/rtqeguukpi"cniqtkvjou"vq"tgoqxg"okuukpi"xcn/
wgu" cpf" tgfweg" vjg"fkogpukqpcnkv{" qh" fcvcugvu" gogtigu" cu" v{rkecn" rcvvgtpu0"Yg"eqp/
enwfg" d{" pqvkpi" vjcv" UWDa;"cpf"UWDa6" gpnkijvgp" c" pqv"ygnn/hqtogf" rcvvgtp." ukpeg"
tgoqxgOkuukpiXcnwg"ku"rgthqtogf"chvgt"NFC0"Vjku"ku"pqv"c"enwuvgtkpi"gttqt."tcvjgt"kv"
gpnkijvgp"uqog"rtqdngou"kp"kprwv"rtqeguu"uejgocu0""

Vjg"gzrgtkogpvcvkqp"rgthqtogf"qp"O{Gzrgtkogpv"ku"dcugf"qp"c"uwdugv"qh"itcrju."
ugngevgf" htqo" vjg" yjqng" eqnngevkqp" qh" uekgpvkhke" yqtmhnqyu." Vjg" rncvhqto" eqpvckpu"
yqtmhnqyu"hqt"c"xctkgv{"qh"u{uvgou."oquv"pqvcdn{"Vcxgtpc"]:_."yjkej"tgrtgugpvu"yqtm/
hnqyu" vjtqwij" vjg" ZON/dcugf" fcvchnqy/egpvtke" ncpiwcig" Uewhn0" Ikxgp" vjg" jwig"
coqwpv" qh" yqtmhnqyu" cxckncdng." yg" tguvtkevgf" vjg" cpcn{uku" qp" Vcxgtpc" yqtmhnqyu"
ykvjkp" vjg" ÐrtqvgkpÑ" fqockp0" Uewhn" yqtmhnqyu" ctg"ocfg" qh" rtqeguuqtu" *k0g0<" pqfgu+."
yjkej"tgrtgugpv"nqikecn"ugtxkegu."cpf"fcvc"nkpmu."yjkej"ocr"fcvc"uqwtegu"vq"fcvc"ukpmu0"
Kp"Uewhn."rtqeguuqtu"ecp"dgnqpi"vq"ugxgtcn"v{rgu."coqpi"yjkej"YUFN"*c"tgoqvg"ygd"
ugtxkeg+."nqecn"*c"encuu"htqo"nqecn"Lcxc"nkdtctkgu+."uetkrv"*c"jcpf/ytkvvgp"rkgeg"qh"Lcxc"
eqfg." wuwcnn{" ckogf" cv" fcvc" vtcpuhqtocvkqp+." uvtkpieqpuvcpv" *c" nkvgtcn" eqpuvcpv+" cpf"
qvjgtu0"Dgukfgu"vjgug."c"urgekcn"mkpf"qh"rtqeguuqt"ku"vjg"yqtmhnqy."vjcv"ku"c"uwdyqtm/
hnqy"pguvgf"kp"kvu"rctgpv"yqtmhnqy0"

"

"
Hki0"50"Hktuv"vyq"ngxgnu"qh"vjg"ncvvkeg"igpgtcvgf"wukpi"E"oqfgn0"

"

53

Vjg" gzrgtkogpvcn" fcvcugv"ycu"igpgtcvgf"d{" *3+" gzvtcevkpi" cnn"Vcxgtpc"yqtmhnqyu"
cppqvcvgf"ykvj"vjg"vci"ÐrtqvgkpÑ."*4+"rctukpi"vjgkt"Uewhn"fguetkrvqtu"vq"gzvtcev"rtqegu/
uqtu" cpf" nkpmu." cpf" *5+" rgthqtokpi" uqog" rtgrtqeguukpi" uvgru0" Kp" rctvkewnct." ukpeg"
UWDFWG"ecp"ocpcig"qpn{"3/ngxgn"itcrju."fwtkpi"vjg"rctukpi"vjg"qtkikpcn"yqtmhnqyu"
jcxg" dggp" tgytkvvgp" d{" hncvvgpkpi" vjg" pguvgf" uwdyqtmhnqy" uvtwevwtg0" Rtqeguuqtu" nkmg"
uvtkpieqpuvcpv"cpf"Uetkrv"jcxg"dggp"kipqtgf."ukpeg"vjg{"ctg"pqv"eqpukfgtgf"wughwn"hqt"
vjg" cpcn{uku0" Cu" c" ocvvgt" qh" hcev." vjg" hqtogt" ecp" dg" eqpukfgtgf" cu" kprwv" xctkcdngu."
yjkng"vjg"ncvvgt"ku"eqfg"wuwcnn{"kpugtvgf"vq"cfcrv"c"rtqeguuqt)u"qwvrwv"vq"cp"kprwv."urg/
ekhke"vq"c"ukping"yqtmhnqy0"Hkpcnn{."uqog"v{rgu"qh"rtqeguuqtu"qeewt"xgt{"tctgn{."uq"vjcv"
vjg{"dtkpi"xgt{"nkvvng"kphqtocvkqp0""Kp"rctvkewnct"yg"fgekfgf"vq"fkuectf"ugsjqwpf"cpf"
crkeqpuwogt"rtqeguuqtu."yjkej"qeewt"kp"nguu"vjcp"3'"qh"vjg"fcvcugv0"

Chvgt" vjg" rtgrtqeguukpi" uvgru." vjg" fcvcugv" eqpvckpu" 55" yqtmhnqyu." 654" pqfgu"
*7903:'"qh"v{rg"ÐnqecnÑ"cpf"640:4'"qh"v{rg"ÐYUFNÑ+"cpf"594"nkpmu0"
"
"

"
Hki0"60"Vjg"oquv"v{rkecn"uwd/yqtmhnqy"kp"vjg"O{Gzrgtkogpv"fcvcugv0"twpEnwuvcnY4."ejgem/

Uvcvwu."Igva'"ctg"ygd"ugtxkegu."Kprwvafcvc."Lqdarctcou."Eqpvgpvankuv."Uweeguu"cpf"Wprcema'"
ctg"nqecn"encuugu0"

"
Cu"kprwv"hkng"hqt"UWDFWG"yg"igpgtcvgf"c"ukping"itcrj"eqpvckpkpi"gxgt{"yqtmhnqy"

htqo"vjg"fcvcugv."eqfgf"vjtqwij"vjg"E"oqfgn0"Gzrgtkogpvcvkqpu"ygtg"ecttkgf"qp"ykvj"
fkhhgtgpv"rctcogvgtu"xcnwgu0"Vjg"dguv"tguwnvu"ujqygf"c"ncvvkeg"hqtogf"d{"329"uwduvtwe/

 54

vwtgu." kp"yjkej"vjg"5"oquv"htgswgpv"uwduvtwevwtgu"ctg"eqpvckpgf"kp" vjg"43'"qh"yqtm/
hnqyu0" Cu" cp" gzcorng." kp" Hkiwtg" 6" yg" ujqy" vjg" uwd/yqtmhnqy" eqttgurqpfkpi" vq"
UWDa3." vjg"oquv" v{rkecn" " uwduvtwevwtg" hqwpf0" Kv" tgrtgugpvu" vjg" v{rkecn"wucig"uejgoc"
hqt"EnwuvcnY4."c"rqrwnct"ownvkrng"ugswgpeg"cnkipogpv"cniqtkvjo"wugf"kp"dkqkphqtocv/
keu"vq"cnkip"FPC"cpf"rtqvgkp"ugswgpegu"kp"ownvkrng"ugswgpeg"hqtocvu0"Vjg"yqtmhnqy"
ujqyu"vjg"hqnnqykpi"uvgru."yjkej"ctg"htgswgpv"yjgp"EnwuvcnY4"ku"vq"dg"gzgewvgf<"kp/
rwv" rtgrctcvkqp." uwdokuukqp" qh" c" lqd" vq" vjg" ygd" ugtxkeg." ejgem" qh" vjg" lqd" uvcvwu."
fqypnqcf"qh" vjg" tguwnv" cpf" " kvu" rquvrtqeguukpi0"V{rkecn" hnqy" uvtwevwtgu" nkmg" vjg"qpg"
ujqyp"kp"Hkiwtg"6."ecp"dg"wughwn"hqt"uwrrqtvkpi"c"pqp/gzrgtv"wugt"kp"vjg"eqttgev"wug"qh"
gngogpvu"hqt"vjg"eqorqukvkqp"qh"c"pgy"gzrgtkogpv0"

6"Fkuewuukqp"

Vjg"rcrgt"rtgugpvu"rtgnkokpct{"tguwnvu"cdqwv"vjg"hgcukdknkv{"qh"c"itcrj/dcugf"enwuvgt/
kpi"crrtqcej"vq"tgeqipk¦g"ukoknctkvkgu"coqpi"dwukpguu"rtqeguugu."cpf"vq"ugngev"ukipkhk/
ecpv"rtqvqv{rgu0"Kp"rctvkewnct."fkhhgtgpv"tgrtgugpvcvkqp"cnvgtpcvkxgu"qh"c"dwukpguu"rtqe/
guu"hqt"vjg"crrnkecvkqp"qh"UWDFWG"cniqtkvjo"jcxg"dggp"fkuewuugf"cpf"gxcnwcvgf0""

Vjg"gxcnwcvkqp"qp"tgcn"dwukpguu"rtqeguugu"jcu"dggp"ocfg"fkhhkewnv"d{"vjg"ncem"qh"c"
uwhhkekgpv"pwodgt"qh"rtqeguu"uejgocu."jgpeg"yg"vwtpgf"vq"c"urgekcnk¦gf"fqockp"nkmg"
fcvc"okpkpi."gzrnqkvkpi"rtqeguugu"cwvqocvkecnn{"igpgtcvgf"d{"cp"qpvqnqi{/dcugf"eqo/
rqugt" vqqn0"Pgxgtvjgnguu." vjku" cevkxkv{"cnnqygf" vq"ickp"wughwn" kpukijvu"qp" vjg"ogvjqf"
cpf"qp"vjg"rctvkewnct"fqockp"cu"ygnn0"Hqt"kpuvcpeg."htqo"vjg"cpcn{uku"qh"vjg"igpgtcvgf"
ncvvkeg"yg"ygtg"cdng" vq" tgeqipk¦g" v{rkecn"rcvvgtpu"qh" vjg"MFF"ogvjqfqnqi{"cpf"yg"
ickpgf"kpukijvu"cdqwv"uqog"okuukpi"qt"ytqpi"kphqtocvkqp"kp"vjg"qpvqnqi{"iwkfkpi"vjg"
cevkxkv{"qh"rtqeguu"igpgtcvkqp0"Cnuq"c"rtqokukpi."cnvjqwij"rtgnkokpct{."gxcnwcvkqp"qp"
c" tgcn" g/uekgpeg" fqockp" jcu" dggp" rtgugpvgf0" Kp" dqvj" gzrgtkogpvu" rtqeguugu" ctg"
fgukipgf" vq"qrgtcvg"ykvjkp"urgekhke"rncvhqtou."uq" vjgtg" ku"pq"jgvgtqigpgkv{" kuuwg0" Kp/
fggf." yjgp" rtqeguugu" ctg" fgukipgf" d{" fkhhgtgpv" cwvjqtu." dqvj" pcog" eqphnkevu" cpf"
uvtwevwtg"eqphnkevu"ecp"qeewt0" Kp"rctvkewnct." uvtwevwtg"eqphnkevu"ctg" wuwcnn{"fwg" vq" vjg"
itcpwnctkv{"ngxgn"cfqrvgf"kp"vjg"fgukip"qh"vjg"rtqeguu."g0i0"vjg"wug"qh"uwd/rtqeguugu"kp/
uvgcf"qh"hncv"yqtmhnqyu0"Kh"vjg"ecug"qh"jgvgtqigpgkv{"c"uejgoc"rtgrtqeguukpi"ku"pggfgf"
dghqtg" crrn{kpi" vjg"ogvjqfqnqi{"rtqrqugf" kp" vjg"rtgugpv"yqtm0"Vjgug" ugocpvke" cu/
rgevu"ctg"dg{qpf"vjg"ckou"qh"vjku"rcrgt."cpf"yknn"dg"cfftguugf"kp"hwvwtg"yqtmu0""

Vjg"rtqrqugf"ogvjqf"ecp"hkpf"crrnkecvkqp"kp"c"xctkgv{"qh"cevkxkvkgu"tgncvgf"vq"dwuk/
pguu"rtqeguu"ocpcigogpv<"hktuv."kv"ecp"dg"gzrnqkvgf"vq"kpfkxkfwcvg"ukoknctkvkgu"cpf"fkh/
hgtgpegu"kp"vjg"korngogpvcvkqp"qh"egtvckp"rtqeguugu"cv"fkhhgtgpv"eqorcpkgu."gpnkijvgp/
kpi" qxgtncru." eqorngogpvctkvkgu" cpf" jgvgtqigpgkvkgu." jgpeg" uwrrqtvkpi" gpvgtrtkug"
kpvgitcvkqp"cv" vjg"rtqeguu" ngxgn0"Ugeqpf." tgewttgpv"eqooqp"uwduvtwevwtgu"ecp"dg"gz/
rnqkvgf" vq" fghkpg" tghgtgpeg" rtqvqv{rg" rtqeguugu" cpf" dguv" rtcevkegu" *qt" eqooqp" dcf"
rtcevkegu+0"Vjktf."vjg"ogvjqf"ecp"dg"gzrnqkvgf"vq"qticpk¦g"c"rtqeguu"tgrqukvqt{"vq"gp/
jcpeg" ugctej"cpf" tgvtkgxcn0"Yg"rncp" vq"icvjgt"c" uwhhkekgpv"pwodgt"qh"dwukpguu"rtqe/
guugu"kp"qtfgt"vq"eqpetgvgn{"fgcn"ykvj"vjgug"crrnkecvkqpu."cpf"vq"gzvgpf"vjg"g/uekgpeg"
gzrgtkogpvcvkqp"vq"vjg"yjqng"O{Gzrgtkogpv"tgrqukvqt{0"

55

Dkdnkqitcrj{"

30"Xcp" fgt"Ccnuv."Y0O0R0" cpf"Ygklvgtu." C0L0O0O0"Rtqeguu"okpkpi<" c" tgugctej" cigpfc."Eqo/
rwvgtu"kp"Kpfwuvt{"75."453Î466"*4226+0"

40"Xcp"fgt"Ccnuv."Y0O0R0"Rtqeguu"Okpkpi<"Fkueqxgt{."Eqphqtocpeg"cpf"Gpjcpegogpv"qh"Dwuk/
pguu"Rtqeguugu."Urtkpigt"*4233+0"

50"Itgeq."I0."Iw¦¦q."C0."Rqpvkgtk."N0"cpf"Ucee§."F0"Fkueqxgtkpi"Gzrtguukxg"Rtqeguu"Oqfgnu"d{"
Enwuvgtkpi" Nqi" Vtcegu." KGGG"Vtcpucevkqpu" qp"Mpqygfig" cpf"Fcvc" Gpikpggtkpi."Xqn0" 3:."
Pq0":."3232/3249"*4228+"

60"Uqpi."O0."Iwpvjgt."E0Y0"cpf"Xcp"fgt"Ccnuv."Y0O0R0"Vtceg"Enwuvgtkpi" kp"Rtqeguu"Okpkpi."
Dwukpguu"Rtqeguu"Ocpcigogpv"Yqtmujqru."Ngevwtg"Pqvgu"kp"Dwukpguu"Kphqtocvkqp"Rtqeguu/
kpi."Xqn0"39"*422;+"

70"Lcicfgguj."T0"R0."Dqug."E0"cpf"Xcp"fgt"Ccnuv."Y0O0R0"Vtceg"Enwuvgtkpi"Dcugf"qp"Eqpugtxgf"
Rcvvgtpu<"Vqyctfu"Cejkgxkpi"Dgvvgt"Rtqeguu"Oqfgnu."Dwukpguu"Rtqeguu"Ocpcigogpv"Yqtm/
ujqru."Ngevwtg"Pqvgu"kp"Dwukpguu"Kphqtocvkqp"Rtqeguukpi."Xqn0"65."392/3:3"*4232+"

80" Lqp{gt." K0." Eqqm." F0" cpf" Jqnfgt." N0" Itcrj/Dcugf"Jkgtctejkecn" Eqpegrvwcn" Enwuvgtkpi." kp<"
Lqwtpcn"qh"Ocejkpg"Ngctpkpi"Tgugctej."Xqn0"4."3;Î65"*4223+0"

90" Qwxcpu." E0." Fwocu."O0." vgt" Jqhuvgfg." C0J0O0" cpf" Xcp" fgt"Ccnuv."Y0O0R0" Htqo"DROP"
Rtqeguu"Oqfgnu" vq"DRGN"Ygd"Ugtxkegu."42280" Kpvgtpcvkqpcn"Eqphgtgpeg"qp"Ygd"Ugtxkegu."
rr0"4:7/4;4."Ejkeciq."KN"*4228+0"

:0"F0"Jwnn."M0"Yqnuvgpetqhv."T0"Uvgxgpu."E0"Iqdng."O0"Rqeqem."R0"Nk."cpf"V0"Qkpp."Vcxgtpc<"c"
vqqn"hqt"dwknfkpi"cpf"twppkpi"yqtmhnqyu"qh"ugtxkegu."Pwengke"Cekfu"Tgugctej."56."94;/954"
*4228+0"

 56

Supporting Roll-Up and Drill-Down Operations over
OLAP Data Cubes with Continuous Dimensions via

Density-Based Hierarchical Clustering

Michelangelo Ceci1, Alfredo Cuzzocrea2, and Donato Malerba1

1 Dipartimento di Informatica, Università degli Studi di Bari “Aldo Modo”

via Orabona, 4 - I-70126 Bari - Italy

{ceci,malerba}@di.uniba.it
2 ICAR-CNR and University of Calabria

Via P. Bucci, 41C, I-87036 Rende, Cosenza, Italy

cuzzocrea@si.deis.unical.it

Abstract. In traditional OLAP systems, roll-up and drill-down operations over

data cubes exploit fixed hierarchies defined on discrete attributes that play the

roles of dimensions, and operate along them. However, in recent years, a new

tendency of considering even continuous attributes as dimensions, hence hier-

archical members become continuous accordingly, has emerged mostly due to

novel and emerging application scenarios like sensor and data stream manage-

ment tools. A clear advantage of this emerging approach is that of avoiding the

beforehand definition of an ad-hoc discretization hierarchy along each OLAP di-

mension. Following this latest trend, in this paper we propose a novel method

for effectively and efficiently supporting roll-up and drill-down operations over

OLAP data cubes with continuous dimensions via a density-based hierarchical

clustering algorithm. This algorithm allows us to hierarchically cluster together

dimension instances by also taking fact-table measures into account in order to

enhance the clustering effect with respect to the possible analysis. Experiments

on two well-known multidimensional datasets clearly show the advantages of the

proposed solution.

1 Introduction

Traditional OLAP data cubes are defined on top of discrete dimensions that expose

fixed hierarchies [4]. To this end, attribute domains of these dimensions are first dis-

cretized, and then processed simultaneously in order to obtain the final cube, given a

certain measure [4]. Despite this well-consolidated methodology, a recent trend focuses

the attention on the problem of effectively and efficiently computing OLAP data cubes

defined on top of continuous dimensions (e.g., [5, 7, 6]), as the latter are more suitable to

capture real-life dynamics rather than the discrete case. Nevertheless, computing such

kind of data cubes poses severe challenges, and several alternatives, such as approxima-

tion paradigms (e.g., [7]), have been studied to face-off drawbacks deriving from this

challenge. On the other hand, OLAP has also been recognized not only as a “last-stage”

technology, but also as an important enabling technology that allows us to enhance the

expressive power and the quality of retrieved results of a number of Data Warehousing

and Mining techniques (e.g., [2]).

At the convergence of these two relevant challenges of Data Warehousing and Min-

ing research, in this paper we propose and experimentally assess a novel framework,

called OLAPBIRCH, whose main goal consists in integrating the clustering algorithm

BIRCH [8] and OLAP. This integration permits to boost the benefits of both methodolo-

gies into a complex knowledge discovery framework for next-generation applications

ranging from analytics to sensor-and-stream data analysis and social network analysis.

OLAPBIRCH relies on top of a complex methodology according to which the capa-

bility of the clustering algorithm BIRCH are combined with OLAP in order to build a

complex hierarchical data structure, called CF-Tree, whose nodes contain clusters re-

trieved by BIRCH from the target dataset and are organized in an OLAP-like fashion.

This permits to exploit all the deriving benefits such as multidimensional and multi-

resolution data exploration, roll-up and drill-down operations, interactive exploration,

and so forth [4]. Particularly, supporting roll-up and drill-down operations play a signif-

icant role, due to the fact that CF-Tree materializes the retrieved clusters at each node,

hence this allows us to significantly speed-up the response time due to executing these

critical OLAP operations with respect to the baseline case represented by computing

new clusters from pre-existent ones at each roll-up (or drill-down) operation. As an im-

portant contribution to actual research, OLAPBIRCH considers continuous dimensions

instead than classical discrete ones, which is relevant in OLAP (e.g., [5, 7, 6]).

In more details, the proposed approach integrates a revised version of BIRCH in or-

der to obtain a hierarchical organization of dimension instances according to similarity

computed both on dimension values (from dimension tables) and measure values (from

the fact table). We consider the BIRCH algorithm because, in its original formulation,

it shows tree important peculiarities: i) Efficiency: The algorithm time complexity is

linear in the number of instances to cluster and has a constant space complexity. ii) Hi-

erarchical: The algorithm allows us to obtain a hierarchical clustering of instances. iii)

Incremental: As new instances are given to the algorithm, the hierarchical clustering is

revised and adapted by keeping into account memory constraints. All these properties

well fit to work with data warehouses, where problems coming from the huge amount of

data and require for efficient and incremental solutions. For the specific goal we tackle

in this paper, it is also necessary to resort to a hierarchical clustering solution that would

permit to give to the OLAP users the opportunity to perform roll-up and drill-down op-

erations over continuous attributes. At this aim, we can exploit the peculiarity of BIRCH

that provides high balanced hierarchies that become necessary in OLAP frameworks.

The paper is organized as follows. In the next Section we present the proposed

framework OLAPBIRCH. In Section 3, we present an empirical evaluation of the pro-

posed framework an finally, in Section 4 we draw some conclusions.

2 OLAPBIRCH: Combining BIRCH and OLAP

In this section, for the sake of completeness, we first describe the BIRCH algorithm and

then we describe proposed modifications that permit to integrate BIRCH in an OLAP

framework.

 58

2.1 BIRCH

The BIRCH algorithm [8] works on a hierarchical data structure that the authors call CF

tree (Clustering Feature Tree). This data structure permits to partition the incoming data

points in an incremental and dynamic way. Each node in the CF tree is called Cluster-

ing Feature: Given n data points in a cluster, each of which represented according to a

d-size feature vector, CF vector of the cluster is defined as a triple CF = (n, LS, SS),
where LS is the linear sum and SS is the square sum of data points. The CF vectors

are sufficient to compute information about subclusters like centroid, radius and diam-

eter. They satisfy an important additivity condition, i.e. if CF1 = (n1, LS1, SS1) and

CF2 = (n2, LS2, SS2) are the clustering features for sets of points S1 and S2 respec-

tively, then CF1 +CF2 = (n1 + n2, LS1 +LS2, SS1 + SS2) is the clustering feature

for the set S1 ∪ S2.

A CF tree is a balanced tree whose structure is similar to that of a B+tree and de-

pends on two parameters: the branching factor B and a user defined threshold T that

represents the maximum cluster diameter. Each non-leaf represents a cluster consisting

of all the subclusters represented by its entries. In particular, a non-leaf node Nj con-

tains at most B entries of the form [CFi, ci]i=1,..,B, where ci is a pointer to the i − th
child node of Nj and CFi is the clustering feature of the cluster identified by ci. A

leaf node contains at most L (typically L = B) entries each of the form [CFi]. In the

leaves, each node has two pointers prev and next which are used to chain all leaf nodes

together. The tree size depends on the T value: the larger the T , the smaller the tree.

The algorithm BIRCH builds a CF tree in four steps. In the first step, BIRCH iter-

atively receives single data points and builds an initial CF-tree. A point is inserted by

inserting the corresponding CF value into the closest leaf. If an entry in the leaf can

absorb the new point without violating the threshold T condition, its CF is updated.

Otherwise, a new entry is created in the leaf node, and, if the leaf node then contains

more than L entries, it and maybe its ancestors are split. In this phase, in order to sat-

isfy RAM constraints, BIRCH frequently rebuilds the whole CF tree by increasing the

threshold T and tries to merge as many CF nodes as possible. The rebuild happens

sufficiently fast since all needed data is already in RAM. At the same time outliers

are removed from the tree and are stored to disk. The algorithm starts with maximum

precision at T = 0 and as the CF tree grows larger than the available memory, it iter-

atively tries to find suitable cluster sizes by increasing T to be larger than the smallest

distance between two entries in the tree. In the second step, the algorithm condenses

the CF tree to a desirable size depending on the clustering algorithm employed in step

three. This can involve removing outliers and further merging of clusters. In the third

step, the algorithm employs a global clustering algorithm using the CF tree's leaves as

input. This step, as claimed in [8], permits to avoid the undesirable effect of the skewed

input order, and splitting triggered by space constraints. In this phase, the CF vectors

allow for effective distance metrics computation. In the last step, a labeling procedure

is performed. This means that, if desired, the actual data points can be associated with

the generated clusters.

In the implementation we provide, the used distance measure is the variance in-

crease distance [8] defined as follows:

 59

Definition 1 (Variance Increase Distance).
Let C1 and C2 be two clusters, where C1 = {xi}i=1..n1 and C2 = {xi}i=n1+1..n2 . The

variance increase distance between C1 and C2 is defined as:

D =

n1+n2∑

k=1

xk −

n1+n2∑

l=1

xl

n1 + n2

2

−
n1∑

i=1

xi −

n1∑

l=1

xl

n1

2

−
n2∑

i=n1+1

xi −

n2∑

l=n1+1

xl

n2

2

In our implementation, the clustering algorithm for the third step is the well-known

DBSCAN [3] algorithm that performs a density based clustering. Density based cluster-

ing is performed on cluster centroids (that can be easily computed from the CF vectors

and represent aggregated data) and allows us to further aggregate data that show similar

peculiarities.

2.2 OLAPBIRCH

The integration of the implemented BIRCH algorithm in the OLAP solution we present,

is not a trivial task since different issues have to be considered: First, OLAP queries can

consider all the levels of the hierarchy and not only the last level. This means that it is

necessary to have refined clusters not only in the last level of the hierarchy, but also in

intermediate levels. Second, in OLAP frameworks, the user is typically able to control

size of hierarchies, but this is not possible in the original BIRCH algorithm. Third,

although the last step of the BIRCH algorithm is not mandatory, this step is necessary in

our framework in order to simplify the computation of OLAP queries. Fourth, in order

to avoid the combinatorial explosion that is typical in multidimensional clustering, it is

necessary to focus only on interesting continuous dimension attributes.

In order to face with the first issue, we revised the clustering algorithm in order to

allow the system to run the global clustering algorithm also in intermediate nodes of

the tree. At this purpose, we extended the CF tree structure by providing pointers prev
and next to each internal node. This allows us to linearly scan a each single level of the

tree. In Figure 1, we report a graphical representation of the CF tree structure used in

the proposed framework.

As for the second issue, in addition to the memory space constraints, we consider

also an additional constraint that forces tree rebuilding when a maximum number of

levels (MAX LEV) is exceeded. This is coherent with the goal of having a limited

number of levels, as in classical OLAP systems.

As for the third issue, given the maximum number of levels MAX LEV and the

branching factor B, it is possible to use a numerical representation of the complete path

of clusters for each dimension instance so that the classical B+tree index structure can

be used in order to allow efficient computation of range queries[5]. The representation

is in the form < d1d2 . . . dMAX LEV >, where each di is a sequence of plog2Bq bits

that permits to identify each subcluster. The number obtained in this way is then used

to perform roll-up and drill-down operations.

 60

Fig. 1. OLAPBIRCH: an example of CF tree.

Finally, as for the fourth issue, in order to integrate the algorithm in an OLAP frame-

work, we defined a language that permits to specify the attributes to be considered in

the clustering phase. At this purpose, we have exploited the Mondrian3 project that per-

mits to represent a multidimensional schema of a data warehouse by means of an XML

file. This file permits to define a mapping between the multidimensional schema and

tables and attributes stored in the database. Main elements in this XML file are: the data

source, cubes, measures, the fact table, dimensions and hierarchies.

For our purposes, we have modified the DTD in order to allow different types of

hierarchies. The modified portion of the DTD is:

<!ELEMENT H i e r a r c h y ((\% R e l a t i o n ;) ? , (Lev e l)∗ ,

(MemberReaderParameter) ∗ , (A t t r i b u t e) + , (Depth))>
<!ATTLIST H i e r a r c h y

h a s A l l (t r u e | f a l s e) #REQUIRED

allMemberName CDATA #IMPLIED

al lMem b er Cap t io n CDATA #IMPLIED

pr imaryKey CDATA #IMPLIED

p r im ar y Key Tab le CDATA #IMPLIED

3 http://sourceforge.net/projects/mondrian/files/mondrian/

 61

d e f au l tMem b er CDATA #IMPLIED

memberReaderClass CDATA #IMPLIED>
<!ELEMENT A t t r i b u t e EMPTY>

<!ATTLIST A t t r i b u t e

name CDATA #IMPLIED

t a b l e CDATA #REQUIRED

column CDATA #REQUIRED

nameColumn CDATA #REQUIRED

t y p e (Numeric) Numeric #REQUIRED>
<!ELEMENT Depth EMPTY>

<!ATTLIST Depth v a l u e (Numeric) Numeric #REQUIRED>

The DTD so modified permits to add two new elements (< Attribute > and

< Depth >) to the elements defined in < Hierarchy >. The < Attribute > ele-

ment permits to define one or more attributes to be used in the clustering procedure.

Properties that can be defined in the < Attribute > tag are: name - attribute name;

table - table that contains the attribute; column: database column name; nameColumn:

database column name (alias); type: SQL attribute type. The < Depth > element per-

mits to specify the maximum depth of the CF-tree.

The CF -tree is updated when a new dimension tuple is saved in the data ware-

house while DBSCAN is run only when OLAP queries are executed and clusters are

not updated. This permits to focus our attention only to levels that are actually used in

the queries. It is noteworthy that, differently from [7], the global clustering is run on

compact representations of data and does not pose efficiency problems.

Example 1. Le us consider the database schema reported in Figure 2 where lineitem
is the fact table and orders is a dimensional table. By selecting, in the XML file, the

attributes orders.o totalprice and orders.o orderpriority:

< A t t r i b u t e name=” t o t a l p r i c e ” t a b l e =” o r d e r s ” column =”

o t o t a l p r i c e ” nameColumn=” o t o t a l p r i c e ”

t y p e =” I n t e g e r ”/>
< A t t r i b u t e name=” o r d e r p r i o r i t y ” t a b l e =” o r d e r s ” column =”

o o r d e r p r i o r i t y ” nameColumn=” o o r d e r p r i o r i t y ”

t y p e =” I n t e g e r ” />
< Depth v a l u e =”20”/>

we have that the OLAP engine performs clustering on the following database view:

SELECT l q u a n t i t y , l e x t e n d e d p r i c e , l d i s c o u n t , l t a x ,

o t o t a l p r i c e , o o r d e r p r i o r i t y

FROM l i n e i t e m , o r d e r s

WHERE l o r d e r k e y = o o r d e r k e y

3 Experimental Evaluation and Analysis

In order to evaluate the effectiveness of the proposed solution, we performed exper-

iments on two real world datasets. The first dataset is the SPAETH Cluster Analysis

 62

Fig. 2. TPC-H database schema

Datasets4, a small dataset that allows us to visually evaluate the quality of extracted

clusters. The second dataset is the well-know TPC-H benchmark (version 2.1.0)5. In

Figure 2 we report the relational schema of TPC-H implemented on PostgreSQL, which

we used as supporting DBMS. The TPC-H database holds data about the ordering and

selling activities of a large-scale business company. For experiments we used the 1GB

version of TPC-H [1] containing more that 1 × 106 tuples in the fact table. On this

last dataset, we performed experiments on the scalability on the algorithm and we col-

lected results in terms of running times and cluster quality. Clustering is performed

on the fact table measures as well as on the the attributes orders.o totalprice and or-

ders.o orderpriority as specified in Example 1. In order to force the OLAPBIRCH

framework to work in the worst case scenario, running times are obtained by forc-

ing the system to work when the examples are given one by one. The cluster quality is

measured according to the weighted average cluster diameter square measure:

Q =
∑

i=1..K

ni(ni − 1)D2
i /

∑

i=1..K

ni(ni − 1) (1)

where K is the number of obtained clusters, ni is the cardinality of the i-th cluster and

Di is the diameter of the i-th cluster. The smaller the Q value, the higher the cluster

quality.

In Figure 3, we report a graphical representation of obtained clusters. As we can

see, the global clustering (DBSCAN) is necessary in order to have good quality clus-

4 http://people.sc.fsu.edu/∼jburkardt/datasets/spaeth/spaeth.html
5 Transactions Processing Council Benchmarks. Available from: http://www.tpc.org.

 63

Fig. 3. Clustering effect on Spaeth dataset. CF-tree is obtained with B=L=2. Left: OLAP-

BIRCH without DBSCAN, Right: OLAPBIRCH with DBSCAN; Top: LEV EL = 6, Bottom:

LEV EL = 7. Points outside clusters are considered outliers.

No of points Running time (s) Q No of rebuilds

60× 10
3 776 0.08 5

100× 10
3 1819 0.07 5

500× 10
3 41,646 0.018 5

1.1× 10
6 172,800 0.039 9

Table 1.TPC-H: scalability results. MAX LEV = 20, B = L = 2

ters. Moreover, by increasing the depth of the tree, it is possible to have more detailed

clusters.

Results obtained on the TPC-H database are reported in Table 1. From these results,

it is possible to see that the quality of the clusters does not deteriorate when the number

of examples increases. We can also see that the number of times that the CF -tree is

rebuilt is very small, even for huge datasets.

Figure 4 shows a different perspective of the obtained results. In particular, it shows

that there is strong correlation between the region dimension (that is not considered dur-

ing the clustering phase) and the obtained clusters. This means that numerical properties

of the orders change in distribution between the regions where the order is performed.

4 Conclusions and Future Work

In this paper we have presented the framework OLAPBIRCH. This framework inte-

grates a clustering algorithm in an OLAP engine in order to support roll-up and rill-

down operations on numerical dimensions. OLAPBIRCH integrates a revised version

of the BIRCH clustering algorithm that permits to incrementally revise hierarchical

 64

Cluster 1 Cluster 2 Custer 3

Fig. 4. TPC-H: Data distribution over the Region dimension.

clustering for all the levels of the hierarchy. Preliminary results show the effectiveness

of the proposed solution on large real world datasets. For future work we intend to

compare our framework with competitive frameworks and prove its applicability in an-

swering to range queries and we intend to run experiments by varying input parameters

in order to give better insights on their definition.

Acknowledgment

This work is partial fulfillment of the research objective of ATENEO-2009 project “Es-

trazione, Rappresentazione e Analisi di Dati Complessi”.

References

1. A. Cuzzocrea. Improving range-sum query evaluation on data cubes via polynomial approxi-

mation. Data Knowl. Eng., 56(2):85–121, 2006.

2. A. Cuzzocrea and P. Serafino. Clustcube: An olap-based framework for clustering and mining

complex database objects. In SAC, 2011.

3. M. Ester, H.-P. Kriegel, J. Sander, and X. Xu. A density-based algorithm for discovering

clusters in large spatial databases with noise. In KDD, pages 226–231, 1996.

4. J. Gray, S. Chaudhuri, A. Bosworth, A. Layman, D. Reichart, M. Venkatrao, F. Pellow, and

H. Pirahesh. Data cube: A relational aggregation operator generalizing group-by, cross-tab,

and sub totals. Data Min. Knowl. Discov., 1(1):29–53, 1997.

5. D. Gunopulos, G. Kollios, V. J. Tsotras, and C. Domeniconi. Selectivity estimators for multi-

dimensional range queries over real attributes. VLDB J., 14(2):137–154, 2005.

6. N. Karayannidis and T. K. Sellis. Hierarchical clustering for olap: the cube file approach.

VLDB J., 17(4):621–655, 2008.

7. J. Shanmugasundaram, U. M. Fayyad, and P. S. Bradley. Compressed data cubes for olap

aggregate query approximation on continuous dimensions. In KDD, pages 223–232, 1999.

8. T. Zhang, R. Ramakrishnan, and M. Livny. Birch: An efficient data clustering method for

very large databases. In H. V. Jagadish and I. S. Mumick, editors, SIGMOD Conference,

pages 103–114. ACM Press, 1996.

 65

Decomposition Technique for the Inverse Frequent

Itemset Mining Problem

Antonella Guzzo1, Luigi Moccia2, Domenico Sacca1, and Edoardo Serra1

DEIS1, University of Calabria, 87036, Rende, Italy

ICAR-CNR2, 87036, Rende,Italy

guzzo@deis.unical.it, moccia@icar.cnrt.it, sacca@unical.it,

eserra@deis.unical.it

Abstract. The Inverse Frequent itemset Mining (IFM) is the problem of comput-

ing a transaction database D satisfying specified support constraints on a given

set S of itemsets, that are typically the frequent ones. Earlier studies focused on

investigating computational and approximability properties of this problem, that

is NP-hard. However, this classical formulation of IFM does not enforce any con-

straint on the other itemsets (i.e., the ones that are not listed in S); D may there-

fore happen to contain additional (and, perhaps, unsuspected or even undesired)

frequent itemsets. A possibility for removing this anomaly is to introduce a more

general formulation of IFM in which the supports of itemsets that do not belong

to S are explicitly constrained by a given threshold in order not to eventually get

unexpected ”frequent” itemsets. This paper investigates this formulation, shows

how it can be encoded as an integer linear program, and introduces a no-integer

version of it solvable by a decomposition technique, that is a method designed

to handle optimization problems with a huge number of variables by a using a

limited memory space. As the decomposition technique requires at each step the

solution of an auxiliary NP-hard integer linear program, a constructive heuristic

for this auxiliary problem has also been defined, which enjoys very good scaling,

thereby paving the way for its application over real-life scenarios.

1 Introduction

Transaction databases are databases where each tuple, called transaction, is defined as

a subset of an underlying fixed set of items I (e.g. in market data, where a transaction

corresponds to one purchase event and each item is a salable product). A popular min-

ing task over transaction databases is to single out the set of the frequent itemsets, i.e.,

all the subsets of I (called itemsets) which are contained in a significant fraction (user-

specified as a minimum support threshold) of the given transactions [7]. This problem

attracted relevant research efforts in recent years, and several solution approaches and

generalizations have indeed been discussed in the literature. In some cases, however,

the perspective of the frequent itemset mining problem is naturally inverted: given a set

S of frequent itemsets whose supports must be within specified ranges, the goal is to

construct a transaction database D (if any) over which these itemsets are actually fre-

quent. This problem, called Inverse Frequent itemset Mining (IFM) problem, has been

recently introduced in the context of defining generators for benchmarks of mining

algorithms [9, 6, 5], and has been subsequently reconsidered in privacy preserving con-

texts [10, 11], where the goal is to publish some data while avoiding disclosing sensitive

or private knowledge. From a technical viewpoint, earlier studies on the inverse frequent

itemset mining problem mainly investigated its computational properties, by charting

a precise picture of the conditions under which it becomes intractable (see , e.g., [1, 2,

9]), and by observing that the problem is NP-hard even if one looks for approximate

solutions [10]. In this paper, the inverse frequent set mining problem is considered from

a pragmatic point of view using the basic inverse frequent itemset mining setting of

[9], where the “frequency” of any itemset in the database is measured in terms of its

support, i.e., as the number of the transactions in which it occurs1. We first introduce an

extension of IFM, calledσ-IFM, that removes the anomaly of the classical formulation

that does not enforce any constraint on the other itemsets (i.e., the ones that are not

listed in S) so that the computed transaction database D may contain additional (and,

perhaps, unsuspected or even undesired) frequent itemsets. Thus, our formulation over-

comes a severe limitation for a practical usage of IFM. We also concentrate on studying

a heuristic solution approach that is able to scale over large instances, that often arise in

real applications.

Within the extended framework for inverse frequent itemset mining discussed above,

our contribution is then to study an efficient and effective solution approach based on

linear programming. In more detail,

• We first propose a novel formulation of the inverse frequent set mining problem,

σ-IFM, where the itemsets not in S are constrained to be infrequent – computa-

tion of the problem is still NP-hard and, hence, unlikely to be efficiently solvable

(Section 2).

• We describe how the σ-IFM can be encoded as an integer linear program (Section

3.1) and show that the relaxed version (i..e., non integer linear program) of it enjoys

two important properties: (i) the size of the approximated solution is polynomial

and (ii) accuracy of the solution can be measured in terms of input parameters

(Section 3.2).

• We shown how the relaxed version of the σ-IFM can be solved by column genera-

tion which is a classical technique of large-scale linear programming. The proposed

method requires at each step the solution of an auxiliary integer linear program

which we prove being NP-hard. We devise an improved formulation and a con-

structive heuristic for this auxiliary problem (Section 4).

• Finally, we conduct a thorough experimental activity over both syntectic and real-

life data. Results evidence that our approach emerged to be effective for real appli-

cation scenarios. In addition, the results show that our approach enjoys very good

scaling, thereby paving the way for its application over real-life scenarios (Section

5).

1 Note that other approaches to the inverse frequent set mining problem (e.g., [1, 2]) considered

the actual frequency, i.e., the support divided by the total number of transactions; however, as

discussed in [9], supports convey more information than frequencies and hence the perspective

of [9] is adopted here.

2

67

2 Problem Formalization

Let I = {o1, . . . , on} be a finite domain of elements, also called items. Any subset

I ⊆ I is called an itemset over I. The universe of itemsets UI is the set of all non-

empty itemsets over I. A database D over I is bag of itemsets, each one usually called

transaction. The number of transactions in D is denoted by |D|. Given a database D
over I, for each itemset I over I (I ∈ UI), the support of I , denoted by σD(I), is

the number of transactions containing I , and the number of duplicates of I , denoted by

δD(I), is the the number of transactions equal to I . We say that I is a frequent itemset

in D if I’s support is no less then a given support threshold minsupp. Finding all the

frequent itemsets in D is the well-known frequent itemset mining problem. The anti-

monotonocity property holds for supports: given two itemsets I and J with I ⊂ J ,

σD(J) ⊆ σD(I).

We denote the set of natural numbers by N0 that will be used for bound. We also

introduce the symbol ∞ to denote an unlimited bound and define N′
0 as N0 ∪ {∞} —

we therefore assume that for each i ∈ N0, i < ∞ holds. Finally, we denote the set of

pairs {(a, b) : a ∈ N0, b ∈ N′
0, a ≤ b} by N2.

Thanks to the above notation, we now formally introduce the σ-IFM problem:

Definition 1. Let:

i S be a given set of itemsets over the items in I
ii S′ and S′′ denote respectively {I ∈ I \ S : ∃I ′ ∈ S s.t. I ⊂ I ′} and UI \ (S ∪ S′)

iii Γσ = {(I, σI
min, σ

I
max) : I ∈ S, (σI

min, σ
I
max) ∈ N2} be a given set of triples

assigning a minimum and the maximum support to each itemset in S
iv σ′′ ∈ N′

0 be the maximum support threshold for all itemsets in S′′

v σ′ ∈ N′
0 be the maximum additional support threshold for all itemsets in S′, i.e.,

for each I ∈ S′, the maximum support threshold of I is σ′ +
∑

J∈SI
σJ
max, where

SI is the set of all minimal itemsets in S containing I , i.e., SI = {J ∈ S | I ⊂ J
and
 ∃K ∈ S : K ⊂ J ∧ I ⊂ K}

vi size = (size1, size2) ∈ N2 denote the minimal and the maximal dimension for a

database.

Then, the σ-generic inverse frequent itemset mining problem on I, S, Γσ , σ′′, σ′ and

size, shortly denoted as σ-IFM, consists of finding a database D over I such that the

following conditions hold (or eventually state that there is no such a database):

∀I ∈ S : σI
min ≤ σD(I) ≤ σI

max (1)

∀I ∈ S′′ : σD(I) ≤ σ′′ (2)

∀I ∈ S′ : σD(I) ≤ σ′ +
∑

J∈SI
σJ
max (3)

size1 ≤ |D| ≤ size2. (4)

If σ′ = σ” = ∞, size1 = 0 and size2 = ∞ then the problem reduces to the classical

inverse frequent itemset mining problem, IFM for short. �

The above constraints do formalize the intuitive points we have previously discussed.

Indeed, the constraint (1) states that σI
min and σI

max induce a range of admissible sup-

ports for each itemset I ∈ S. The constraint (2) imposes that each intemset which

3

 68

neither belongs to the set S nor is a subset of some itemset in S must have a sup-

port σD(I) less or equal than the threshold σ′′. By Constraint (3), itemsets in S′ (i.e.,

subsets of some itemset in S) have support bounds that takes into account the ones of

their immediate super-sets in S because of anti-monotonicity. Finally, the size of the

database, i.e., the total number of transactions, is constrained in a range indicated by

the constraint (4).

The complexity of the decision version of σ-IFM (decision σ-IFM) is NP-hard.

Proposition 1 Deciding whether there exists a solution for σ-IFM is NP-hard and in

PSPACE .

The proof is carried out by showing that σ-IFM is a special case of classical IFM,

whose complexity has been analyzed in literature and has been proved to be NP-hard

and in PSPACE (see [9]). To this end, we introduce two meaningful subsets of S′′

and S′, called respectively LUBS′′ and LUBS′ , containing all least upper bounds of the

itemsets in S:

LUBS′′ =
{
I ∪ {x} | I ∈ (S ∪ {∅}), x ∈ (I − I)

}
∩ S′′. (5)

LUBS′ =
{
I ∪ {x} | I ∈ (S ∪ {∅}), x ∈ (I − I)

}
∩ S′. (6)

Observe that the sum of the sizes of LUBS′ and LUBS′′ is at most (m + 1) × n. As

proven next, the generic support constraints can be tested just for the itemsets in LUBS′′

and LUBS′ in rather than for all itemsets in S′′ and S′ respectively, whose number is

instead exponential in n.

3 Linear Program Formulation of σ-IFM

3.1 The σ-IFM as an Integer Linear Program

The σ-IFM looks for a mapping between each itemset belonging to the universe UI and

the integers in {0, ..., |D|}, which expresses the number of transactions of each itemset

occurring in the resulting database D (complying with the constraints in Definition 1).

We next encode this problem as an integer linear program.

W.l.o.g., we select any ordering of UI , say {I1, . . . , I2n−1} and we assume that

the input itemsets are the first m ≤ 2n − 1 ones in the above ordering, i.e., S =
{I1, . . . , Im}. Let V = {1, ...,m} and T = {1, . . . , 2n − 1}.

Let lσ and uσ be two vectors respectively in Nm
0 and in N′m

0 storing the lower and

upper support constraints, i.e., lσi = σIi
min and uσ

i = σIi
max, for each 1 ≤ i ≤ m.

Accordingly, we define lδ and uδ as two vectors respectively in Nm
0 and in N′m

0 storing

the lower and upper duplicate constraints, i.e., lδi = δIimin and uδ
i = δIimax, for each

1 ≤ i ≤ m.

We define uδ as a vector in N′n
0 storing the generic upper duplicate constraints for

each itemset size k, 1 ≤ k ≤ n, i.e., uδ
k = fk

δ . Let ′#′ be a function that for each i,
1 ≤ i ≤ 2n − 1 returns the length of (i.e., the number of item in) Ii — obviously this

function is computed in time linear in n, that is the size of I, the maximal itemset.

4

69

W.l.o.g., we assume that the itemsets in LUBS′′ (see equation 5 above) are numbered

from Im+1 to Im+q′′ , where q′′ ≤ (m+1)×n and, then, m+ q′′ ≤ 2n − 1; we denote

the indices {m + 1, . . . ,m + q} by Q′′. Accordingly, we assume that the itemsets in

LUBS′ (see equation 6 above) are numbered from Im+q′′+1 to Im+q′′+q′ , where q′ ≤
(m+1)×n and m+q′′+q′ ≤ 2n−1; we denote the indices {m+q′′+1, . . . ,m+q′′+q′}
by Q′. In addition, for each i ∈ Q′, u′

i denotes
∑

Ij ,j≤m,Ii⊂Ij
uσ
j .

Let x be a vector of 2n − 1 non-negative integer variables whose intended meaning

is that its i-th coordinate, xi, denotes the number of duplicates for the transaction Ii.
Moreover, consider a (2n − 1) × (2n − 1) matrix A where each entry aij ∈ 0, 1 is

associated with the pair of itemsets Ii and Ij with the intended meaning that aij = 1 if

and only if Ij ⊇ Ii holds.

We next introduce an objective function measuring the cost of violating any con-

straint using a number of real variables denoted by the symbol v with suitable adorn-

ments: the vectors vl and vu of 2n − 1 non-negative real variables, the vector v′′ of q′′

non-negative real variables, the vector v′ of q′ non-negative real variables and the two

scalar non-negative real variables vs1 and vs2 . Then, the problem can be recast in terms

of the following integer linear program:

ILP: minimize
∑

i∈V

(vli + vui) +
∑

i∈Q′′

v′′i +
∑

i∈Q′

v′i + vs1 + vs2 (7)

subject to

vli +
∑

j∈T

aijxj ≥ lσi i ∈ V (8)

vui −
∑

j∈T

aijxj ≥ −uσ
i i ∈ V (9)

v′′i−m −
∑

j∈T

aijxj ≥ −σ′′ i ∈ Q′′ (10)

v′i−m−q′ −
∑

j∈T

aijxj ≥ −σ′ − u′
i i ∈ Q′ (11)

vs1 +
∑

j∈T

xj ≥ size1 (12)

vs2 −
∑

j∈T

xj ≥ −size2 (13)

vli, v
u
i ≥ 0 i ∈ V, (14)

v′′i ≥ 0 i ∈ Q, (15)

vs1 , vs2 ≥ 0. (16)

xi ∈ N0 i ∈ T. (17)

Whenever the bound of some of the constraints (9), (10), (11) and (13) is equal to

∞, the corresponding constraint is just removed. The non-negative real variables vli, v
u
i

(∀i ∈ V), v′′i (∀i, 1 ≤ i ≤ q′), v′i (∀i, 1 ≤ i ≤ q′′), vs1 and vs2 are artificial in the

5

 70

sense that their role is to absorb possible violations of the constraints (8) – (13): the

minimization of its value entails the search for a solution with the minimal number of

violations. For example, assume that
∑

j∈T xj < size1, then the variable v will be

forced by (12) to a value at least equal to size1 −
∑

j∈T , i.e. a value greater than zero.

The objective function (7) minimizes the value of the artificial variables. Therefore, the

optimal solution of the presented ILP consists in a database (as induced by variables x
in the optimal solution) with minimal violation of the mimimal database size constraint.

Let XOPT0
ILP be a solution of ILP (if any) for which the objective function is equal to 0

and D[XOPT0
ILP] be the database defined by such a solution.

The next result proves that the ILP defined by the objective function (7), and by the

constraints (8) – (17) is instrumental in solving the σ-IFM.

Proposition 2 A database D satisfies the σ-IFM problem if and only if there exists an

optimal solution XOPT0
ILP for which D = D[XOPT0

ILP].

Let b[XOPT0
ILP] be the number of non-zero elements in XOPT0

ILP .

Corollary 3

i Deciding whether there exists a solution XOPT
ILP for which the objective function is

equal to 0 is in NP if and only decision σ-IFM is in NP;

ii if decision σ-IFM /∈ NP then b[XOPT0
ILP] is exponential in n and m.

As shown in the next subsection, a solution with a polynomial number of non-zero

elements can be obtained by the continuous relaxation of the integer restrictions, i.e. all

the variables are allowed to be real numbers.

3.2 The σ-IFM as a Linear Program

The relaxation of the σ-IFM can be stated as a linear program with an exponential

number of variables but only a polynomial number of constraints:

LP: minimize
∑

i∈V

(vli + vui) +
∑

i∈Q′′

v′′i +
∑

i∈Q′

v′i + vs1 + vs2 (18)

subject to the constraints (8) – (16) of the ILP problem and by replacing the constraint

(17) with;

xi ∈ R i ∈ T. (19)

Let XOPT
LP be a solution of LP (if any) and XOPT0

LP be a solution for which the objective

function is equal to 0.

Proposition 4 Given v ∈ R, deciding whether there exists a solution XOPT
LP for which

the objective function is less than or equal to v is in NP .

Corollary 5 Given any solution XOPT
LP

, b[XOPT
LP

] is polynomial in n and m.

6

71

Thus, relaxing the integer constraints allows us to find an approximate solution with

polynomial size, that is given by the database D[XOPT
LP] induced by round[XOPT

LP], that

is obtained from XOPT
LP by rounding the values of its elements. An upper bound for the

accuracy of the approximated solution is given next.

Proposition 6 Given an optimal solution XOPT0
LP of LP, round[XOPT

LP] is a solution of

ILP whose objective function value is less than or equal to (2 ×m + q′ + q′′ + 2) ×
(m+ q′ + q” + 1)/2 = O(m2 × n).

Experimental results prove that in practice the approximate solution is instead far

below the theoretical bound.

The relaxation of integer constraints opens an interesting perspective for an effective

solution of σ-IFM. But finding an optimal solution of LP is not an easy task because of

the exponential number of variables. In the next section we present an algorithm which

at each step explicits a polynomial number of variables.

4 Column Generation Algorithm to solve LP

Column generation, see e.g [3] and [4], is a method of dealing with linear programs

with a large number of variables. This method solves a linear program without explicitly

including all columns, i.e., variables, in the coefficient matrix. Columns are dynamically

generated by solving an auxiliary optimization problem called the pricing problem. In

the following we present and discuss the main column generation algorithm.

The linear program to be solved is denoted as the master problem (MP). The linear

program with only a subset of the MP columns is called the restricted master problem

(RMP). From linear programming theory we know that if there is an optimal solution

it exists an optimal solution corresponding to a basis of the coefficient matrix. The

columns of an optimal basis are those strictly necessary, all other columns can be ig-

nored. Thus, to solve the MP is equivalent to solve the RMP with only the columns

defining an optimal basis.

The column generation method looks for an optimal basis as within the simplex al-

gorithm. The simplex algorithm moves from a current basis to a new basis by removing

from the basis one column and adding to the basis a column with a negative (here and

in the following we refer to the minimization case) reduced cost (iteration step). Primal

feasibility is maintained and the objective function is non-increasing during this search.

The reduced cost of a column can be computed by using the current dual variables. If

there is not a column with a negative reduced cost, then the simplex algorithm termi-

nates and the current basis is proved to be optimal. This scheme is maintained within

the column generation method. However, the task of providing a column with a negative

reduced cost, or certifying that there is not such a column, is delegated to the pricing

problem.

The column generation algorithm has an attractive characteristic: columns that exit

the basis can be dropped from the RMP. By so doing the algorithm has bounded use of

the space, proportional to the number of constraints, i.e. the dimension of a basis.

7

 72

Proposition 7 At each iteration step the size of RMP is polynomial in the size of the

input.

Preserving polynomial size throughout the whole execution has some drawback on

time efficiency. An acceleration strategy consists in maintaining the non-basic columns

in the RMPs. This can avoids re-generating some of them. It should be noted that finite

convergence is guaranteed as within the simplex algorithm even when the non-basic

columns are dropped from the RMP, see [3]. In the following we simplify the pre-

sentation of the column generation algorithm by omitting the description of the space

management scheme. The column generation algorithm critically depends upon solv-

ing the pricing problem. As we will show in a forthcoming paper, it is unlikely that a

polynomial algorithm exists for the pricing problem. However, we do not need to solve

exactly the pricing problem at each iteration. We could as well deploy a heuristic algo-

rithm. As long as the heuristic algorithm returns a column with negative reduced cost

we can iterate the column generation by adding the new column to the RMP.

In the general case, an exact solution of the pricing problem is necessary to the stop

criterion of the column generation, i.e. when we have to certify that there is not a col-

umn with a negative reduced cost. In our case, we deal with an artificial optimization

problem where the objective function (7) registers the distance from feasibility, since we

know that the searched database D corresponds to an objective function value of zero.

We have, thus, an alternative stop criterion: if the heuristic algorithm fails in finding a

new column and we have reached a satisfactory, user defined, level of unfeasibility we

can end the algorithm. This alternative stop criterion limits solving exactly the pricing

problem which is computationally expensive. We need to call the exact pricing routine

only if the heuristic fails and we have not reached the satisfactory level of unfeasibility.

The simplex algorithm, in the worst-case, explores all the feasible bases. The number

of bases is exponential in the number of constraints and variables. In our problem the

number of variables is itself exponential, leading to worrying worst-case conditions.

We note that alternative algorithms for linear programming with polynomial worst-case

complexity do exists, e.g interior points methods, see [3]. However, these worst-case

complexities depend upon both the number of constraints and the number of variables.

Since we deal with a linear program with an exponential number of variables we cannot

escape worst-case exponential complexity by using these tools. As we will show in a

forthcoming paper, the number of iterations of the column generation algorithm, i.e.

the number of times that we update and re-solve the RMP, is such that the algorithm

can have practical use. This is coherent with the practice were the simplex algorithm

shows a remarkably fast convergence. However, in terms of worst-case computational

complexity we cannot rule out excessive computational times. Therefore, we have to

provide a global time-limit for termination. Moreover, the exact pricing routine could

also face excessive computational times. A specific time-limit for the exact pricing rou-

tine is hence provided.

In summary, the decomposition algorithm starts by initializing the RMP. We ob-

serve that populating the RMP with the artificial variables v suffices to RMP feasibility.

However, this RMP will provide poor dual information. We then initialize the RMP by

adding also the variables xi with 1 ≤ i ≤ m, which are likely to have strictly positive

8

73

values in the optimal solution. Based on the RMP dual variables , we solve the pricing

problem and if a column with a negative reduced cost has been founded, that column

will be included in the RMP problem and reiterate the procedure. In our approach, we

try to first solve heuristically the pricing problem, and if no column is provided, we use

the the exact pricing routine. The algorithm stopped when a the global time-limit has

been reached, or when the decomposition algorithm does not include any column with

negative reduced in RMP, and the the current solution is hence optimal.

5 Experiments and Conclusion

The solution approach for σ-IFM described in the previous section has been imple-

mented, and a thorough experiential activity has been conducted to assess its efficiency

and effectiveness over two real datasets BMS-WebView-1 and BMS-WebView-2, which

can be download from the KDD-Cup 2000 competition website [8].

Due to the space limitation, all the results will not be addressed here, while we fo-

cused on the efficiency and the accuracy of our approach by reporting the execution

times and a comparison with the IPF method proposed in [11]. Specifically, in the ex-

perimentation perspective discussed in [11], it is argued that the effectiveness of inverse

frequent itemsets mining algorithms has to be assessed by comparing the similarity be-

tween the synthetic dataset generated as solution of the inverse problem and the original

one. We mention that the correspondent synthetic datasets for BMS-WebView-1 and

BMS-WebView-2 are generated with the frequent itemsets computed on real dataset

whit threshold supports 0.7 and 0.6, respectively.

To this aims, we used the Jaccard, Dice, and Overlap indexes (see [11] for more

details) to compare similarities between original frequent itemsets and those occurring

in the output dataset. Results on the two real input datasets are reported in Figure 1. The

figure evidences that very high accuracy measures are obtained by our method.

The table of execution times, reported in Figure 2, shows that our method has reduced

execution times for a large amount of constraints, measured in terms of the cardinality

of S (|S|) and of Q′′ (|Q′′|) - note that we have set |Q′| = 0. As a large number of

constraints generates an exponential number of variables (from 1022 to over 10240 in

our experiments!), the method allows us to handle linear programs with an enormous

number of variables using a reduced amount of space and time. Limitation on space

can be guaranteed in all cases whereas exponential time is not. However, the actual

performance of the method in our experiments suggests that exponential time is get in

rare cases as it happens for the classical execution of the simplex algorithm.

References

1. Calders, T.: Computational complexity of itemset frequency satisfiability. In: in Proc.

PODS04. pp. 143–154 (2004)

2. Calders, T.: Itemset frequency satisfiability: Complexity and axiomatization. Theor. Comput.

Sci. 394(1-2), 84–111 (2008)

9

 74

BMS-Web support(%) Jaccard Dice Overlap

σ-IFM IPF σ-IFM IPF σ-IFM IPF

View-1 0.6 0.535 0.817 0.697 0.899 0.747 0.985

s=0.7 0.7 1.0 0.940 1.0 0.969 1.0 0.992

0.8 1.0 0.883 1.0 0.938 1.0 0.934

0.9 1.0 0.893 1.0 0.944 1.0 0.954

1.0 1.0 0.887 1.0 0.940 1.0 0.959

View-2 0.6 1.0 0.696 1.0 0.768 1.0 1.0

s=0.6 0.7 0.994 0.708 0.997 0.739 1.0 0.964

0.8 1.0 0.710 1.0 0.830 1.0 0.928

0.9 0.991 0.722 0.995 0.838 1.0 0.976

1.0 1.0 0.701 1.0 0.824 1.0 0.910

Fig. 1. Comparison of σ-IFM accuracy vs. IPF method

BMS-WebView-1 BMS-WebView-2

support(%) |S| |Q′′| time(s) |S| |Q′′| time(s)

0.2 798 36506 137.553 3683 167688 10923.81

0.3 435 25530 7.157 1340 61083 5266.576

0.4 286 16605 1.037 676 30343 58.588

0.5 201 11498 0.605 408 17642 6.939

0.6 162 8732 0.406 257 11255 1.515

0.7 133 6260 0.234 187 8614 0.625

0.8 105 4226 0.143 138 6927 0.296

0.9 90 3260 0.104 113 6051 0.221

1 77 2633 0.085 81 4827 0.109

Fig. 2. Execution Times of σ-IFM

3. Dantzig, G.B., Thapa, M.N.: Linear Programming 2: Theory and Extensions. Springer Series

in Operations Research, Springer-Verlag, New York (2003)

4. Desaulniers, G., Desrosiers, J., Solomon, M.M. (eds.): Column Generation. Springer (2005)

5. Guo, Y., Tong, Y., Tang, S., Yang, D.: A fp-tree-based method for inverse frequent set mining.

BNCOD 2006, LNCS 4042 pp. 152–163 (2006)

6. Guzzo, A., Saccà, D., Serra, E.: An effective approach to inverse frequent set mining. In:

Proc. of the Int. IEEE Conf. on Data Mining (ICDM’09). pp. 806–811 (2009)

7. Han, J., Pei, J., Yi, Y.: Mining frequent patterns without candidate generation. In: Proc. Int.

ACM Conf. on Management of Data (SIGMOD’00). pp. 1–12 (2000)

8. KDDCUP2000: http://www.ecn.purdue.edu/kddcup

9. Mielikainen, T.: On inverse frequent set mining. In: Society, I.C. (ed.) Proc. of 2nd Workshop

on Privacy Preserving Data Mining (PPDM). pp. 18–23 (2003)

10. Wang, Y., Wu, X.: Approximate inverse frequent itemset mining: Privacy, complexity, and

approximation. In: ICDM. pp. 482–489 (2005)

11. Wu, X., Wu, Y., Wang, Y., Li, Y.: Privacy-aware market basket data set generation: An feasi-

ble approach for inverse frequent set mining. In: Proc. 5th SIAM ICDM (2005)

10

75

Eqorwvkpi"Ownvkfkogpukqpcn"QNCR"Fcvc"Ewdgu"qxgt"
Rtqdcdknkuvke"Tgncvkqpcn"Fcvc<"C"Fgeqorqukvkqp"Crrtqcej"

Cnhtgfq"Ew¦¦qetgc3."Fkokvtkqu"Iwpqrwnqu4."Ucxgtkq"Ocpvk5"
"

3"KECT/EPT"cpf"Wpkxgtukv{"qh"Ecncdtkc."Kvcn{"
4"Fgrv0"qh"Kphqtocvkeu"cpf"Vgngeqoowpkecvkqpu"

Wpkxgtukv{"qh"Cvjgpu."Itggeg"
5"FGKU"Fgrv0."Wpkxgtukv{"qh"Ecncdtkc."Kvcn{"

ew¦¦qetgcBuk0fgku0wpkecn0kv."fiBfk0wqc0it."uocpvkBfgku0wpkecn0kv"

Cduvtcev0"Hqewukpi"qp"pqxgn"fcvcdcug"crrnkecvkqp"uegpctkqu."yjgtg"fcvcugvu" ctkug"oqtg"
cpf" oqtg" kp" wpegtvckp" cpf" kortgekug" hqtocvu." kp" vjku" rcrgt" yg" rtqrqug" c" pqxgn"
htcogyqtm" hqt" ghhkekgpvn{" eqorwvkpi" ownvkfkogpukqpcn" QNCR" fcvc" ewdgu" qxgt"
rtqdcdknkuvke" fcvc." yjkej" ygnn/ecrvwtg" rtgxkqwu" mkpfu" qh" fcvc0" Ugxgtcn" oqfgnu" cpf"
cniqtkvjou"uwrrqtvgf"kp"qwt"rtqrqugf"htcogyqtm"ctg"hqtocnn{"rtgugpvgf"cpf"fguetkdgf"kp"
fgvcknu." dcugf" qp" ygnn/wpfgtuvqqf" vjgqtgvkecn" uvcvkuvkecn1rtqdcdknkuvke" vqqnu." yjkej"
eqpxgtig" vq" vjg" fghkpkvkqp" qh" vjg" uq/ecnngf" rtqdcdknkuvke" QNCR" fcvc" ewdgu." vjg" oquv"
rtqokpgpv"tguwnv"qh"qwt"tgugctej0"

3"""Kpvtqfwevkqp"

Ownvkfkogpukqpcn"QNCR"fcvc" ewdgu"]37_" ctg"rqygthwn" vqqnu" cnnqykpi"wu" vq" uwrrqtv" tkej" cpf"
ownvk/rgturgevkxg"cpcn{uku"qxgt"nctig"coqwpvu"qh"fcvc"ugvu."dcugf"qp"c"ownvk/fkogpukqpcn"cpf"
ownvk/tguqnwvkqp"xkukqp"qh"fcvc0"Ghhkekgpvn{"eqorwvkpi"QNCR"fcvc"ewdgu"qxgt"vjg"kprwv"fcvcugv"
*g0i0." tgncvkqpcn" fcvcdcugu+" ku" c" ygnn/mpqyp" tgugctej" ejcnngpig" vjcv" jcu" dggp" fggrn{"
kpxguvkicvgf"fwtkpi"ncuv"fgecfgu"*g0i0."]39.3_+."ykvj"cnvgtpcvg"hqtvwpg0"Rtqdcdknkuvke"fcvc"*g0i0."
]5.:.34.35.3;.6.4.42_+" ctg" dgeqokpi" qpg" qh" vjg" oquv" cvvtcevkpi" mkpfu" qh" fcvc" hqt" fcvcdcug"
tgugctejgtu."fwg"vq"vjg"hcev"uwej"c"hqtocv1hqtocnkuo"rgthgevn{"ecrvwtgu"vyq"pqxgn."kpvgtguvkpi"
encuugu" qh" fcvcugvu" vjcv" xgt{" qhvgp" qeewt" kp" oqfgtp" fcvcdcug" crrnkecvkqp" uegpctkqu." pcogn{"
wpegtvckp" cpf" kortgekug" fcvc0" Wpegtvckp" cpf" kortgekug" fcvc" ctg" kpfggf" xgt{" rqrwnct." cu"
wpegtvckpv{"cpf" kortgekukqp"chhgev" vjg" ucog"rtqeguugu" fgxqvgf" vq"eqnngevkpi"fcvc" htqo" kprwv"
fcvc" uqwtegu" cpf" ocmg" wug" qh" vjgug" fcvc" kp" qtfgt" vq" rqrwncvg" vjg" vctigv" fcvcdcug." nkmg." hqt"
kpuvcpeg."kp"ugpuqt{"fcvcdcugu"]7_0"

Ukpeg" rtqdcdknkuvke" fcvcugvu" ctg" dgeqokpi" xgt{" rqrwnct." kv" ku" pcvwtcn" cpf" tgcuqpcdng" vq"
fghkpg"cpf"kpvtqfweg"vjg"rtqdngo"qh"ghhkekgpvn{"eqorwvkpi"QNCR"fcvc"ewdgu"qxgt"rtqdcdknkuvke"
fcvc." yjkej" jcu" dggp" hktuvn{" rtqrqugf" kp"]7_0" Dcukecnn{."]7_" kpvtqfwegu" vjg" rquukdng/yqtnf"
ugocpvkeu" eqpegrv." ceeqtfkpi" vq" yjkej" c" rtqdcdknkuvke" fcvcdcug"&2" ecp" dg" tgrtgugpvgf" cpf"
rtqeguugf" *g0i0." fwtkpi" swgt{" gxcnwcvkqp+" xkc" cfokvvkpi" vjg" gzkuvgpeg" qh" fkhhgtgpv" rquukdng/
yqtnf" fcvcdcugu"&2┸Ł0" Gcej" rquukdng/yqtnf" fcvcdcug"&2┸Ł" ku" qdvckpgf" htqo"&2" xkc" cuukipkpi"
rquukdng" xcnwgu" vq" rtqdcdknkuvke" cvvtkdwvgu" kp" &2." qp" vjg" dcuku" qh" eqphkfgpeg" kpvgtxcnu" cpf"
rtqdcdknkvkgu" cuuqekcvgf" vq" vjgug" cvvtkdwvgu0" Kv" yqwnf" dg" engct" gpqwij" vq" pqvkeg" vjcv" vjku"
crrtqcej"vcmgu"vjg"tkum"qh"igpgtcvkpi"cp"gzrqpgpvkcn"pwodgt"qh"rquukdng/yqtnf"fcvcdcugu"*k0g0."倦 蝦 結】帖鍋】." uwej" vjcv" ̃&2̃" fgpqvgu" vjg" ectfkpcnkv{" qh" &2+." gxgp" dgecwug" c" eqodkpcvqt{"
fgrgpfgpeg"coqpi"rtqdcdknkuvke"cvvtkdwvgu"qh"&2"gzkuvu0"Dcugf"qp"vjku"oqfgn"hqt"tgrtgugpvkpi"
rtqdcdknkuvke"fcvcdcugu."]7_" hkpcnn{" tgvtkgxgu" vjg"qwvrwv"fcvc"ewdg"qxgt"&2."fgpqvgf"d{"%ゅ&2ょ."

xkc"guvkocvkpi"ciitgicvgu"*vq"dg"uvqtgf"ykvjkp"fcvc"ewdg"egnnu"qh"%ゅ&2ょ+"htqo"vjg"wpkxgtug"qh"
rquukdng/yqtnf"fcvcdcugu"fgtkxgf"htqo"&2"d{"ogcpu"qh"rtqdcdknkuvke1uvcvkuvkecn"guvkocvkqp"vqqnu"
cpf"vgejpkswgu"]3:_"cpf"xkc"fgvgevkpi"ugxgtcn"rtqdcdknkv{/kpurktgf"eqpukuvgpe{"eqpfkvkqpu"]7_0"

Yjkng"vjgtg"ku"c"ykfg"cpf"tkej"nkvgtcvwtg"qp"vjg"kuuwg"qh"ghhkekgpvn{"rtqeguukpi"rtqdcdknkuvke"
fcvcdcugu" *g0i0."]4.5.6.:.34.35.3;.42_+."fgurkvg" vjg" tgngxcpeg"qh"QNCR"crrnkecvkqpu" hqt"pgzv/
igpgtcvkqp"Fcvc"Yctgjqwukpi" *FY+"cpf"Dwukpguu"Kpvgnnkigpeg"*DK+"u{uvgou"xgt{"hgy"rcrgtu"
cfftguu"cv"pqy"vjg"{gv/kpvgtguvkpi"rtqdngo"qh"eqorwvkpi"QNCR"fcvc"ewdgu"qxgt"rtqdcdknkuvke"
fcvc"*g0i0."]7.8.9_+0"Eqpvtct{"vq"vjku"cevwcn"vtgpf."kv"ku"pcvwtcn"vq"hqtgugg"vjcv"vjku"rtqdngo"yknn"
rnc{"oqtg"cpf"oqtg"c"ngcfkpi"tqng"kp"vjg"eqpvgzv"qh"FY"cpf"DK"u{uvgou."fwg"vq"vjg"qdxkqwu"
rqrwnctkv{" qh" wpegtvckp" cpf" kortgekug" fcvcugvu" *g0i0." gpxktqpogpvcn" ugpuqt" pgvyqtmu." fcvc"
uvtgco" ocpcigogpv" u{uvgou." cncto" cpf" uwtxgknncpeg" u{uvgou." THKF/dcugf" crrnkecvkqpu."
uwrrn{/ejckp"ocpcigogpv"u{uvgou+0"

Kpurktgf"d{" vjgug"oqvkxcvkqpu." uvctvkpi" htqo" nkokvcvkqpu"qh"]7_" kp" vjku"rcrgt"yg"rtqrqug"c"
htcogyqtm" hqt" ghhkekgpvn{" eqorwvkpi" ownvkfkogpukqpcn" QNCR" fcvc" ewdgu" qxgt" rtqdcdknkuvke"
fcvc." yjkej" yg" pcog" cu" rtqdcdknkuvke" fcvc" ewdgu0" Vjg" oquv" fkuvkpevkxg" eqpvtkdwvkqp" qh" qwt"
tgugctej"ku"tgrtgugpvgf"d{"c"ogcpkpihwn"fgeqorqukvkqp"crrtqcej"vjcv"cnnqyu"wu"vq"gzvtcev"vjg"
uq/ecnngf"fgeqorqugf"rtqdcdknkuvke"fcvcdcug"htqo"vjg"kprwv"rtqdcdknkuvke"fcvcdcug"cv"vjg"equv"
qh"c"uwd/nkpgct"eqorngzkv{"Î" vjg"fgeqorqugf"rtqdcdknkuvke"fcvcdcug" ku" vjgp"wugf" vq"eqorwvg"
vjg"hkpcn"rtqdcdknkuvke"fcvc"ewdg"dcugf"qp"eqpxgpvkqpcn"ownvkfkogpukqpcn"ciitgicvkqp"ogvjqfu"
]37_0"

4"""Oqfgnkpi"Rtqdcdknkuvke"QNCR"Fcvc"Ewdgu"

Ikxgp"c"rtqdcdknkuvke"fcvcdcug"&2"oqfgngf"kp"vgtou"qh"c"eqnngevkqp"qh"rtqdcdknkuvke"tgncvkqpu"4Æ."
k0g0" 経牒 噺 岶迎待┸ 迎怠┸ ┼ ┸ 迎】帖鍋】貸怠岼." vjg" rtqdngo" yg" kpxguvkicvg" kp" vjku" tgugctej" eqpukuvu" kp"
ghhgevkxgn{" cpf" ghhkekgpvn{" eqorwvkpi" c" fcvc" ewdg" qxgt"&2."%ゅ&2ょ." ikxgp" cp" kprwv"fcvc" ewdg"
uejgoc"]43_"90"Ceeqtfkpi"vq"vjg"pcvwtg"qh"&2."yg"rtqrgtn{"fghkpg"%ゅ&2ょ"cu"c"rtqdcdknkuvke"fcvc"
ewdg" *yg" fgvckn" vjku" pqxgn" fghkpkvkqp" pgzv+0" Pqy." hqewu" vjg" cvvgpvkqp" qp" vjg" encuu" qh"
rtqdcdknkuvke"fcvcdcugu"eqpukfgtgf"kp"qwt"tgugctej."yjkej"ku"kpurktgf"htqo"hwpfcogpvcn"yqtmu"
kp"]6.4.42_0" Ikxgp" c" rtqdcdknkuvke" tgncvkqp" 4Æ" kp" &2" oqfgngf" kp" vgtou" qh" c" eqnngevkqp" qh"
cvvtkdwvgu." k0g0" 迎沈 噺 岶畦沈┸待┸ 畦沈┸怠┸ ┼ ┸ 畦沈┸】眺日】貸怠岼." uwej" vjcv" 畦沈┸賃乳 ." ykvj" Łª" kp" }2." 3." È." ̃4Æ̃" /" 3’."
fgpqvgu" cp" cvvtkdwvg" kp"4Æ." vyq"fkuvkpev" uwd/ugv" qh" cvvtkdwvgu" kp"4Æ" ecp"dg" kfgpvkhkgf0"Vjg" hktuv"
qpg."fgpqvgf"d{"迎沈帳 "Ł"4Æ."uwej"vjcv"迎沈帳 噺 岶畦沈┸賃轍帳 ┸ 畦沈┸賃迭帳 ┸ ┼ ┸ 畦沈┸賃嵳馴日曇嵳貼迭帳 岼."ykvj"Łª"kp"}2."3."È."̃4Æ̃"/"

3’."uvqtgu"vjg"uwd/ugv"qh"gzcev"cvvtkdwvgu"kp"4Æ."k0g0"cvvtkdwvgu"kp"4Æ"yjqug"xcnwgu"ctg"gzcev0"Vjg"
ugeqpf"qpg."fgpqvgf"d{"迎沈牒"Ł"4Æ." uwej" vjcv"迎沈牒 噺 岶畦沈┸賃轍牒 ┸ 畦沈┸賃迭牒 ┸ ┼ ┸ 畦沈┸賃嵳馴日鍋嵳貼迭牒 岼."ykvj"Łª" kp"}2."3."
È."̃4Æ̃"/"3’"uvqtgu"vjg"uwd/ugv"qh"rtqdcdknkuvke"cvvtkdwvgu"kp"4Æ."k0g0"cvvtkdwvgu"kp"4Æ"yjqug"xcnwgu"
ctg" rtqdcdknkuvke0" Qdxkqwun{." 迎沈帳 堪 迎沈牒 噺 叶0" Cp" gzcev" cvvtkdwvg" 畦沈┸賃乳帳 " kp" 迎沈帳 " ku" fghkpgf" cu"
hqnnqyu<"畦沈┸賃乳帳 噺 峽撃沈┸賃乳帳 嵳撃沈┸賃乳帳 樺 醇沈┸賃乳帳 峺."yjgtg"撃沈┸賃乳帳 "fgpqvgu"cp"gzcev"xcnwg"qh"畦沈┸賃乳帳 "cpf"醇沈┸賃乳帳 "vjg"
fqockp"qh"畦沈┸賃乳帳 ."tgurgevkxgn{0"C"rtqdcdknkuvke"cvvtkdwvg"畦沈┸賃乳牒 "kp"迎沈牒"ku"fghkpgf"cu"hqnnqyu<"畦沈┸賃乳牒 噺 峽極岷撃沈┸賃乳┸尿日韮牒 ┸ 撃沈┸賃乳┸尿尼猫牒 峅┸ 喧沈┸賃乳玉 嵳撃沈┸賃乳┸尿日韮牒 樺 醇沈┸賃乳牒 ┸ 撃沈┸賃乳┸尿尼猫牒 樺 醇沈┸賃乳牒 ┸撃沈┸賃乳┸尿日韮牒 隼 撃沈┸賃乳┸尿尼猫牒 ┸ ど 判 喧沈┸賃乳 判 な峺" *3+"

 77

uwej" vjcv<" *k+" 撃沈┸賃乳┸尿日韮牒 " cpf" 撃沈┸賃乳┸尿尼猫牒 " fgpqvg" rtqdcdknkuvke" xcnwgu" qh" 畦沈┸賃乳牒 ." tgurgevkxgn{=" *kk+"岷撃沈┸賃乳┸尿日韮牒 ┸ 撃沈┸賃乳┸尿尼猫牒 峅" fgpqvgu" vjg" eqphkfgpeg" kpvgtxcn" cuuqekcvgf" vq"畦沈┸賃乳牒 =" *kkk+"喧沈┸賃乳" fgpqvgu" vjg"
rtqdcdknkv{" cuuqekcvgf" vq" 岷撃沈┸賃乳┸尿日韮牒 ┸ 撃沈┸賃乳┸尿尼猫牒 峅=" *kx+" 醇沈┸賃乳牒 " fgpqvgu" vjg" fqockp" qh" 畦沈┸賃乳牒 0" Vjg"
ugocpvkeu"qh"vjku"eqphkfgpeg/kpvgtxcn/dcugf"oqfgn"uvcvgu"vjcv"vjg"rquukdng"xcnwg"qh"畦沈┸賃乳牒 "tcpigu"
dgvyggp"撃沈┸賃乳┸尿日韮牒 " cpf"撃沈┸賃乳┸尿尼猫牒 " ykvj" rtqdcdknkv{" 喧沈┸賃乳 0" Cnuq." c" ncy" fguetkdkpi" vjg" rtqdcdknkv{"
fkuvtkdwvkqp" ceeqtfkpi" vq" yjkej" rquukdng" xcnwgu" qh" 畦沈┸賃乳牒 " xct{" qxgt" vjg" kpvgtxcn"岷撃沈┸賃乳┸尿日韮牒 ┸ 撃沈┸賃乳┸尿尼猫牒 峅"ku"cuuwogf0"Ykvjqwv"nquu"qh"igpgtcnkv{."vjg"Wpkhqto"fkuvtkdwvkqp"];_"ku"xgt{"
qhvgp" vcmgp" cu" tghgtgpeg0" Vjg" Wpkhqto" fkuvtkdwvkqp" uvcvgu" vjcv" *rquukdng+" xcnwgu" kp"岷撃沈┸賃乳┸尿日韮牒 ┸ 撃沈┸賃乳┸尿尼猫牒 峅"jcxg"cnn"vjg"ucog"rtqdcdknkv{"qh"dgkpi"vjg"gzcev"xcnwg"qh"畦沈┸賃乳牒 ."fgpqvgf"d{"撃沈┸賃乳."cevwcnn{."k0g0<"
鶏 岾畦沈┸賃乳牒 噺 撃沈┸賃乳峇 噺 "鶏 岾畦沈┸賃乳甜迭牒 噺 撃沈┸賃乳峇 噺 喧沈┻賃乳嵳撃沈┸賃乳┸尿尼猫牒 伐 撃沈┸賃乳┸尿日韮牒 嵳"褐"倦珍┸ 倦珍袋怠┺"倦珍 塙 倦珍袋怠┸ 倦珍 樺 岶ど┸な┸ ┼ ┸ 】迎沈牒】 伐 な岼┸ 倦珍袋怠 樺 岶ど┸な┸ ┼ ┸ 】迎沈牒】 伐 な岼"

*4+"

Fgurkvg" vjg" rqrwnctkv{" qh" vjg" Wpkhqto" fkuvtkdwvkqp." vjg" eqphkfgpeg/kpvgtxcn/dcugf" oqfgn"
cdqxg"ku"rtqpg"vq"kpeqtrqtcvg"cp{"qvjgt"mkpf"qh"uvcvg/qh/vjg/ctv"rtqdcdknkv{"fkuvtkdwvkqp"]3:_0"

Ikxgp"c"fcvc"ewdg"%."vjg"fcvc"ewdg"uejgoc"qh"%."9."ku"fghkpgf"cu"vjg"vwrng<"激 噺 極経┸茎┸警玉."
uwej"vjcv"]37_<"*k+"&"?"}¸ね."¸の."È."¸】&】┽な’"fgpqvgu"vjg"ugv"qh"fkogpukqpu"qh"%="*kk+"*"?"}̶ね."̶の."
È."̶】*】┽な’" fgpqvgu" vjg" ugv" qh" jkgtctejkgu" qh"%." dgkpi"̶Æ" kp"*" vjg" jkgtctej{" cuuqekcvgf" vq" vjg"
fkogpukqp"¸Æ" kp"&="*kkk+"/"fgpqvgu"vjg"ugv"qh"ogcuwtgu"qh"%0"Cu"fktgevn{"tgncvgf"vq"fcvc"ewdgu"
ogcuwtgu." c" USN" ciitgicvkqp" qrgtcvqt" *g0i0." SUM."COUNT."AVG+" ku" ugv" cu" vjg" dcugnkpg"
qrgtcvkqp" qh" vjg" ciitgicvkqp" rtqeguu" igpgtcvkpi" fcvc" ewdg" egnnu"]37_0" Ykvjqwv" nquu" qh"
igpgtcnkv{."kp"vjku"rcrgt"yg"eqpukfgt"cu"tghgtgpeg"vjg"encuu"qh"SUM/dcugf"fcvc"ewdgu."yjkej"ku"
igpgtcn"gpqwij"vq"ecrvwtg"c"ykfg"urgevtwo"qh"tgcn/nkhg"FY"cpf"DK"crrnkecvkqpu"]33_0"Qp"vjg"
qvjgt"jcpf."qvjgt"USN"ciitgicvkqp"qrgtcvqtu"ecp"dg"gcukn{"fgtkxgf"htqo"vjku"dcugnkpg"qpg"*g0i0."
COUNT"ecp"dg"fgtkxgf"htqo"SUM"eqodkpgf"ykvj"AVG+0""Kp"cffkvkqp"vq"vjku."cu"tgictfu"vjg"
urgekhke" kp/ogoqt{"fcvc" tgrtgugpvcvkqp."yg"tghgt" vq"OQNCR"fcvc"ewdgu"]38_." k0g0"fcvc"ewdgu"
tgrtgugpvgf"kp"vgtou"qh"ownvkfkogpukqpcn"cttc{u."c"igpgtcn"hqtocv"vq"yjkej"cp{"cnvgtpcvkxg"kp/
ogoqt{" fcvc" ewdg" tgrtgugpvcvkqp" vgejpkswg" *g0i0." TQNCR." JQNCR+" oc{" eqpxgtig" gcukn{"
]38_0"Cnuq."hqt"vjg"ucmg"qh"ukornkekv{."yg"jgtgd{"cuuwog"qh"fgcnkpi"ykvj"ukping/ogcuwtg"fcvc"
ewdgu." k0g0"/"?"}Œね’."cpf"fkuectf" vjg"ecug"qh"ownvkrng/ogcuwtg"fcvc"ewdgu"]36_." k0g0"/" uwej"
vjcv" ̃/̃"@"3."cu"vjg"ncvvgt"ecug"ecp"dg"uvtckijvhqtyctfn{"qdvckpgf"xkc"gzvgpfkpi"cevwcn"oqfgnu"
cpf"cniqtkvjou"rtqxkfgf"hqt"ukping/ogcuwtg"fcvc"ewdgu0"Fkogpukqpu"¸ね."¸の."È."¸】&】┽な"kp"&"cpf"
vjg"ogcuwtg"Œね" kp"/" ctg" fghkpgf" htqo"cvvtkdwvgu" kp"&2."ogcpkpi" vjcv" vjg"FY"cfokpkuvtcvqt"
cuukipu"vjg"tqng"qh"fkogpukqp"vq"c"rctvkvkqp"qh"cvvtkdwvgu"kp"&2"yjgtgcu"jg1ujg"cuukipu"vjg"tqng"
qh"ogcuwtg" vq"qpg"cvvtkdwvg" kp"&20"Vjku" ku"yjcv" ku"eqooqpn{" kpvgpfgf"cu"c"ownvkfkogpukqpcn"
cduvtcevkqp"qh"tgncvkqpcn"fcvc"]37_0"Hqt"vjg"ucmg"qh"ukornkekv{."kp"qwt"tgugctej"yg"cuuwog"vjcv"
vjg"ogcuwtg"Œね"ku"ejqugp"coqpi"gzcev"cvvtkdwvgu"kp"&2."k0g0"Œね"Œ"迎沈帳 "Ł"4Æ."uwej"vjcv"4Æ"Œ"&20"
Eqpvtct{"vq"vjg"eqpuvtckpv"qp"vjg"ogcuwtg"Œね."fkogpukqpu"kp"&"ecp"kpuvgcf"dg"ejqugp"coqpi"
dqvj"gzcev"cpf"rtqdcdknkuvke"cvvtkdwvgu"kp"&2."k0g0"¸Æ"Œ"迎沈帳 "Ł"4Æ"qt"¸Æ"Œ"迎沈牒"Ł"4Æ."uwej"vjcv"4Æ"Œ"
&20"

Ikxgp" c" rtqdcdknkuvke" fcvc" ewdg" %." gcej" egnn" qh" %." fgpqvgf" d{" ̊*Æね." Æの." È." Æ】&】┽な+" ?"
%]Æね_]Æの_È]Æ】&】┽な_."uwej"vjcv"Æね"Œ"}2."3."È."̃¸ね̃"/"3’."Æの"Œ"}2."3."È."̃¸の̃"/"3’."È."Æ】&】┽な"Œ"}2."3."
È." ̃¸】&】┽な̃" /" 3’." ku" rtqdcdknkuvke" kp" pcvwtg." ceeqtfkpi" vq" &20" Hqtocnn{." ̊*Æね." Æの." È." Æ】&】┽な+" ?"

78

極岷稽陳沈津頂岫沈轍┻┻沈】呑】貼迭岻"┸ 稽陳銚掴頂岫沈轍┻┻沈】呑】貼迭岻"峅┸ 喧頂岫沈轍┻┻沈】呑】貼迭岻玉." uwej" vjcv<" *k+" 岷稽陳沈津頂岫沈轍┻┻沈】呑】貼迭岻"┸ 稽陳銚掴頂岫沈轍┻┻沈】呑】貼迭岻"峅" fgpqvgu" vjg"
eqphkfgpeg" kpvgtxcn" *qxgt" ciitgicvg" xcnwgu+" cuuqekcvgf" vq" ̊*Æね." Æの." È." Æ】&】┽な+." ykvj"稽陳沈津頂岫沈轍┻┻沈】呑】貼迭岻" "隼 "稽陳銚掴頂岫沈轍┻┻沈】呑】貼迭岻"=" *kk+" 喧頂岫沈轍┻┻沈】呑】貼迭岻" fgpqvgu" vjg" rtqdcdknkv{" cuuqekcvgf" vq"岷稽陳沈津頂岫沈轍┻┻沈】呑】貼迭岻"┸ 稽陳銚掴頂岫沈轍┻┻沈】呑】貼迭岻"峅."ykvj"ど 判 喧頂岫沈轍┻┻沈】呑】貼迭岻 判 な0"Cu"c"hktuv"tguwnv." kv"ujqwnf"dg"pqvgf"vjcv"
qwt"pqvkqp"qh"rtqdcdknkuvke"fcvc"ewdg"ku"pqxgn"wpfgt"vjg"encuukecn"pqvkqp"rtqrqugf"kp"]7_."yjkej"
ckou"cv"qwvrwvvkpi"gzcev"fcvc"ewdgu0"

5"""Eqorwvkpi"Rtqdcdknkuvke"QNCR"Fcvc"Ewdgu"

503"""Rtgnkokpctkgu"

Kp" vjku" Ugevkqp." yg" rtqxkfg" oqfgnu" cpf" cniqtkvjou" hqt" eqorwvkpi" rtqdcdknkuvke" QNCR" fcvc"
ewdgu"htqo"rtqdcdknkuvke"fcvcdcugu."cu"qpg"qh"vjg"oquv"rtqokpgpv"eqpvtkdwvkqp"qh"qwt"tgugctej0"
Ikxgp" c" rtqdcdknkuvke" fcvcdcug" 経牒 噺 岶迎待┸ 迎怠┸ ┼ ┸ 迎】帖鍋】貸怠岼." cpf" c" fcvc" ewdg" uejgoc" 激 噺極経┸茎┸警玉."vjg"rtqdcdknkuvke"fcvc"ewdg"%ゅ&2ょ"qxgt"&2"ku"fghkpgf"d{"ogcpu"qh"c"ownvkfkogpukqpcn"
ocrrkpi" uejgog" 庶帖鍋蝦寵岫帖鍋岻 噺" 極庶帖 ┸ 庶張 ┸ 庶暢玉." uwej" vjcv<" *k+" 庶帖┺ 版迎待┸ ┼ ┸ 迎】帖鍋】貸怠"繁 蝦岶穴待┸ ┼ ┸ 穴】帖】貸怠岼"tgrtgugpvu"c"ocrrkpi"*uwd/+uejgog"dgvyggp"cvvtkdwvgu"kp"&2"cpf"fkogpukqpu"kp"
&"Œ"9."uwej"vjcv"畦沈┸賃乳 蝦 穴朕如"fgpqvgu"c"ocrrkpi"dgvyggp"cp"cvvtkdwvg"畦沈┸賃乳 "qh"c"tgncvkqp"迎沈"kp"
&2"cpf"c"fkogpukqp"穴朕如" kp"&."ykvj"Łª" kp"}2."3."È." ̃4Æ̃"/"3’"cpf"̶Ø" kp"}2."3."È." ̃&̃"/"3’=" *kk+"庶張┺ 版迎待┸ ┼ ┸ 迎】帖鍋】貸怠"繁 蝦 岶月待┸ ┼ ┸ 月】張】貸怠岼"tgrtgugpvu"c"ocrrkpi"*uwd/+uejgog"dgvyggp"cvvtkdwvgu"
kp"&2"cpf"jkgtctejkgu"kp"*"Œ"9."uwej"vjcv"畦沈┸賃乳 蝦 月塚尿 "fgpqvgu"c"ocrrkpi"dgvyggp"cp"cvvtkdwvg"畦沈┸賃乳 "qh"c"tgncvkqp"迎沈"kp"&2"cpf"c"jkgtctej{"月塚尿"kp"*."ykvj"Łª"kp"}2."3."È."̃4Æ̃"/"3’"cpf"©Œ"kp"}2."
3." È." ̃*̃" /" 3’=" *kkk+" 庶暢┺ 版迎待┸ ┼ ┸ 迎】帖鍋】貸怠"繁 蝦 岶兼待岼" tgrtgugpvu" c" ocrrkpi" *uwd/+uejgog"
dgvyggp"cp"cvvtkdwvg"畦沈┸賃乳"qh"c"tgncvkqp"迎沈"kp"&2"cpf"vjg"ogcuwtg"Œね"kp"/"Œ"9"*htqo"Ugev0"4."
tgecnn" vjcv" ̃/̃" ?" 3+." fgpqvgf" d{"畦沈┸賃乳 蝦 兼待." ykvj"Łª" kp" }2." 3."È." ̃4Æ̃"/" 3’0" Hqt" vjg" ucmg" qh"
ukornkekv{."kp"vjku"tgugctej"yg"kpxguvkicvg"vjg"ecug"qh"eqorwvkpi"rtqdcdknkuvke"fcvc"ewdgu"uwej"
vjcv"庶張 噺 叶."yjkej"fgvgtokpgu"vjg"urgekcn"ecug"qh"fcvc"ewdgu"ykvjqwv"jkgtctejkgu0"Kv"ujqwnf"dg"
pqvgf" vjcv" uwej" fcvc" ewdgu" ctg" igpgtcn" gpqwij" vq" ecrvwtg" c" ykfg" hcokn{" qh" tgcn/nkhg"
crrnkecvkqpu." cu" engctn{" jkijnkijvgf" kp"]32_0" Qp" vjg" qvjgt" jcpf." oqfgnu" cpf" cniqtkvjou"
rtgugpvgf" kp" qwt" rcrgt" ecp" dg" gcukn{" gzvgpfgf" cu" vq" fgcn" ykvj" oqtg" ukipkhkecpv" jkgtctej{/
gswkrrgf"fcvc"ewdgu0"

Dghqtg"rtgugpvkpi"qwt"rtqrqugf"crrtqcej"hqt"eqorwvkpi"rtqdcdknkuvke"fcvc"ewdgu."yg"pggf"
vq"tgecnn"c"ygnn/mpqyp"eqpegrv"kp"Fcvc"Okpkpi"*FO+."k0g0"fkuetgvk¦cvkqp"qh"tgncvkqpcn"fcvcdcug"
cvvtkdwvgu"*g0i0."]38_+0"Ikxgp"c"fcvcdcug"&"cpf"cp"cvvtkdwvg"畦沈┸賃乳 "qh"c"tgncvkqp"4Æ"kp"&."uwej"vjcv"
Łª" kp"}2."3."È." ̃4Æ̃"/"3’."jcxkpi"醇沈┸賃乳 "cu"fqockp."vjg"fkuetgvk¦gf"fqockp"qh"畦沈┸賃乳."fgpqvgf"d{"鴫岫畦沈┸賃乳岻 噺 岶貢沈┸賃乳┸待┸ 貢沈┸賃乳┸怠┸ ┼ ┸ 貢沈┸賃乳┸】鴫岫凋日┸入乳岻】貸怠岼."ku"fghkpgf"cu"c"eqnngevkqp"qh"fkuetgvk¦gf"ogodgtu"貢沈┸賃乳┸朕"fgtkxgf"htqo"醇沈┸賃乳 "qp"vjg"dcuku"qh"vjg"pcvwtg"qh"畦沈┸賃乳 0"Kh"畦沈┸賃乳 "ku"pwogtke"kp"pcvwtg."vjgp"鴫岫畦沈┸賃乳岻" ku" eqorqugf" d{" cnn" vjg" pwogtke" ogodgtu" gzvtcevgf" htqo" vjg" fqockp" vjcv" ku" kp" c"
dklgevkxg"tgncvkqp"ykvj"醇沈┸賃乳"uvctvkpi"htqo"vjg"okpkowo"xcnwg"kp"畦沈┸賃乳 ."fgpqvgf"d{"撃沈┸賃乳暢彫朝."vq"vjg"
oczkowo"xcnwg"kp"畦沈┸賃乳 ."fgpqvgf"d{"撃沈┸賃乳暢凋諜 0"Hqt"kpuvcpeg."kh"畦沈┸賃乳 "uvqtgu"rqukvkxg"kpvgigt"xcnwgu."
vjgp"醇沈┸賃乳" ku" kp" c" dklgevkxg" tgncvkqp"ykvj" vjg" fqockp" qh" pcvwtcn" pwodgtu"桶" cpf"鴫 岾畦沈┸賃乳峇 噺

 79

"峽撃沈┸賃乳暢彫朝┸ 撃沈┸賃乳暢彫朝 髪 な┸┼ ┸ 撃沈┸賃乳暢凋諜 伐 な┸ 撃沈┸賃乳暢凋諜峺0" Kh" 畦沈┸賃乳 " ku" ecvgiqtkecn" kp" pcvwtg." vjgp" c" vqrqnqikecn"
qtfgtkpi"tgncvkqp"既"qxgt"ecvgiqtkecn"ogodgtu" kp"醇沈┸賃乳"owuv"dg" kpvtqfwegf0"Pqvg" vjcv." kp" vjg"
rtgxkqwu"gzcorng."既岩隼0"Qp"vjg"dcuku"qh"vjg"qtfgtkpi"fgvgtokpgf"d{"既."鴫岫畦沈┸賃乳岻"ku"eqorqugf"
d{"cnn"vjg"ecvgiqtkecn"ogodgtu"kp"醇沈┸賃乳"uvctvkpi"htqo"vjg"ÐokpkowoÑ"ogodgt"kp"畦沈┸賃乳 ."撃沈┸賃乳暢彫朝."
vq" vjg"ÐoczkowoÑ"ogodgt" kp"畦沈┸賃乳 ."撃沈┸賃乳暢凋諜 0" Hqt" kpuvcpeg." kh"畦沈┸賃乳 " uvqtgu" vjg"yggm"fc{u." vjgp"鴫 岾畦沈┸賃乳峇 噺 " 岶鯨憲券穴欠検┸警剣券穴欠検┸┼ ┸ 鯨欠建憲堅穴欠検岼"*g0i0."鯨憲券穴欠検" 既 警剣券穴欠検+0"

Qp"vjg"dcuku"qh"vjg"hqtocn"FO"htcogyqtm"cdqxg."ikxgp"c"fcvcdcug"&"cpf"cp"cvvtkdwvg"畦沈┸賃乳 "
qh" c" tgncvkqp"4Æ" kp"&." uwej" vjcv" Łª" kp" }2." 3."È." ̃4Æ̃"/" 3’." jcxkpi"醇沈┸賃乳" cu" fqockp" cpf"既" cu"
vqrqnqikecn"qtfgtkpi"tgncvkqp."yg"kpvtqfweg"vjg"hwpevkqp"nextM"vjcv"vcmgu"cu"kprwv"畦沈┸賃乳 ."醇沈┸賃乳."既"cpf"c"ogodgt"撃沈┸賃乳 "kp"鴫岫畦沈┸賃乳岻."cpf"tgvwtpu"cu"qwvrwv"vjg"ogodgt"撃沈┸賃乳聴腸寵"vjcv"ÐhqnnqyuÑ"撃沈┸賃乳 "
kp"鴫岫畦沈┸賃乳岻" dcugf"qp" vjg"qtfgtkpi" fgvgtokpgf"d{"既0" Hqtocnn{."nextM*畦沈┸賃乳."醇沈┸賃乳 .既."撃沈┸賃乳+"?"撃沈┸賃乳聴腸寵."uwej"vjcv"撃沈┸賃乳 既"撃沈┸賃乳聴腸寵0"

Pqy."hqewu"vjg"cvvgpvkqp"qp"jqy"vjg"rtqdcdknkuvke"fcvc"ewdg"%ゅ&2ょ"ku"hkpcnn{"eqorwvgf"htqo"
vjg" kprwv" rtqdcdknkuvke" fcvcdcug" &2" cpf" fcvc" ewdg" uejgoc" 90" Ngv" 経 噺 版穴待┸ ┼ ┸ 穴】帖】貸怠繁 噺峽畦沈┸賃轍帳 ┸ 畦沈┸賃迭帳 ┸ ┼ ┸ 畦沈┸賃】曇】貼迭帳 ┸ 畦沈┸賃】曇】牒 ┸ 畦沈┸賃】曇】甜迭牒 ┸ ┼ ┸ 畦沈┸賃】鍋】貼】曇】貼迭牒 峺"dg"vjg"ugv"qh"̃&̃"?"̃2̃"/" ̃'̃"fkogpukqpu"
kp"9." ugngevgf" htqo" ̃'̃" gzcev" cvvtkdwvgu" cpf" ̃2̃" rtqdcdknkuvke" cvvtkdwvgu" kp"&2" *ugg" Ugev0" 4+."
tgurgevkxgn{."uwej"vjcv"*k+"畦沈┸賃乳帳 ."ykvj"Łª"kp"}2."3."È."̃4Æ̃"/"3’."dgkpi"4Æ"c"tgncvkqp"kp"&2."fgpqvgu"
cp"gzcev"cvvtkdwvg"kp"&2"cpf"*kk+"畦沈┸賃乳牒 ."ykvj"Łª"kp"}2."3."È." ̃4Æ̃"/"3’."dgkpi"4Æ"c"tgncvkqp"kp"&2."
fgpqvgu"c"rtqdcdknkuvke"cvvtkdwvg"kp"&20"Ngv"&'"fgpqvg"vjg"ugv"qh"gzcev"cvvtkdwvgu1fkogpukqpu"kp"&"
cpf"&2"vjg"ugv"qh"rtqdcdknkuvke"cvvtkdwvgu1fkogpukqpu"kp"&."tgurgevkxgn{"*&'"̨"&2"?̋+0"Ngv"/"?"
}Œね’"?"}畦實沈┸賃乳帳 ’"dg"vjg"ukpingvqp"ogcuwtg"kp"9."uwej"vjcv"畦實沈┸賃乳帳 ."ykvj"Łª" kp"}2."3."È." ̃4Æ̃"/"3’."
dgkpi"4Æ" c" tgncvkqp" kp"&2." fgpqvgu" cp" gzcev" cvvtkdwvg" kp"&2" *htqo" Ugev0" 4." tgecnn" vjcv." kp" qwt"
rtqdcdknkuvke"fcvc"ewdg"oqfgn."ogcuwtgu"ctg"cnyc{u"ejqugp"coqpi"gzcev"cvvtkdwvgu"kp"&2+0"

504"""C"Fgeqorqukvkqp"Crrtqcej"hqt"Eqorwvkpi"Rtqdcdknkuvke"Fcvc"Ewdgu"

Vjg"crrtqcej"hqt"eqorwvkpi"%ゅ&2ょ"yg"rtqrqug"ku"vyq/uvgr"kp"pcvwtg0"Kp"vjg"hktuv"uvgr."vjg"uq/
ecnngf" fgeqorqugf" rtqdcdknkuvke" fcvcdcug." fgpqvgf" d{"経牒仇." ku" qdvckpgf" htqo"&2" fktgevn{" d{"
ogcpu" qh" cp" kppqxcvkxg" fgeqorqukvkqp" vgejpkswg" yjqug" ockp" cko" eqpukuvu" kp" dtgcmkpi"
eqphkfgpeg"kpvgtxcnu"qh"rtqdcdknkuvke"cvvtkdwvg"xcnwgu."yjkng"rtgugtxkpi"vjg"rtqdcdknkuvke"pcvwtg"
qh"vwrngu"kp"&20"Kp"vjg"ugeqpf"uvgr."%ゅ&2ょ"ku"hkpcnn{"eqorwvgf"htqo"経牒仇"dcugf"qp"eqpxgpvkqpcn"
ownvkfkogpukqpcn"ciitgicvkqp"ogvjqfu"]37_0"

Hktuv." yg" fguetkdg" vjg" rtqrqugf" crrtqcej" hqt" gzvtcevkpi"経牒仇" htqo"&20" Dcukecnn{." hqt" gcej"
fkogpukqpcn"cvvtkdwvg"畦沈┸賃乳 "qh"tgncvkqpu"4Æ"kp"&2."kp"vjg"hktuv"uvgr"yg"fgeqorqug"cvvtkdwvg"xcnwgu"撃沈┸賃乳"qh"畦沈┸賃乳 "kpvq"c"ugv"qh"fgeqorqugf"cvvtkdwvg"xcnwgu."fgpqvgf"d{"湿岫畦沈┸賃乳岻."fgrgpfkpi"qp"vjg"
pcvwtg"qh"畦沈┸賃乳" *gzcev."qt"rtqdcdknkuvke+" cpf"d{"gzrnqkvkpi" vjg"ownvkfkogpukqpcn" tgncvkqp"ykvj"
vjg" eqttgurqpfkpi" cvvtkdwvg" xcnwg"撃侮沈┸賃乳 " qh" vjg"ogcuwtg" cvvtkdwvg"畦實沈┸賃乳 " qh" tgncvkqpu" 4Æ" kp"&20"
Vjgp."fgeqorqugf"cvvtkdwvg"xcnwg"ugvu"湿岫畦沈┸賃乳岻"ctg"wugf"vq"rqrwncvg"経牒仇"cpf."hkpcnn{."%ゅ&2ょ"ku"
ciitgicvgf"htqo"経牒仇"fktgevn{."dcugf"qp"vjg"kprwv"fcvc"ewdg"uejgoc"90"Kv"ujqwnf"dg"pqvgf"vjcv."
fgrgpfkpi"qp"9." ukpeg"QNCR"fkogpukqpu"cpf"ogcuwtgu"ctg" v{rkecnn{"c"uwd/ugv"qh" vjg"yjqng"
cvvtkdwvg"ugv"qh"vjg"kprwv"fcvcdcug"]37_."ykvjqwv"nquu"qh"igpgtcnkv{"yg"qdugtxg"vjcv"】経牒仇】 隼 】経牒】0"
Vjku"pkeg"cogpkv{"eqpvtkdwvgu"vq"nqygt"vjg"urcvkcn"eqorngzkv{"qh"vjg"crrtqcej"yg"rtqrqug0"

80

Ngv<"*k+"穴沈 岩 畦沈┸賃乳帳 "dg"cp"gzcev"fkogpukqp"kp"9="*kk+"兼待 岩"畦實沈┸賃乳帳 "dg"vjg"gzcev"ogcuwtg"kp"9="

*kkk+"畦沈┸賃乳帳 岷ゾ峅 噺 "撃沈┸賃乳帳 " dg" cp" gzcev" xcnwg"qh"畦沈┸賃乳帳 " cv" rqukvkqp"ゾ." uwej" vjcv"ど" 判 ゾ 判 嵳醇沈┸賃乳帳 嵳 伐 な."
dgkpi"醇沈┸賃乳帳 "vjg"fqockp"qh"畦沈┸賃乳帳 ="*kx+"畦實沈┸賃乳帳 岷ゾ峅 噺 "撃侮沈┸賃乳帳 "dg"vjg"eqttgurqpfkpi"gzcev"xcnwg"qh"畦實沈┸賃乳帳 "

cv"rqukvkqp"ゾ."uwej"vjcv"ど" 判 ゾ 判 嵳醇撫 沈┸賃乳帳 嵳 伐 な."dgkpi"醇撫 沈┸賃乳帳 "vjg"fqockp"qh"畦實沈┸賃乳帳 0"Ukpeg"穴沈"ku"gzcev."
fgeqorqukpi" vjg" rckt" 極穴沈 ┸ 兼待玉 岩 極畦沈┸賃乳帳 ┸ 畦實沈┸賃乳帳 玉" igpgtcvgu" vjg" hqnnqykpi" ugv" qh" fgeqorqugf"
cvvtkdwvg"xcnwgu"湿 岾畦沈┸賃乳帳 峇 噺 峽極撃沈┸賃乳帳 ┸ な┸ 撃侮沈┸賃乳帳 玉峺0"Pqvg"vjcv" 嵳湿 岾畦沈┸賃乳帳 峇嵳 噺 な0"Eqpvtct{"vq"vjg"ncvvgt"
ecug."ngv<"*k+"穴沈 岩 畦沈┸賃乳牒 "dg"c"rtqdcdknkuvke"fkogpukqp"kp"9="*kk+"兼待 岩 "畦實沈┸賃乳帳 "dg"vjg"gzcev"ogcuwtg"

kp"9="*kkk+"畦沈┸賃乳牒 岷ゾ峅 噺 " 極峙撃沈┸賃乳┸尿日韮牒 ┸ 撃沈┸賃乳┸尿尼猫牒 峩 ┸ 喧沈┸賃乳玉"dg"c"rtqdcdknkuvke"xcnwg"qh"畦沈┸賃乳牒 "cv"rqukvkqp"ゾ."
uwej" vjcv" ど" 判 ゾ 判 嵳醇沈┸賃乳牒 嵳 伐 な." dgkpi"醇沈┸賃乳帳 " vjg" fqockp" qh"畦沈┸賃乳牒 =" *kx+"畦實沈┸賃乳帳 岷ゾ峅 噺 "撃侮沈┸賃乳帳 " dg" vjg"

eqttgurqpfkpi"gzcev"xcnwg"qh"畦實沈┸賃乳帳 "cv"rqukvkqp"ゾ."uwej"vjcv"ど" 判 ゾ 判 嵳醇撫 沈┸賃乳帳 嵳 伐 な."dgkpi"醇撫 沈┸賃乳帳 "vjg"
fqockp" qh" 畦實沈┸賃乳帳 0" Ukpeg" 穴沈" ku" rtqdcdknkuvke." fgeqorqukpi" vjg" rckt" 極穴沈 ┸ 兼待玉 岩 極畦沈┸賃乳牒 ┸ 畦實沈┸賃乳帳 玉"
igpgtcvgu"vjg"hqnnqykpi"ugv"qh"fgeqorqugf"cvvtkdwvg"xcnwgu<"

湿 岾畦沈┸賃乳牒 峇 噺 崔極撃沈┸賃乳┸尿日韮牒 ┸ 喧沈┸賃乳嵳撃沈┸賃乳┸尿尼猫牒 伐 撃沈┸賃乳┸尿日韮牒 嵳 ┸ 撃侮沈┸賃乳帳嵳撃沈┸賃乳┸尿尼猫牒 伐 撃沈┸賃乳┸尿日韮牒 嵳玉 ┸極º̋®ß/ 岾畦沈┸賃乳牒 ┸ 醇沈┸賃乳帳 ┸ 既┸ 撃沈┸賃乳┸尿日韮牒 峇 ┸ 喧沈┸賃乳嵳撃沈┸賃乳┸尿尼猫牒 伐 撃沈┸賃乳┸尿日韮牒 嵳 ┸撃侮沈┸賃乳帳嵳撃沈┸賃乳┸尿尼猫牒 伐 撃沈┸賃乳┸尿日韮牒 嵳玉 ┸┼ ┸極撃沈┸賃乳┸尿尼猫牒 ┸ 喧沈┸賃乳嵳撃沈┸賃乳┸尿尼猫牒 伐 撃沈┸賃乳┸尿日韮牒 嵳 ┸ 撃侮沈┸賃乳帳嵳撃沈┸賃乳┸尿尼猫牒 伐 撃沈┸賃乳┸尿日韮牒 嵳玉崢
"

*5+"

Pqvg" vjcv" 嵳湿 岾畦沈┸賃乳牒 峇嵳 噺 保鴫 岾畦沈┸賃乳牒 峇釆蝶日┸入乳┸尿日韮鍋 ┺蝶日┸入乳┸尿尼猫鍋 挽保." uwej" vjcv" 荊岷彫尿日韮┺彫尿尼猫峅" fgpqvgu" vjg" uwd/
ugv"qrgtcvqt"vjcv."ikxgp"c"ugv"+."gzvtcevu"htqo"+"vjg"uwd/ugv"urcppkpi"htqo"+ŒÆº"Œ"+"vq"+Œ̇®"Œ"+0"

Hqt"gcej"fkogpukqpcn"cvvtkdwvg"xcnwg"kp"9."vjg"fgeqorqukvkqp"vcum"korngogpvgf"d{"vjg"hktuv"
uvgr" qh" vjg" crrtqcej" yg" rtqrqug" igpgtcvgu" kp"経牒仇" c" fgeqorqugf" cvvtkdwvg" xcnwg" ugv" uvqtkpi"
vwrngu" qh" mkpf<" 極撃沈┸賃乳仇 ┸ 喧沈┸賃乳仇 ┸ 撃侮沈┸賃乳仇 玉0" D{" eqorqukpi" uwej" vwrngu" hqt" cnn" vjg" ̃&̃" fkogpukqpcn"
cvvtkdwvgu" kp" 9." yg" hkpcnn{" qdvckp" vjg" igpgtke" vwrng" uvqtgf" kp" 経牒仇" cu" hqnnqyu<"極極撃沈┸賃轍仇 ┸ 喧沈┸賃轍仇 ┸ 撃侮沈┸賃轍仇 玉┸ 極撃沈┸賃迭仇 ┸ 喧沈┸賃迭仇 ┸ 撃侮沈┸賃迭仇 玉┸ ┼ ┸ 極撃沈┸賃】呑】貼迭仇 ┸ 喧沈┸賃】呑】貼迭仇 ┸ 撃侮沈┸賃】呑】貼迭仇 玉玉0" Kv" ujqwnf" dg" pqvgf" vjcv."
ykvj" tgurgev" vq" vjg" qtkikpcn" fcvcdcug" uejgoc" qh"&2" cpf" vjg" kprwv" fcvc" ewdg" uejgoc"9." vjg"
*fcvcdcug+" uejgoc" qh" 経牒仇" qpn{" ockpvckpu" vjg" fkogpukqpcn" cvvtkdwvgu" ¸ね." ¸の." È." ¸】&】┽の" cpf"
fkuectfu" vjg" *ukpingvqp+" ogcuwtg" cvvtkdwvg" Œね0" Vjku" dgecwug" vjg" eqpvtkdwvkqp" qh" ogcuwtg"
cvvtkdwvg" xcnwgu" kp" &2" ku" ÐfkuvtkdwvgfÑ" cetquu" fgeqorqugf" cvvtkdwvg" xcnwgu" kp" 経牒仇0" Cickp."
ukoknctn{"vq"vjg"rtgxkqwu"eqpukfgtcvkqp"qp"vjg"ectfkpcnkv{"qh"経牒仇"ykvj"tgurgev"vq"vjg"ectfkpcnkv{"
qh"&2." kv" ujqwnf"dg"engct"gpqwij" vjcv" vjku" hwtvjgt"pkeg"cogpkv{"eqpvtkdwvgu" vq" nqygt" vjg" hkpcn"
urcvkcn"eqorngzkv{"qh"経牒仇0"

 81

Kp"vjg"ugeqpf"uvgr"qh"qwt"rtqrqugf"crrtqcej"hqt"eqorwvkpi"rtqdcdknkuvke"QNCR"fcvc"ewdgu."
vjg" hkpcn" fcvc" ewdg" %ゅ&2ょ" ku" ciitgicvgf" htqo" 経牒仇" fktgevn{" dcugf" qp" eqpxgpvkqpcn"
ownvkfkogpukqpcn" ciitgicvkqp" ogvjqfu"]37_" rnwu" vjg" pqxgnv{" tgrtgugpvgf" d{" cp" kppqxcvkxg"
vgejpkswg"hqt"eqorwvkpi"eqphkfgpeg"kpvgtxcnu"cpf"rtqdcdknkvkgu"qh"rtqdcdknkuvke"fcvc"ewdg"egnnu"
*ugg" Ugev0" 4+0" Hqt" vjg" ucmg" qh" ukornkekv{." ngv" wu" vq" fgpqvg" cu" 経 噺 版穴待┸ ┼ ┸ 穴】帖】貸怠繁 噺峽畦沈┸賃轍 ┸ 畦沈┸賃迭 ┸ ┼ ┸ 畦沈┸賃】呑】貼迭峺"vjg"ugv"qh"̃&̃"fkogpukqpu"kp"9."d{"tgoqxkpi"vjg"pqvcvkqp"cnnqykpi"wu"
vq" fkuvkpiwkuj" dgvyggp" gzcev" cpf" rtqdcdknkuvke" fkogpukqpcn" cvvtkdwvgu." fwg" vjg" hcev" vjcv." cu"
ujqyp"cdqxg."vjg"fgeqorqukvkqp"vcum"korngogpvgf"d{"vjg"hktuv"uvgr"qh"qwt"rtqrqugf"crrtqcej"
vtgcvu"dqvj"mkpfu"qh"cvvtkdwvgu"kp"c"wpkhkgf"ocppgt0"Gswcnn{."yg"eqwnf"tghgt"vq"vjg"uejgoc"qh"経牒仇"
cu<" 経牒仇 岾畦沈┸賃轍 ┸ 畦沈┸賃迭 ┸ ┼ ┸ 畦沈┸賃】呑】貼迭峇0" Ngv" 鴫岫畦沈┸賃轍岻┸ 鴫岫畦沈┸賃迭岻┸ ┼ ┸ 鴫岫畦沈┸賃】呑】貼迭岻" dg" vjg" fkuetgvk¦gf"
fqockpu" qh" 畦沈┸賃轍 ┸ 畦沈┸賃迭 ┸ ┼ ┸ 畦沈┸賃】呑】貼迭." tgurgevkxgn{0" Dcugf" qp" eqpxgpvkqpcn" ownvkfkogpukqpcn"
ciitgicvkqp" ogvjqfu"]37_." hqt" gcej" ownvkfkogpukqpcn" gpvt{"酸残 噺 岾貢沈┸賃轍┸朕轍 ┸ 貢沈┸賃迭┸朕迭 ┸ ┼ ┸ 貢沈┸賃】呑】貼迭┸朕】呑】貼迭峇" kp" vjg" ownvkfkogpukqpcn" urceg" fghkpgf" d{" vjg"
Ectvgukcp"rtqfwev"鴫岫畦沈┸賃轍岻 抜 鴫岫畦沈┸賃迭岻 抜 ┼抜 鴫岫畦沈┸賃】呑】貼迭岻."uwej"vjcv"̶ね"Œ"}2."3."È."̃鴫岫畦沈┸賃轍岻̃"
/"3’."̶の"Œ"}2."3."È."̃鴫岫畦沈┸賃迭岻̃"/"3’."È."̶】&】┽の"Œ"}2."3."È."̃鴫岫畦沈┸賃】呑】貼迭岻̃"/"3’."c"ugv"qh"cvvtkdwvg"
xcnwgu"ゆ岫酸残岻 噺 ゆ岾貢沈┸賃轍┸朕轍 ┸ 貢沈┸賃迭┸朕迭 ┸ ┼ ┸ 貢沈┸賃】呑】貼迭┸朕】呑】貼迭峇"ku"ugngevgf"htqo"経牒仇0"ゆ岫酸残岻"ku"fghkpgf"cu"
hqnnqyu<"ゆ岾貢沈┸賃轍┸朕轍 ┸ 貢沈┸賃迭┸朕迭 ┸ ┼ ┸ 貢沈┸賃】呑】貼迭┸朕】呑】貼迭峇 噺 版極撃沈┸賃轍仇 ┸ 喧沈┸賃轍仇 ┸ 撃侮沈┸賃轍仇 玉┸┼ ┸極撃沈┸賃】呑】貼迭仇 ┸ 喧沈┸賃】呑】貼迭仇 ┸ 撃侮沈┸賃】呑】貼迭仇 玉弁撃沈┸賃轍仇 噺 貢沈┸賃轍┸朕轍 巻┼巻"撃沈┸賃】呑】貼迭仇 噺 貢沈┸賃】呑】貼迭┸朕】呑】貼迭峺

"

*6+"

Hkpcnn{."ゆ岫酸残岻"ku"wugf"vq"eqorwvg"vjg"xcnwg"qh"vjg"rtqdcdknkuvke"fcvc"ewdg"egnn"系岫経牒岻岷酸残峅 噺極岷稽陳沈津酸残" ┸ 稽陳銚掴酸残" 峅┸ 喧酸残玉."yjqug"ejctcevgtkuvke"rctcogvgtu"稽陳沈津酸残" ."稽陳銚掴酸残" "cpf"喧酸残"ctg"fghkpgf"cu"hqnnqyu"
*htqo"Ugev0"4."tgecnn"vjcv"kp"qwt"tgugctej"yg"hqewu"qp"SUM/dcugf"fcvc"ewdgu+<"

稽陳沈津酸残" 噺 微 欠堅訣兼件券 峽撃侮沈┸賃乳仇 峺ゆ岫酸残岻┸ ど 判 倹 判 】経】 伐 な眉" *7+"

稽陳銚掴酸残" 噺 巍 布 撃侮沈┸賃乳仇】帖】貸怠
恥岫酸残岻┸珍退待 巓" *8+"

喧酸残 噺 敷 喧沈┸賃乳仇】帖】貸怠
恥岫酸残岻┸珍退待 " *9+"

82

6"""Eqpenwukqpu"cpf"Hwvwtg"Yqtm"

C"eqorngvg" htcogyqtm"hqt"eqorwvkpi"ownvkfkogpukqpcn"QNCR"fcvc"ewdgu"qxgt"rtqdcdknkuvke"
fcvc"jcu"dggp"rtqrqugf"kp"vjku"rcrgt0"Yg"cnuq"eqpfwevgf"c"ugv"qh"rtgnkokpct{"gzrgtkogpvu"qxgt"
u{pvjgvke"rtqdcdknkuvke"fcvcugvu"*pqv"ujqyp"kp"vjku"rcrgt"hqt"urceg"tgcuqpu+"vjcv"jcxg"eqphktogf"
vjg"hgcukdknkv{"qh"vjg"rtqrqugf"htcogyqtm0"Hwvwtg"yqtm"ku"ockpn{"hqewugf"qp"fgxgnqrkpi"cpf"
eqpfwevkpi" c" ykfg" gzrgtkogpvcn" ecorckip" qp" dqvj" u{pvjgvke" cpf" tgcn/nkhg" rtqdcdknkuvke"
fcvcugvu." cpf" qp" gzvgpfkpi" vjg" htcogyqtm" kp" qtfgt" vq" ocmg" kv" cdng" qh" fgcnkpi" ykvj" oqtg"
eqorngz"USN"ciitgicvkqp"qrgtcvqtu"dg{qpf"vjg"ukorng"qpgu"eqpukfgtgf"kp"vjg"cevwcn"tgugctej"
*g0i0."SUM."COUNT+"cpf"fqockp"eqpuvtckpvu"qxgt"fcvcugv"cvvtkdwvgu"nkmg"vjqug"eqpukfgtgf"kp"
]9_0"

Tghgtgpegu"
]3_"Cictycn."U0."Citcycn."T0."Fgujrcpfg."R0."Iwrvc."C0."Pcwijvqp."L0H0."Tcocmtkujpcp."T0."Uctcycik."U0<"Qp"

vjg"Eqorwvcvkqp"qh"Ownvkfkogpukqpcn"Ciitgicvgu0"Kp<"Rtqeggfkpiu"qh"XNFD"3;;8"Kpv0"Eqph0"*3;;8+"
]4_"Citcycn."R0."Dgplgnnqwp."Q0."Uctoc."C0F0."Jc{yqtvj."E0."Pcdct."U0W0."Uwikjctc."V0."Ykfqo." L0<"Vtkq<"C"

U{uvgo"hqt"Fcvc."Wpegtvckpv{."cpf"Nkpgcig0"Kp<"Rtqeggfkpiu"qh"XNFD"4228"Kpv0"Eqph0"*4228+"
]5_"Dctdct§."F0."Ictekc/Oqnkpc."J0."Rqtvgt."F0<"Vjg"Ocpcigogpv"qh"Rtqdcdknkuvke"Fcvc0" KGGG"Vtcpucevkqpu"qp"

Mpqyngfig"Fcvc"Gpikpggtkpi"6*7+"*3;;4+"
]6_"Dgplgnnqwp." Q0." Uctoc." C0F0."Jcngx{." C0[0." Vjgqdcnf."O0."Ykfqo." L0<" Fcvcdcugu"ykvj"Wpegtvckpv{" cpf"

Nkpgcig0"XNFD"Lqwtpcn"39*4+"*422:+"
]7_"Dwtfkem."F0."Fgujrcpfg."R0O0."Lc{tco."V0U0."Tcocmtkujpcp."T0."Xckvj{cpcvjcp."U0<"QNCR"qxgt"Wpegtvckp"

cpf"Kortgekug"Fcvc0"Kp<"Rtqeggfkpiu"qh"XNFD"4227"Kpv0"Eqph0"*4227+"
]8_"Dwtfkem."F0."Fgujrcpfg." R0O0." Lc{tco." V0U0." Tcocmtkujpcp."T0."Xckvj{cpcvjcp." U0<" Ghhkekgpv"Cnnqecvkqp"

Cniqtkvjou"hqt"QNCR"qxgt"Kortgekug"Fcvc0"Kp<"Rtqeggfkpiu"qh"XNFD"4228"Kpv0"Eqph0"*4228+"
]9_"Dwtfkem."F0."Fqcp."C0." Tcocmtkujpcp."T0."Xckvj{cpcvjcp." U0<"QNCR" qxgt" Kortgekug"Fcvc"ykvj"Fqockp"

Eqpuvtckpvu0"Kp<"Rtqeggfkpiu"qh"XNFD"4229"Kpv0"Eqph0"*4229+"
]:_" Ejgpi." T0." Mcncujpkmqx." F0." Rtcdjcmct." U0<" Gxcnwcvkpi" Rtqdcdknkuvke" Swgtkgu" qxgt" Kortgekug" Fcvc0" Kp<"

Rtqeggfkpiu"qh"CEO"UKIOQF"4225"Kpv0"Eqph0"*4225+"
];_"Eqnnkcv."I0<"QNCR."Tgncvkqpcn."cpf"Ownvkfkogpukqpcn"Fcvcdcug"U{uvgou0"UKIOQF"Tgeqtf"47*5+"*3;;8+"
]32_"Ew¦¦qetgc."C0<"Kortqxkpi"Tcpig/Uwo"Swgt{"Gxcnwcvkqp"qp"Fcvc"Ewdgu"xkc"Rqn{pqokcn"Crrtqzkocvkqp0"

Fcvc"("Mpqyngfig"Gpikpggtkpi"78*4+"*4228+"
]33_"Ew¦¦qetgc."C0."Ycpi."Y0<"Crrtqzkocvg"Tcpig/Uwo"Swgt{"Cpuygtkpi"qp"Fcvc"Ewdgu"ykvj"Rtqdcdknkuvke"

Iwctcpvggu0"Lqwtpcn"qh"Kpvgnnkigpv"Kphqtocvkqp"U{uvgou"4:*4+"*4229+"
]34_"Fcnxk."P0" Uwekw."F0<" Ghhkekgpv"Swgt{" Gxcnwcvkqp" qp" Rtqdcdknkuvke"Fcvcdcugu0" Kp<" Rtqeggfkpiu" qh" XNFD"

4226"Kpv0"Eqph0"*4226+"
]35_"Fcnxk."P0."Uwekw."F0<"Ocpcigogpv"qh"Rtqdcdknkuvke"Fcvc<"Hqwpfcvkqpu"cpf"Ejcnngpigu0"Kp<"Rtqeggfkpiu"qh"

CEO"RQFU"4229"Kpv0"Eqph0"*4229+"
]36_"Fgnkikcppcmku."C0."Tqwuuqrqwnqu."P0<"Gzvgpfgf"Ycxgngvu"hqt"Ownvkrng"Ogcuwtgu0"Kp<"Rtqeggfkpiu"qh"CEO"

UKIOQF"4225"Kpv0"Eqph0"*4225+"
]37_"Itc{."L0."Ejcwfjwtk."U0."Dquyqtvj."C0."Nc{ocp."C0."Tgkejctv."F0."Xgpmcvtcq."O0."Rgnnqy."H0."Rktcjguj."J0<"

Fcvc"Ewdg<"C"Tgncvkqpcn"Ciitgicvkqp"Qrgtcvqt"Igpgtcnk¦kpi"Itqwr/D{."Etquu/Vcd."cpf"Uwd/Vqvcnu0"Fcvc"
Okpkpi"cpf"Mpqyngfig"Fkueqxgt{"3*3+"*3;;9+"

]38_"Jcp."L0."Mcodgt."O0<"Fcvc"Okpkpi<"Eqpegrvu"cpf"Vgejpkswgu."ugeqpf"gf0"Oqticp"Mcwhhocpp"Rwdnkujgtu."
Ucp"Htcpekueq."EC."WUC"*4228+"

]39_" Jctkpctc{cp." X0." Tclctcocp."C0." Wnnocp." L0<" Korngogpvkpi"Fcvc" Ewdgu" Ghhkekgpvn{0" Kp<" Rtqeggfkpiu" qh"
CEO"UKIOQF"3;;8"Kpv0"Eqph0"*3;;8+"

]3:_"Rcrqwnku."C0<" Rtqdcdknkv{." Tcpfqo"Xctkcdngu." cpf"Uvqejcuvke" Rtqeguugu." ugeqpf" gf0"OeItcy/Jknn."Pgy"
[qtm"Ekv{."P[."WUC"*3;:6+"

]3;_"Tfi."E0"Uwekw."F0<"Crrtqzkocvg"Nkpgcig"hqt"Rtqdcdknkuvke"Fcvcdcugu0"RXNFD"3*3+"*422:+"
]42_"Uctoc."C0F0."Vjgqdcnf."O0."Ykfqo."L<"Gzrnqkvkpi"Nkpgcig"hqt"Eqphkfgpeg"Eqorwvcvkqp"kp"Wpegtvckp"cpf"

Rtqdcdknkuvke"Fcvcdcugu0"Kp<"Rtqeggfkpiu"qh"KGGG"KEFG"Kpv0"Eqph0"*422:+"
]43_" Xcuuknkcfku." R0." Ugnnku." V0<" C" Uwtxg{" qh" Nqikecn"Oqfgnu" hqt" QNCR"Fcvcdcugu0" UKIOQF"Tgeqtf" 4:*6+"

*3;;;+"

 83

On Provenance of Data Fusion Queries

Domenico Beneventano, Abdul Rahman Dannoui, Antonio Sala

Dipartimento di Ingegneria dell’Informazione

Università di Modena e Reggio Emilia

Via Vignolese 905, 41125 Modena, Italy

firstname.lastname@unimore.it

Abstract. Data Lineage is an open research problem. This is particularly true

in data integration systems, where information coming from different sources,

potentially uncertain or even inconsistent with each other, is integrated. In this

context, having the possibility to trace the lineage of certain data can help unrav-

eling possible unexpected or questionable results.

In this paper, we describe our preliminary work about this problem in the context

of the MOMIS data fusion system. We discuss and compare the use of lineage

and why-provenance for the data fusion operator used in the MOMIS system;

in particular we evaluate how the computation of the why-provenance should be

extended to deal with Resolution Functions used in our data fusion system.

1 Introduction

Lineage, or provenance, in its most general definition, describes where data came from,

how it was derived and how it was modified over time. Lineage provides valuable infor-

mation that can be exploited for many purposes, ranging form simple statistical resumes

presented to the end-user, to more complex applications such as managing data uncer-

tainty or identifying and correcting data errors. For these reasons, in the last few years

the research activity in the Information Management System area has been increasingly

focused on this topic. In particular, lineage has been studied extensively in data ware-

house systems [9,8]. However, in Data Integration systems, lineage is still considered as

an open research problem [14,13]. Data Integration systems deal with information com-

ing from different sources, potentially uncertain or even inconsistent with each other. In

this context, collecting lineage information becomes a necessity. Lineage information

helps the integration process by improving the system capability to introspect about the

sources reliability and the certainty of the data.

A fundamental task in data integration is data fusion, the process of fusing multi-

ple records representing the same real-world object into a single, consistent, and clean

representation. Data fusion involves the resolution of possible conflicts between data

coming from different sources [5]. A recent tutorial [10] listed data lineage as one of

the open problems and desiderata for data fusion systems. Merging data implies a partial

loss of the original values of the local sources. For this reason database administrators

and data owners are notoriously hesitant to merge data. Data lineage can help explain-

ing merging decisions by tracking which original values were involved and how they

have been fused together.

In this paper, we describe our preliminary work on the application of data lineage

techniques in the Data Fusion framework of the MOMIS Integration System. As de-

scribed in previous works [2,1], MOMIS (Mediator envirOnment for Multiple Informa-

tion Sources) is a framework to perform integration of structured and semi-structured

data sources. MOMIS is characterized by a classical wrapper/mediator architecture: the

local data sources contain the real data, while a Global Schema (GS) provides a recon-

ciled, integrated, read-only view of the underlying sources. The GS and the mapping

between GS and the local sources have to be defined at design time by the Integration

Designer, together with Resolution Functions to solve data conflicts. End-users can then

pose queries over this GS.

The concept of data lineage for relational databases was introduced in [9]: the lin-

eage of an output record is based on identifying a subset of input records relevant to the

output record; intuitively, an input record is relevant to an output record if it contributed

to the existence of that output record. The notion of why-provenance defined in [6] is

based on identifying subinstances of the input that “witness” a part of the output, i.e.,

why-provenance encodes all the possible different derivations of a output tuple in the

query result by storing a set of input tuples for each derivation.

In this paper, we discuss and compare the use of lineage and why-provenance for

the data fusion operator used in the MOMIS system; in particular we evaluate how

the computation of the why-provenance should be extended to deal with Resolution

Functions used in our data fusion system.

The remainder of the paper is organized as follows. In section 2 we will introduce

the basic definitions of the MOMIS framework that will be used along the paper. In

section 3 we will informally discuss the use of lineage and why-provenance for data

fusion queries, then in section 4 we formally define thes concepts. Finally, conclusions

and future works are sketched in section 5.

2 The MOMIS Data Fusion System

In this section we will introduce the basic definition of the MOMIS framework [2,1]

that will be used along this paper. MOMIS has been developed by the DBGROUP of

the University of Modena and Reggio Emilia1. An open source version of the MOMIS

system is delivered and maintained by the academic spin-off DataRiver2.

A MOMIS Data Integration System is constituted by: a set of local schemas

{LS1, . . . , LSk}, a global schema GS and Global-As-View (GAV) mapping assertions [15]

between GS and {LS1, . . . , LSk}. A global schema GS is a set of global classes, de-

noted by G. A local schema LS is a set of local classes, denoted by L. Both the global

and the local schemas are expressed in the ODLI3 language [4]. However, for the

scope of this paper, we consider both the GS and the LSi as relational schemas, but we

will refer to their elements respectively as global and local classes to comply with the

MOMIS terminology.

For each global class G, a Mapping Table (MT) is defined, whose columns represent

a set of local classes {L1, . . . , Ln} (this set is called local classes belonging to G and

1 http://www.dbgroup.unimore.it
2 http://www.datariver.it

85

Fig. 1. Examples of Mapping Tables

Mapping Table of G1

G1 L1 L2

ID ID ID

A A

B B

C C C

Mapping Table of G2

G2 L1 L2 L3

ID ID ID ID

A A

B B

C C C C

is denoted by L(G)) and whose rows represent the global attributes GA of G. An

element MT [GA][L] represents the local attribute of L which is mapped onto the global

attribute GA, or MT [GA][L] is empty (there is no local attribute of L mapped onto the

global attribute GA)3. A global attribute GA such as there is only a not null element

MT [GA][L] is called one-to-one, otherwise is called one-to-many. As an example, in

Figure 1, we consider three local classes with schema L1(ID, A, C), L2(ID, B, C)
and L3(ID, C), respectively, and we show the Mapping Table of the global classes G1,

with schema G1(ID, A, B, C) and with local classes L(G1) = {L1, L2}, and G2 with

schema G2(ID, A, B, C) and with local classes L(G2) = {L1, L2, L3}.

GAV mapping assertions are expressed by specifying for each global class G a query

over L(G), called mapping query and denoted by MQG, which defines the instance of

G starting from the instances of its local classes. The mapping query MQG is defined

to make a global class perform Data Fusion among its local class instances [5]: multiple

local tuples coming from local classes and representing the same real-world object are

fused into a single and consistent global tuple of the global class. To identify multiple

local tuples coming from local classes and representing the same real-world object, we

assume that error-free and shared object identifiers exist among different sources: two

local tuples with the same object identifier indicate the same object in different sources.

In our example, we assume ID as an object identifier.

Data Reconciliation, i.e. to solve conflicts among instantiations of the same object

in different sources, is performed by Resolution Functions [16]: for each GA such that

there are more than one non empty element MT [GA][L], a Resolution Function (RF)

is defined to obtain, starting from the transformed local classes, a merged value for GA.

In our example an AVG resolution function is defined on C.

In order to carry on the Data Fusion operations described so far, the mapping query

MQG is defined by means of the full outerjoin-merge operator proposed in [17] and

adapted to the MOMIS framework in [1]. Here, we consider an informal formulation of

MQG in SQL. Intuitively, defining MQG by means of a full outerjoin-merge corre-

sponds to the following two operations: (1) Computation of the Full Outer Join, on the

basis of the shared object identifiers, of the local classes of G; (2) Application of the

3 In this paper, for the sake of simplicity, we consider a simplified version of the MOMIS frame-

work proposed in [2,1], where MT [A][L] is a set of local attributes and Data Transformation

Functions specify how local attribute values have to be transformed into corresponding global

attribute values. Moreover we assume S(G) = ∪iS(Li), i.e. global and local attribute names

are the same.

 86

Fig. 2. Instances of the local classes L1, L2 and L3 and of the global classes G1 and G2 computed

with the full outer join merge operator

L1 L2 L3 G1 = G2

ID A C

1 3 24

2 NULL 20

3 9 NULL

4 8 25

5 NULL 20

ID B C

1 3 24

2 NULL 30

3 NULL 20

5 NULL 30

ID C

5 25

ID A B C

1 3 3 24

2 NULL NULL 25

3 9 NULL 20

4 8 NULL 25

5 NULL NULL 25

resolution functions. Thus MQG can be formulated by standard SQL, with the excep-

tion of (some) resolution functions. As an example, for the global class G1 of Figure 1,

we have the following MQG1 :

MQˆG_1 : SELECT COALESCE(L1.ID,L2.ID) AS ID,

L1.A AS A,

L2.B AS B,

AVG(L1.C,L2.C) AS C

FROM L1 FOJ L2 ON (L2.ID=L1.ID)

where FOJ is an abbreviation for the SQL full outer join operator4 , COALESCE is the

standard SQL function which returns its first non-null parameter value and AVG is a

(non standard SQL) function to compute the average value.

For the global class G2 (with more than two local classes) of Figure 1, we have the

following MQG2 :

MQˆG_2: SELECT COALESCE(L1.ID,L2.ID,L3.ID) AS ID,

L1.A AS A, L2.B AS B,

AVG(L1.C,L2.C,L3.C) AS C

FROM L1 FOJ L2 ON (L2.ID=L1.ID)

FOJ L3 ON (L3.ID=L1.ID OR L3.ID=L2.ID)

As an example, in Figure 2, we show the instances of local classes5 and the correspond-

ing instance of the global classe computed by means of MQG. As it can be easily

verified, for this example, the instances of G1 concide with the instances of G2.

3 Provenance for Data Fusion Queries in MOMIS

In this paper we refer to the definition of lineage and why-provenance as formulated in

[7] for relational databases. The concept of lineage for relational databases was intro-

duced in [9]: the lineage of an output record is based on identifying a subset of input

4 As shown in [1] if we use a join condition based on the shared object identifier ID, the order

of local classes in the full outer join evaluation is not relevant.
5 Let C denote either a local class L or a global class G. An istance of C is a set of tuples

conforming with the schema of C; we conflate the notation and use the same symbol C for

both the class C and an instance of C.

87

records relevant to the output record; intuitively, an input record is relevant to an output

record if it contributed to the existence of that output record. As in [7], we consider

lineage as a subinstance of the input, whereas in [9] lineage is defined as a vector of

subsets of the input relations; this is a minor difference in presentation.

Buneman et al. [6] defined the notion of why-provenance in terms of a deterministic

semistructured data model and query language. Why-provenance is based on identify-

ing subinstances of the input that “witness” a part of the output, i.e., why-provenance

encodes all the possible different derivations of an output tuple in the query result by

storing a set of input tuples for each derivation. In [7], why-provenance is reformulated

in terms of the relational model and relational algebra query language.

Both these concepts of lineage and why-provenance are defined for unions of con-

junctive queries, and are then insufficient to capture provenance for data fusion queries

based on the full outer join merge operator, which involves a form of negation. For this

reason, we first informally discuss how the concepts of lineage and why-provenance

should be extended to this new data fusion operator (section 3.1). Then we introduce

their formal definitions in section 4.

3.1 Lineage and Why-Provenance for Projection Queries

We use q with subscripts to denote queries and Q to denote the relation that results

from evaluating q. Let G be a global class and let L(G) = {L1, . . . , Ln} be the set of

its local classes. Given a query on G, we want to express the lineage of a global tuple

t ∈ Q in terms of the local classes of G, thus:

– the lineage of t is a set of local tuples, i.e. an element of P(L1 ∪ . . . ∪ Ln).
– the why-provenance (or witness basis) of t is a set of sets of local tuples, i.e., is an

element of P(P(L1 ∪ . . . ∪ Ln)).

The lineage of a (global) tuple in the result of a query is the set of (local) tuples that

were involved in some derivation of that result tuple. We use Lid to denote the tuple t of

a local class L with object identifier ID equal to id, i.e. t[ID] = id. In the same way,

for a query q, Qid denotes the tuple t ∈ Q with object identifier ID equal to id.

In this paper, to define the provenance for the full join merge operator, we focus on

Projection Queries on a single global class, where only one-to-one attributes (besides

the object identifier ID) are selected. A first example is shown in Figure 3; in the

derivation of Q1
1 either L1

1 and L1
2 are involved, thus the lineage of Q1

1 is {L1
1, L

1
2}. In

other words, if a global tuple is derived from the fusion of two local tuples, one from a

local class, one from another local class, the lineage shows both these two local tuples.

Why-provenance [6] encodes all the possible different derivations of a global tuple

in the query result by storing a set of local tuples for each derivation. In our example,

there is a unique derivation of Q1
1, which involve both the tuples L1

1 and L1
2, thus its

why-provenance is {{L1
1, L

1
2}}. For the tuple Q3

1 there are two possible derivations,

{L3
1, L

3
2} and {L3

1}, thus its why-provenance is {{L3
1, L

3
2}, {L

3
1}}. For the tuple Q2

1

there are three possible derivations, thus its why-provenance is {{L2
1, L

2
2}, {L

2
1}, {L

2
2}}.

As it can be seen in the example, when only one-to-one attributes (besides the ID) are

selected, different derivations are due to the presence of the NULL value into the local

tuples.

 88

Fig. 3. Lineage for q1 = select ID,A,B from G1

Q1

ID A B

1 3 3

2 NULL NULL

3 9 NULL

4 8 NULL

5 NULL NULL

Lineage

{L1
1, L

1
2}

{L2
1, L

2
2}

{L3
1, L

3
2}

{L4
1}

{L5
1, L

5
2}

Why-provenance

{{L1
1, L

1
2}}

{{L2
1}, {L

2
2}, {L

2
1, L

2
2}}

{{L3
1, L

3
2}, {L

3
1}}

{{L4
1}}

{{L5
1}, {L

5
2}, {L

5
1, L

5
2}}

Minimal Why-provenance

{{L1
1, L

1
2}}

{{L2
1}, {L

2
2}}

{{L3
1}}

{{L4
1}}

{{L5
1}, {L

5
2}}

In all the previous examples, we discussed the lineage and the why-provenance of

global tuples obtained fusing two local tuples, one from a local class, and the other from

a different local class. We now consider the tuple Q4
1 coming from a tuple of L1 that

has no corresponding tuple in L2. How can we then define the lineage of such a kind

of tuple? Recently, in TRAMP [11], the concept of PI-CS-provenance (Perm Influence

Contribution Semantics) is introduced to produce more precise provenance information

for outer joins. As observed in [11], the lineage of Q4
1 would contain all tuples from

relation L2, but in fact none of them contributed to Q4
1. We agree with [11] claiming

that a better semantics for the provenance of the tuple Q1
3 would indicate that L4

1 paired

with no tuples from L2 influences Q4
1 (rather than saying every tuple of L2 is in the

provenance of this tuple). On the other hand, though, the PI-CS provenance as defined

in TRAMP [11] is not able to represent each derivation, in fact for tuple Q3
1 should

show only the witness basis {〈L3
1,L3

2 〉}.

These considerations lead us to define the lineage and why-provenance of Q4
1 in a

straightforward way as {L4
1} and {{L4

1}}, respectively.

Besides the concept of why-provenancee, in [6] the concept of minimal why-provenance

is introduced to represent the minimal witness basis which consists of all the minimal

witnesses in the witness basis, where a witness is minimal if none of its proper subin-

stances is also a witness in the witness basis. For example, {{L3
1}} is a minimal witness

for Q3
1 whereas {{L3

1, L
3
2}, {L

3
1}} is not.

We conclude this initial discussion about lineage for the data fusion operator con-

sidering the same query posed on the global class G2 obtained from all the three local

classes: we denote this query as q2. As it can be easily verified, the result of q2 is

the same as the result of q1, and the lineage of tuples that are not present in L3 does

not change. On the other hand, lineage of tuple Q5
2 is {L5

1, L
5
2, L

5
3}, while the why-

provenance is P({L5
1, L

5
2, L

5
3}) \ ∅ (i.e., all the possible non-empty subsets of the set

{L5
1, L

5
2, L

5
3}), the minimal why-provenance is {{L5

1}, {L
5
2}, {L

5
3}}.

We will now discuss and compare what lineage and why-provenance produce for

query with resolution functions, that represent the most significant aspect in our data

fusion framework. To this end, we will consider the query q3 posed on the global class

G2 (see Figure 4)which selects the one-to-many global attribute C defined by the AVG

resolution function.

The computation of the AVG resolution function corresponds to performing a group-

ing on the object identifier and to the computation of the AVG aggregation function.

On the other hand, either lineage and why-provenance defined in [7] are limitated to

89

Fig. 4. Lineage for q3 = select ID,C from G2

Q3

ID C

1 24

2 25

3 20

4 25

5 25

Lineage

{L1
1, L

1
2}

{L2
1, L

2
2}

{L3
1, L

3
2}

{L4
1}

{L5
1, L

5
2, L

5
3}

Why-provenance

{{L1
1}, {L

1
2}, {L

1
1, L

1
2}}

{{L2
1, L

2
2}}

{{L3
1, L

3
2}, {L

3
2}}

{{L4
1}}

{{L5
1, L

5
2, L

5
3}, {L

5
1, L

5
2}, {L

5
3}}

Minimal Why-provenance

{{L1
1}, {L

1
2}}

{{L2
1, L

2
2}}

{{L3
2}}

{{L4
1}}

{{L5
1, L

5
2}, {L

5
3}}

Selection–Projection–Join–Union operations and thus are not defined for grouping with

aggregation.

Lineage for grouping with aggregation is defined in TRIO [3] and in TRAMP [11].

Trio-lineage is similar to why-provenance, but derivations involving the same set of tu-

ples are represented separately, i.e., with the Trio-lineage, bag of sets of input tuples are

represented, each of which corresponds to one derivation. For grouping with aggrega-

tion, the Trio-lineage of a tuple t in the set of all tuples in the group that corresponds to

t, and the same holds for the PI-CS-provenance introduced in TRAMP [11].

This way to define the lineage for grouping with aggregation can be applied in

the case of the lineage for our data fusion operator containing resolution functions,

obtaining the straightforward result shown in Figure 4; as an example for tuple Q1
3 the

lineage is {L1
1, L

1
2}, i.e. the two local tuples which are fused to obtain Q1

3.

On the other hand, either Trio-lineage [3] and PI-CS-provenance [11] for grouping

with aggregation are not appropriate to define why-provenance for our data fusion oper-

ator containing resolution functions, since with the why-provenance we want to encode

all the possible different derivations. In other words, we believe a better semantics for

the why-provenance of the tuple Q1
3 would be {{L1

1}, {L
1
2}, {L

1
1, L

1
2}}, where each set

of local tuples which corresponds to one derivation is represented. Another significant

example is Q5
3. In this way, for a global tuple obtained by means of an AVG resolution

function, the why-provenance produces all the possible derivations, with a behaviour

that is homogeneous with the case of one-to-one attributes discussed before. This is

true in the case of the average function, but the application of the why-provenance need

to be further analyzed for different types of resolution functions.

In [16], the properties of the resolution functions are examined; in particular, res-

olution functions and subdivided into mediating and deciding functions. A function is

mediating if RF (v1, . . . , vn) = y, meaning that a new value is created by the reso-

lution function. Intuitively, for some mediating functions, such as AVG and MEDIAN,

the why-provenance provides several witnesses , while for other ones, such as SUM and

CONCAT, a unique witness is produced.

Deciding functions choose among the already present values, e.g., COALESCE or

SHORTEST, where RF (v1, . . . , vi, . . . , vn) = vi, i ∈ {1, . . . , n}. As observed in [16],

if we assume that ties (e.g., two shortest values) are broken by a secondary criterion,

e.g., the order of the values, we always get a defined result. Intuitively, for deciding

functions, the why-provenance provides a unique witness with only the local tuple

whose value is chosen by the resolution function.

 90

In [7], the relationships between lineage, why-provenance (i.e., the witness basis)

and the minimal witness basis are discussed. In particular, the authors show that both

lineage and the minimal witness basis can be computed from why-provenance; however,

neither lineage, nor why-provenance can be obtained from the minimal witness basis,

as it can be verified also in our examples.

Another consideration about the relationship between why-provenance and minimal

why-provenance that is peculiar of the data fusion operator is the following: both the

second and the third tuple of q1 of Figure 3, i.e., Q3
1 and Q4

1, have a null value for the

attribute B, but in the case of Q3
1 the null value is coming from a data source (the local

class L1), while in the case of Q4
1 the null value is obtained because the attribute B

has no mapping on a local source. In other words, the results from query q1 show no

differences between a null value coming from the data sources (tuple Q3
1) and a null

value value obtained because the attribute has no mapping on a local source (tuple Q4
1).

The difference between these two cases can be described in terms of why-provenance,

while the minimal why-provenance remains the same. In other words, having the pos-

sibility to query the why-provenance, we can have different results in these two cases,

while it is not possible with the minimal why-provenance (neither with the lineage).

4 Lineage and Why-Provenance: a formal definition

Let G be a global class with schema S(G) and let L(G) = {L1, . . . , Ln} be the set

of its local classes, with schema S(Li), for each i. As in our previous examples, we

assume ID as a share object identifier among all local classes, i.e. ID ∈ ∩iS(Li) and

we assume S(G) = ∪iS(Li), i.e. global and local attribute names are the same (we

will use Ai to denote global and local attributes).

Given a set of global attributes S = {A1, . . . , Ak} we consider the query

qS = SELECT DISTINCT A1, . . . , Ak FROM G

i.e., we consider the set semantics.

Given a query qS , we add to the select list the object identifier ID, i.e. we consider

the query with attributes S ∪ {ID}, denoted by q∗S ; we first define lineage and why-

provenance for this query q∗S and then we will give the definitions for a generic query qS ,

i.e. for a query where the select list S doesn’t necessarily contain the object identifier

ID. Lineage and why-provenance for q∗S will be respectively denoted by IDLIN and

IDWHY; lineage and why-provenance for qS will be respectively denoted by LIN and

WHY.

The query q∗S is rewritten w.r.t. local classes as follows:

SELECT

COALESCE(L1.ID,L2.ID, L3.ID) AS ID,

Li.A AS A -- if A is mapped only in Li

RF(L1.A, ... Lk.A) AS A -- if A is mapped in L1, ... Lk

FROM L1 FOJ L2 ON (L2.ID=L1.ID)

FOJ L3 ON (L3.ID=L1.ID OR L3.ID=L2.ID)

... FOJ Ln ON (Ln.ID=L1.ID OR ... OR Ln.ID=Ln-1.ID)

91

Let u(id) ∈ q∗S be the unique tuple of q∗S with ID equal to id, i.e. u(id)[ID] = id;

given u(id) ∈ q∗S , we define the set LC(id) = {Lid
i | ∃Li ∈ L(G),∃Lid

i ∈ Li} of

local tuples with ID equal to id; P(LC(id)) denotes the set of all subset of LC(id).
Given u(id) ∈ q∗S , its lineage is defined by:

IDLIN(q∗A, u(id)) = LC(id)

Thus, lineage for u(id) ∈ q∗S , is indipendent from the selected global attributes, as

shown in the examples of figures 3 and 4.

To define why-provenance, we first consider a single global attribute A; given u(id) ∈
q∗A, IDWHY(q∗A, u(id)) is a subset of P(LC(id)) defined as follows:

– if A = ID is the object identifier: IDWHY(q∗A, u(id)) = P(LC(id)).
– if A is one-to-one, mapped only on L.A :

• if Lid[A] is NULL
then IDWHY(q∗A, u(id)) = P(LC(id))
else IDWHY(q∗A, u(id)) = {S ∈ P(LC(id)) | Lid ∈ S}.

– if A is a one-to-many, mapped into k ≤ n local classes and defined by the resolution

function RF :
IDWHY(q∗A, u(id)) = { { Lid

1 ,. . . ,Lid
q } | q ≤ k, Lid

i ∈ Li, 1 ≤ i ≤ q and

RF (Lid
1 [A], . . . , Lid

k [A]) = u(id)[A] }

The first rule is trivial. The second rule takes into account that, due to the full outer

join operation, a NULL value for u(id)[A], can come either from a NULL value

from the local class where A is mapped (i.e. Lid[A]) or it can be obtained from any

local class where A is not mapped. The last rule takes into account a one-to-many

global attribute A; in this case the value for A is computed by means of a resolution

function: FJ id[A] = RF (v1, v2, . . . , vk), with vi = Lid
i [A], 1 ≤ i ≤ k. The rules

generate a witness { Lid
1 ,. . . ,Lid

q } for each subset v1, v2, . . . , vq, q ≤ k, such that

RF (v1, v2, . . . , vq) = RF (v1, v2, . . . , vk).
The function IDWHY(q∗S , u(id)) is extended to a subset S = {A1, . . . , Ak} with

k ≥ 1, as follows:

IDWHY(q∗S , u(id)) =
⋂{

IDWHY(q∗S , u(id)) | A ∈ S
}

As an example, for the query in Figure 3 we have S = {ID, A, B}; IDWHY(q∗S , u(3))
is computed as:

1. IDWHY(q∗ID, u(3)) = P({L3
1, L

3
2}) \ ∅

2. IDWHY(q∗A, u(3)) = {{L3
1}, {L

3
1, L

3
2}}

3. IDWHY(q∗B , u(3)) = {{L3
1}, {L

3
2}, {L

3
1, L

3
2}}

Then IDWHY(q∗S , u(3)) = {{L3
1}, {L

3
1, L

3
2}}.

Finally, we give the definitions for a generic query qS , i.e. for a query where the

select list S doesn’t necessarily contain the object identifier ID. The Lineage and the

why-provenance of t ∈ qS are, respectively, defined as follows:

LIN(qS , t) =
⋃{

IDLIN(q∗S , u(id)) | u(id)[S] = t
}

WHY(qS , t) =
⋃{

IDWHY(q∗S , u(id)) | u(id)[S] = t
}

 92

5 Conclusion and Future Work

In this paper we prensented our work in progress to apply data provenance techniques

in the Data Fusion framework of the MOMIS Integration System. We focused our

attention on the extension of the concept of why-provenance to deal with Resolution

Functions, by considering in particular the case of the average function; for resolution

functions different from the AVG, the properties of the resolution functions need to be

examined, starting from the discussion proposed in [16].

Moreover, in this preliminar paper, to investigate the provenance for the full join

merge operator, we focused on Projection Queries on a single global class. While the ex-

tension to queries with WHERE conditions is straightforward, for more complex queries

a further analysis is needed.

Future work will be directed in the following directions:

– Querying Data Lineage.

In a data fusion scenario, the data lineage can be useful to understand the relation

between the results we obtain querying a global class G and the local classes G
is mapped on. This is particularly important for example to evaluate how the data

we obtain from a data integration system can be affected when one or more local

sources become unavailable.

It is thus necessary to allow querying data lineage, providing an appropriate method

to express conditions in our queries to consider tuples with lineage from certain

local classes.

For example, the results from query q1 (figure 3) show no differences between a

NULL value coming from the data sources (first tuple) and a NULL value obtained

because the attribute has no mapping on a local source (second tuple). Having the

possibility to query the data lineage, we can have different results in these two

cases.

– Where-Provenance.

Our preliminary work on data lineage started with analyzing lineage and why-

Provenance; the next step will be analyzing also the Where-Provenance, with par-

ticular regards to resolution functions. The starting point will be the observation

in [16]: mediating resolution functions does not allow evaluating the Where-Provenance,

while it is possible to assign it with deciding resolution functions.

– Other Provenance Models.

Beyond Lineage and Why-provenance, several other concepts of provenance (or

provenance models) were proposed in literature, and, among these, the most infor-

mative form of provenance is the semiring of provenance polynomials [12]. On the

other hands, these provenance models are defined for unions of conjunctive queries,

and then need to be extended to capture provenance for queries based on the full

outer join merge operator, which involves a form of negation.

– Complexity Analysis.

In the comparison between lineage and why-provenance, also the computational

costs must be considered: why-provenance provides more information than lineage,

but, intuitively, its computational cost is higher. It is thus important to discuss this

precision/cost tradeoff.

93

– Implementation.

In the MOMIS system, to answer a query over a global class G, the query must

be rewritten as an equivalent set of queries expressed on the local schemas (local

queries); this query translation performs some query optimization techniques, such

as predicate push down (to push a constraint on local queries) and full join simpli-

fication (to reduce full join to left/right/inner join). Thus, our idea is to extend our

query processing to include also the provenance computation in the query rewrit-

ing, in order to be able to provide the user with lineage information when obtaining

the results.

References

1. Beneventano, D., Bergamaschi, S., Guerra, F., Orsini, M.: Data integration. In: Embley, D.,

Thalheim, B. (eds.) Handbook of conceptual modelling. Springer-Verlag (2010), to appear.

Available at http://dbgroup.unimo.it/SSE/SSE.pdf

2. Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Synthesizing an integrated ontol-

ogy. IEEE Internet Computing 7(5), 42–51 (2003)

3. Benjelloun, O., Sarma, A.D., Halevy, A., Widom, J.: Uldbs: databases with uncertainty and

lineage. In: VLDB ’06: Proceedings of the 32nd international conference on Very large data

bases. pp. 953–964. VLDB Endowment (2006)

4. Bergamaschi, S., Castano, S., Vincini, M., Beneventano, D.: Semantic integration of hetero-

geneous information sources. Data Knowl. Eng. 36(3), 215–249 (2001)

5. Bleiholder, J., Naumann, F.: Data fusion. ACM Comput. Surv. 41(1), 1–41 (2008)

6. Buneman, P., Khanna, S., Tan, W.C.: Why and where: A characterization of data provenance.

In: ICDT. pp. 316–330 (2001)

7. Cheney, J., Chiticariu, L., Tan, W.C.: Provenance in databases: Why, how, and where. Foun-

dations and Trends in Databases 1(4), 379–474 (2009)

8. Cui, Y., Widom, J.: Lineage tracing for general data warehouse transformations. The VLDB

Journal 12(1), 41–58 (2003)

9. Cui, Y., Widom, J., Wiener, J.L.: Tracing the lineage of view data in a warehousing environ-

ment. ACM Trans. Database Syst. 25(2), 179–227 (2000)

10. Dong, X.L., Naumann, F.: Data fusion: resolving data conflicts for integration. Proc. VLDB

Endow. 2(2), 1654–1655 (2009)

11. Glavic, B., Alonso, G., Miller, R.J., Haas, L.M.: Tramp: Understanding the behavior of

schema mappings through provenance. PVLDB 3(1), 1314–1325 (2010)

12. Green, T.J., Karvounarakis, G., Tannen, V.: Provenance semirings. In: Proceedings of the

twenty-sixth ACM SIGMOD-SIGACT-SIGART symposium on Principles of database sys-

tems. pp. 31–40. PODS ’07, ACM, New York, NY, USA (2007)

13. Halevy, A., Li, C.: Information integration research: Summary of nsf idm workshop breakout

session. NSF IDM Workshop (2003)

14. Halevy, A., Rajaraman, A., Ordille, J.: Data integration: the teenage years. In: VLDB ’06:

Proceedings of the 32nd international conference on Very large data bases. pp. 9–16. VLDB

Endowment (2006)

15. Lenzerini, M.: Data integration: A theoretical perspective. In: PODS. pp. 233–246 (2002)

16. Naumann, F., Bleiholder, J.: Conflict handling strategies in an integrated information system.

In: Proceedings of the WWW Workshop in Information integration on the Web (IIWEB)

(2006)

17. Naumann, F., Freytag, J.C., Leser, U.: Completeness of integrated information sources. Inf.

Syst. 29(7), 583–615 (2004)

 94

On Equality-Generating Dependencies in Ontology

Querying (Extended Abstract)

Andrea Calı̀1,3 and Andreas Pieris2

1Dept. of Computer Science and Information Systems, Birkbeck University of London, UK
2Computing Laboratory, University of Oxford, UK

3Oxford-Man Institute of Quantitative Finance, University of Oxford, UK

andrea@dcs.bbk.ac.uk

andreas.pieris@comlab.ox.ac.uk

Abstract. In ontology-based data access, data are queried through an ontol-

ogy that offers a representation of the domain of interest. In this context, cor-

rect answers are those entailed by the logical theory constituted by the data and

the ontology. Traditional database constraints like tuple-generating dependencies

(TGDs) and equality-generating dependencies (EGDs) are a useful tool for on-

tology specification. However, their interaction usually leads to intractability or

undecidability of query answering. Separability is the notion that captures the

lack of interaction between TGDs and EGDs. In this paper we exhibit a novel

and general sufficient condition for separability, in the case where the ontology is

expressed with inclusion dependencies (a subclass of TGDs) and EGDs.

1 Introduction

Answering queries over ontologies has become an important problem in knowledge

representation and databases. In ontology-enhanced database systems, an extensional

relational database D is combined with an ontological theory Σ describing rules and

constraints which derive new intensional data from the extensional data. A query is

not just answered against the database D, but against the logical theory D ∪ Σ. This

problem has been addressed in several settings. For instance, the constraints of [1, 4,

6] are tailored to express Entity-Relationship schemata, while [12] deals with expres-

sive constraints based on Answer Set Programming. The work [8] introduces and stud-

ies first-order constraints derived from a “light” version of F-logic [15], called F-logic

Lite. Another relevant formalisms for knowledge bases, especially in the Semantic Web,

is the DL-lite family; in [10, 17] tractable query answering techniques under DL-lite

knowledge bases are presented.

In ontology-based query answering, a prominent family of languages, recently pro-

posed, is the Datalog± family. In Datalog±, the ontological theory is expressed by

means of rules of two kinds: (i) tuple-generating dependencies (TGDs), i.e., (function-

free) Horn rules enhanced with the possibility of having existentially quantified vari-

ables in the head; (ii) equality-generating dependencies, that is, (function-free) Horn

rules with a single equality atom in the head. Several decidable and tractable Datalog±

languages have been studied [2, 3, 5, 7]. Even the least expressive Datalog± languages,

with some extra features which do not increase the complexity of query answering,

are able to properly extend the DL-lite languages. This suggests that TGDs and EGDs,

which are in fact “traditional” database constraints, are a powerful and flexible tool for

ontology modeling.

In this paper we stick to the language of TGDs and EGDs, and we address the

problem of the interaction between the two types of constraints. Notice that, when there

is no limitation on how TGDs and EGDs interact, the conjunctive query answering

problem is undecidable; in fact, it is undecidable already for inclusion dependencies

(IDs) and key dependencies (KDs), two subclasses of TGDs and EGDs, respectively.

For this reason the notion of separability was first proposed in [9]. A set Σ = ΣT ∪
ΣE , where ΣT and ΣE are TGDs and EGDs, respectively, is said to be separable if,

assuming the theory D ∪ Σ to be consistent, for each database D, the answers to a

conjunctive query Q under Σ and under ΣT coincide. In other words, EGDs do not

play any role in query answering, and queries can be answered by considering the TGDs

only. Several conditions have been proposed to ensure separability (see Section 3); here

we propose a sufficient condition in the case where the constraints are IDs together

with general EGDs. We also discuss that this condition can be easily combined with the

known condition for TGDs (and thus IDs) and FDs [5], hence identifying a more general

sufficient condition. The result can be straightforwardly extended to linear TGDs and

EGDs, where linear TGDs are a slight generalization of IDs consisting of TGDs with

exactly one atom in the body; however, for clarity of exposition, we illustrate our results

in the case of IDs.

We do believe that our preliminary results pave the way to the discovery of more

general separability conditions between EGDs (or their restrictions) and classes of

TGDs such as guarded TGDs (guarded Datalog±) [2] or sticky(-join) sets of TGDs

(sticky(-join) Datalog±) [5, 7].

2 Preliminaries

General. We define the following pairwise disjoint (infinite) sets of symbols: (i) a set

Γ of constants (constitute the “normal” domain of a database), (ii) a set ΓN of labeled

nulls (used as placeholders for unknown values, and thus can be also seen as variables),

and (iii) a set ΓV of variables (used in queries and dependencies). Different constants

represent different values (unique name assumption), while different nulls may repre-

sent the same value. We denote by X sequences of variables X1, . . . , Xk, where k � 0.

Also, let [n] = {1, . . . , n}, for each n � 1. We shall consider relational databases hav-

ing, in general, values in Γ ∪ ΓN . We assume the reader is familiar with the relational

model, and with (Boolean) conjunctive queries (CQs); for more details we refer the

reader to, e.g., [5].

We recall that a homomorphism from a set of atoms to another set of atoms is a

substitution h : Γ ∪ ΓN ∪ ΓV → Γ ∪ ΓN ∪ ΓV that is the identity on Γ . If there are

homomorphisms from A1 to A2 and vice-versa, then A1 and A2 are homomorphically

equivalent. The notion of homomorphism naturally extends to conjunctions of atoms.

Given a set of symbols S, two atoms a1 and a2 are S-isomorphic iff there exists a

bijection h such that h(a1) = a2, h−1(a2) = a1, and h is the identity on S.

 96

Dependencies. Given a schema R, a tuple-generating dependency (TGD) σ over R
is a first-order formula ∀X∀Y ϕ(X,Y) → ∃Zψ(X,Z), where ϕ(X,Y) and ψ(X,Z)
are conjunctions of atoms over R, called the body and the head of σ, denoted as body(σ)
and head(σ), respectively. Henceforth, we will omit the universal quantifiers in TGDs.

Such σ is satisfied by a database D for R iff, whenever there exists a homomorphism

h such that h(ϕ(X,Y)) ⊆ D, there exists an extension h′ of h (i.e., h′ ⊇ h) where

h′(ψ(X,Z)) ⊆ D. A restricted class of TGDs which is of special interest in this paper

is the class of inclusion dependencies (IDs), i.e., TGDs with just one body-atom and

one head-atom, without repetition of variables neither in the body nor in the head.

An equality-generating dependency (EGD) η over R is a first-order formula of the

form ∀Xϕ(X) → Xi = Xj , where ϕ(X) is a conjunction of atoms over R, called

the body and denoted as body(η), and {Xi, Xj} ⊆ X. For brevity, we will omit the

universal quantifiers in EGDs. Such η is satisfied by a database D for R iff, whenever

there exists a homomorphism h such that h(ϕ(X)) ⊆ D, then h(Xi) = h(Xj).
CQ Answering under Dependencies. We now define query answering under TGDs

and EGDs. Given a database D for R, and a set Σ of TGDs and EGDs over R, the

models of D w.r.t. Σ, denoted as mods(D, Σ), is the set of all databases B such that

B |= D ∪ Σ, i.e., B ⊇ D and B satisfies Σ. The answer to a CQ Q w.r.t. D and Σ,

denoted as ans(Q, D, Σ), is the set {t | t ∈ Q(B), for each B ∈ mods(D, Σ)}. The

answer to a Boolean CQ (BCQ) Q w.r.t. D and Σ is positive, denoted as D∪Σ |= Q, iff

ans(Q, D, Σ) �= ∅. CQ and BCQ answering under TGDs and EGDs are LOGSPACE-

equivalent [2]. We thus focus only on the BCQ answering problem.

The Chase Procedure. The chase procedure (or simply chase) is a fundamental

algorithmic tool introduced for checking implication of dependencies [16], and later

for checking query containment [14]. Informally, the chase is a process of repairing a

database w.r.t. a set of dependencies so that the resulted database satisfies the dependen-

cies. The chase works on an instance through the so-called TGD and EGD chase rules.

A violation of a TGD is repaired by adding one atom in order to satisfy it, where the

positions corresponding to the existentially-quantified variables are occupied by fresh

values in ΓN . A violation of an EGD is repaired by unifying symbols in order to satisfy

it. If two constants of Γ are unified, then we have a hard violation and the chase fails.

We shall use the term chase interchangeably for both the procedure and its result. The

chase of an instance D w.r.t. a set of dependencies Σ is denoted as chase(D, Σ). For

space reasons, we have to refer the reader to, e.g., [5] for more details.

The (possibly infinite) chase of D w.r.t. Σ is a universal model of D w.r.t. Σ, i.e.,

for each database B ∈ mods(D, Σ), there exists a homomorphism from chase(D, Σ)
to B [11, 13]. Using this fact it can be shown that the chase is a formal tool for query

answering under TGDs and EGDs. In particular, given a BCQ Q, D ∪ Σ |= Q iff

chase(D, Σ) |= Q, providing that the chase does not fail. If the chase fails, then the set

of models of D w.r.t. Σ is empty, and D ∪ Σ |= Q holds trivially.

3 Overview of Decidable Classes

A semantic notion that ensures decidability of query answering under sets of TGDs and

EGDs, providing that the set of TGDs falls in a decidable class, is separability [3, 9].

 97

Roughly speaking, separability guarantees that queries can be answered by considering

only the set of TGDs (apart from an initial check whether the chase fails); the formal

definition is given in Section 4. Several sufficient syntactic conditions for separability

have been proposed in the literature.

An early separable class of IDs and KDs, called key-based, was proposed in the

seminal work of Johnson and Klug [14]. In short, given an ID σ of the form r(X,Y) →
∃Z s(X,Z), (i) the set of X-attributes of head(σ) must be strictly contained in the set

of key attributes of the relation s, and also (ii) the X-attributes of body(σ) must be

disjoint from the set of key attributes of the relation r.

As observed by Cali et al. [9], the first condition of key-based sets of IDs and KDs,

as explained above, can be relaxed so that the set of X-attributes of head(σ) can be

also equal to the set of key attributes of s. Furthermore, the second condition, which

imposes a restriction on the bodies of the IDs, is not needed. In particular, the class

of non-key-conflicting (NKC) IDs was defined which is as follows: given an ID σ =
r(X,Y) → ∃Z s(X,Z), the set of X-attributes of head(σ) is not a proper set of the set

of key attributes of s. Notice that NKC IDs capture the well-known class of foreign key

dependencies, which corresponds to the case where the set of X-attributes of head(σ)
is equal to the set of key attributes of s.

The class of NKC IDs was generalized in [3] to the context of arbitrary (single-head)

TGDs by defining the class of non-key-conflicting TGDs. Actually, the underlying idea

is the same: given a TGD σ = ϕ(X,Y) → ∃Z r(X,Z), the set of X-attributes of

head(σ) is not a proper set of the set of key attributes of r; moreover, each existentially

quantified variable in head(σ) must occur only once. In [5], was observed that the

class of non-key-conflicting TGDs can be effortless extended to treat, not just keys, but

functional dependencies.

The main reason due to which the above classes are separable is because there is

no real interaction among TGDs and EGDs. In other words, once the given database

satisfies the set of EGDs, we know that it is not possible to apply an EGD during the

construction of the chase. The separable classes of IDs and KDs introduced in [4, 6] in

the context of Entity-Relationship schemata, instead, are such that KDs can be applied

during the chase. The separable class of IDs and EGDs that we propose in this paper is

actually a generalization of the classes introduced in [4, 6].

4 Separable IDs and EGDs

In this section we exhibit a sufficient syntactic condition for separability between a set

of IDs and a set of EGDs. Before we proceed further, let us give the formal definition

of separability [3, 9].

Definition 1. Let ΣT be a set of TGDs over a schema R, and ΣE a set of EGDs over R.

The set Σ = ΣT ∪ΣE is separable if, for every database D for R, either chase(D, Σ)
fails, or chase(D, Σ) |= Q iff chase(D, ΣT) |= Q, for every BCQ Q over R.

Non-Conflicting Sets of IDs and EGDs. We now define when a set of IDs and

EGDs is non-conflicting, and then establish that this condition is indeed sufficient for

separability. Before we proceed further, let us give some preliminary definitions.

 98

First, we define the notion of affected positions of a relational schema w.r.t. a set

of TGDs. Given a schema R, and a set Σ of TGDs over R, an affected position of R
w.r.t. Σ is defined inductively as follows. Let πh be a position in the head of a TGD

σ ∈ Σ. If an existentially quantified variable occurs at πh, then πh is affected w.r.t. Σ.

If the same universally quantified variable X appears both in position πh, and in the

body of σ at affected positions only, then πh is affected w.r.t. Σ. Intuitively speaking,

the affected positions of a schema w.r.t. a set Σ of TGDs, are those positions at which

a labeled null may occur during the construction of the chase under Σ.

A useful notion is the well-known query containment under TGDs. In particular,

given a set Σ of TGDs over a schema R, and two CQs Q1 and Q2 over R, we say that

Q1 is contained in Q2 w.r.t. Σ, written Q1 ⊆Σ Q2, iff Q1(D) ⊆ Q2(D), for every

database D for R that satisfies Σ.

Consider now a set ΣT of IDs over a schema R, and an EGD η over R of the form

ϕ(X) → Xi = Xj , where {Xi, Xj} ⊆ X; we assume w.l.o.g. that ΣT and η have no

variables in common. Let λ be the substitution {Xj → Xi}. The derivation forest for

η under ΣT , denoted as Fη,ΣT
, is constructed as follows. If at least one occurrence of

the so-called watched variable Xi in λ(ϕ(X)) occurs at a non-affected position, then

Fη,ΣT
is empty; otherwise, the roots of the forest are the atoms of λ(ϕ(X)). Now, we

iteratively apply the following step to every atom a in the part of Fη,ΣT
constructed so

far; let Vη be the set of all variables appearing in the atoms of ϕ(X). For each σ ∈ ΣT

(for which we assume w.l.o.g. that has no variables in common with any of the atoms

in the part of Fη,ΣT
constructed so far), if there exists a homomorphism h such that

h(head(σ)) = a, and also

1. h(body(σ)) contains the watched variable Xi,

2. all the occurrences of Xi in h(body(σ)) occur at affected positions of R w.r.t. ΣT ,

and

3. h(body(σ)) is not Vη-isomorphic to some ancestor of a in the part of Fη,ΣT
so far

constructed,

then add h′(body(σ)), where h′ ⊇ h maps the variables that occur in the body but not

in the head of σ to their self, as a child of a in Fη,ΣT
.

We are now ready to define formally when a set of IDs and EGDs is non-conflicting.

Henceforth, for notational convenience, given a set Σ of dependencies, we will denote

by ΣT and ΣE the set of IDs and EGDs, respectively.

Definition 2. Consider a set Σ of IDs and EGDs over a schema R. We say that Σ is

non-conflicting if, for each η ∈ ΣE of the form ϕ(X) → Xi = Xj , the following

condition holds. For each atom a in Fη,ΣT
, Q1 ⊆ΣT

Q2, where Q1 and Q2 are the

conjunctive queries q(Y) ← ϕ(X) and q(Y) ← a, respectively, where Y are the

variables that appear both in ϕ(X) and a.

Example 1. Consider the set Σ consisting by the TGDs

σ1 : s(X, Y) → r(Y, X)
σ2 : p(X) → ∃Y s(Y, X)
σ3 : t(X, Y) → r(X, Y)
σ4 : r(X, Y) → s(Y, X)

 99

r(X, Y)

s(Y, X)

p(X)

t(X,Y)

Fig. 1. The derivation forest Fη,ΣT
for Example 1.

and the EGD

η : r(X, Y), r(X, Z) → Y = Z.

The derivation forest Fη,ΣT
is depicted in Figure 1. Note that the shaded nodes are not

part of the forest. The atom t(X, Y) is not added since the watched variable Y occurs

at a non-affected position, while the atom p(X) is not added since it does not contain

the watched variable Y .

It is not difficult to see that Q1 ⊆ΣT
Q2 and Q1 ⊆ΣT

Q3, where

Q1 : q(Y) ← r(X, Y), r(X, Z)
Q2 : q(Y) ← r(X, Y)
Q3 : q(Y) ← s(Y, X).

Consequently, Σ is non-conflicting.

Finiteness of the Derivation Forest. Let us now establish that the derivation forest

of an EGD under a set of IDs is always finite.

Proposition 1. Consider a set ΣT of IDs over a schema R, and an EGD η over R. The

derivation forest of η under ΣT is finite.

Proof. It suffices to show that on a certain path P of the derivation forest of η under ΣT

only finitely many non-Vη-isomorphic atoms can appear. Let η be of the form ϕ(X) →
Xi = Xj , and λ = {Xj → Xi}. Observe that two atoms a and b of P are Vη-

isomorphic iff a⋆ = b⋆, where a⋆ and b⋆ are the atoms obtained by replacing in a and b,

respectively, the variables that do not occur in λ(ϕ(X)) with the “don’t care” character

“⋆”. Therefore, the maximum number of non-Vη-isomorphic atoms that we can have on

P is |R| · (|S| + 1)w, where w is the maximum arity over all predicates of R, and S is

the set of symbols that can appear on P , that is, the variables and constants that appear

in the root node of P , and the constants that occur in ΣT . Since both R and ΣT are

finite, the claim follows.

Since the CQ containment problem under the class of IDs is decidable [14], we

immediately get that the non-conflicting condition as defined above is decidable.

Soundness and Completeness. We now establish that non-conflicting sets of IDs

and EGDs are indeed separable. Let us establish first an auxiliary technical lemma.

 100

Lemma 1. Consider a non-conflicting set Σ of IDs and EGDs over a schema R. If

chase(D, Σ) does not fail, then, for every database D for R, there exists a homomor-

phism h such that h(chase(D, Σ)) ⊆ chase(D, ΣT).

Proof (sketch). The proof is by induction on the number of applications of the (TGD

or EGD) chase rule. It is possible to show that, for each k � 0, there exists a homo-

morphism hk such that hk(chase [k](D, Σ)) ⊆ chase(D, ΣT), where chase [k](D, Σ)
is the initial finite part of the chase obtained by applying k times either the TGD or the

EGD chase rule. Thus, the desired homomorphism is eventually h =
⋃∞

i=0 hi.

Theorem 1. If a set Σ is non-conflicting, then it is also separable.

Proof. Let D be a database for R such that chase(D, Σ) does not fail. Clearly, by con-

struction, chase(D, Σ) satisfies all the dependencies in Σ. Therefore, chase(D, Σ) ∈
mods(D, Σ) ⊆ mods(D, ΣT). Since chase(D, ΣT) is a universal model of D w.r.t. ΣT

we immediately get that there exists a homomorphism h such that h(chase(D, ΣT)) ⊆
chase(D, Σ). On the other hand, Lemma 1 implies that there exists a homomorphism h′

such that h′(chase(D, Σ)) ⊆ chase(D, ΣT). Due to h and h′ we get that chase(D, Σ)
and chase(D, ΣT) are homomorphically equivalent. Thus, for every BCQ Q over R, it

holds that chase(D, Σ) |= Q iff chase(D, ΣT) |= Q, and the claim follows.

Query Answering under Non-Conflicting Sets. We conclude by investigating the

data and combined complexity of BCQ answering under non-conflicting sets. The data

complexity is calculated by considering only the data as input, while the combined

complexity by considering also the query and the dependencies as part of the input.

Theorem 2. Consider a BCQ Q over a schema R, a database D for R, and a non-

conflicting set Σ of IDs and EGDs over R. The problem whether D∪Σ |= Q is in AC
0

in data complexity, and is PSPACE-complete in combined complexity.

Proof (sketch). Suppose that chase(D, Σ) does not fail. By Theorem 1, we get that D∪
Σ |= Q, or, equivalently, chase(D, Σ) |= Q iff chase(D, ΣT) |= Q. It is well-known

that BCQ answering under IDs is in AC
0 in data complexity [3], and PSPACE-complete

in combined complexity [14]. Since ΣT is a set of IDs, providing that the chase does

not fail, the desired complexity follows. Since the problem whether chase(D, Σ) fails

is tantamount to BCQ answering under IDs (see, e.g., [6]), the claim follows.

5 Conclusions

We have addressed the problem of separability between TGDs and EGDs in the context

of ontological query answering. We have exhibited a sufficient, syntactically checkable

condition for separability for the case of IDs and general EGDs. Our non-conflicting

condition can be combined with existing techniques in order to capture additional cases

that involve functional dependencies which are not triggered during the construction

of the chase. In particular, can be combined with the non-conflicting notion proposed

 101

in [5] for general TGDs and FDs. In this case, we say that a set is non-conflicting if the

condition given in [5] is satisfied, or our non-conflicting condition is satisfied.

For simplicity reasons, in this work we considered only IDs. However, the non-

conflicting condition can be extended to the slightly more general class of linear TGDs,

i.e., TGDs with just one body-atom. This can be achieved by modifying the non-

conflicting condition in such a way that, instead of a homomorphism that maps the

head of a TGD σ to an atom a of the derivation forest, we need that head(σ) and a

unify. Then, we exploit the most general unifier of head(σ) and a.

Acknowledgements. The research leading to these results has received funding

from the European Research Council under the European Community’s Seventh Frame-

work Programme (FP7/2007-2013)/ERC grant agreement no. 246858 – DIADEM.

References

1. A. Calı̀, D. Calvanese, G. D. Giacomo, and M. Lenzerini. Accessing data integration systems

through conceptual schemas. In Proc. of ER, pages 270–284, 2001.

2. A. Calı̀, G. Gottlob, and M. Kifer. Taming the infinite chase: Query answering under expres-

sive relational constraints. In Proc. of KR, pages 70–80, 2008.

3. A. Calı̀, G. Gottlob, and T. Lukasiewicz. A general datalog-based framework for tractable

query answering over ontologies. In Proc. of PODS, pages 77–86, 2009.

4. A. Calı̀, G. Gottlob, and A. Pieris. Tractable query answering over conceptual schemata. In

Proc. of ER, pages 175–190, 2009.

5. A. Calı̀, G. Gottlob, and A. Pieris. Advanced processing for ontological queries. PVLDB,

3(1):554–565, 2010.

6. A. Calı̀, G. Gottlob, and A. Pieris. Query answering under expressive entity-relationship

schemata. In Proc. of ER, pages 347–361, 2010.

7. A. Calı̀, G. Gottlob, and A. Pieris. Query answering under non-guarded rules in Datalog+/-.

In Proc. of RR, pages 175–190, 2010.

8. A. Calı̀ and M. Kifer. Containment of conjunctive object meta-queries. In Proc. of VLDB,

pages 942–952, 2006.

9. A. Calı̀, D. Lembo, and R. Rosati. On the decidability and complexity of query answering

over inconsistent and incomplete databases. In Proc. of PODS, pages 260–271, 2003.

10. D. Calvanese, G. De Giacomo, D. Lembo, M. Lenzerini, and R. Rosati. Tractable reasoning

and efficient query answering in description logics: The DL-lite family. J. Autom. Reasoning,

39(3):385–429, 2007.

11. A. Deutsch, A. Nash, and J. B. Remmel. The chase revisisted. In Proc. of PODS, pages

149–158, 2008.

12. T. Eiter and M. Simkus. FDNC: Decidable nonmonotonic disjunctive logic programs with

function symbols. ACM Trans. Comput. Log., 11(2), 2010.

13. R. Fagin, P. G. Kolaitis, R. J. Miller, and L. Popa. Data exchange: Semantics and query

answering. Theor. Comput. Sci., 336(1):89–124, 2005.

14. D. S. Johnson and A. C. Klug. Testing containment of conjunctive queries under functional

and inclusion dependencies. J. Comput. Syst. Sci., 28(1):167–189, 1984.

15. M. Kifer, G. Lausen, and J. Wu. Logical foundations of object-oriented and frame-based

languages. J. ACM, 42(4):741–843, 1995.

16. D. Maier, A. O. Mendelzon, and Y. Sagiv. Testing implications of data dependencies. ACM

Trans. Database Syst., 4(4):455–469, 1979.

17. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking

data to ontologies. J. Data Semantics, 10:133–173, 2008.

 102

Keyword-based Search in Data Integration Systems⋆

Sonia Bergamaschi1, Elton Domnori1, Francesco Guerra1, Raquel Trillo Lado2, and

Yannis Velegrakis3

1 Università di Modena e Reggio Emilia, via Università 4, 41121 Modena, Italy

firstname.lastname@unimore.it
2 SID - University of Zaragoza, Marı́a de Luna, 1, 50018 Zaragoza, Spain

raqueltl@unizar.es
3 DISI - Università di Trento, Via Sommarive 14, 38123 Povo (TN), Italy

velgias@disi.unitn.eu

Abstract. In this paper we describe Keymantic, a framework for translating key-

word queries into SQL queries by assuming that the only available information is

the source metadata, i.e., schema and some external auxiliary information. Such

a framework finds application when only intensional knowledge about the data

source is available like in Data Integration Systems.

1 Introduction

One of the main motivations for supporting the research on data integration is to pro-

vide the user with a unique view synthesizing a set of distributed data sources. By

querying a unique integrated view, the user obtains an answer that is the union of the

results returned by the sources involved in the integration process. Since the benefits

of this approach for end users are firm, the research community has been focused on

techniques for building and querying the unified view [9] for over 20 years. Despite

the results obtained in the field, data integration systems are not really permeating the

real world, i.e., we register a low presence of data integration systems in real business

environments. We think that one of the reasons is that querying in such environments is

too complex for end users.

Data integration systems are typically queried by means of requests expressed in

the native query languages (in general structured query languages such as SQL, OQL,

SPARQL, ...). This is definitely a limit for a large exploitation of these systems: they

require skilled users and also impose on data integration systems some of the limita-

tions intrinsic to the query languages. A complete knowledge of the underlying data

structures and their semantics is needed to formulate queries into a structured query

language. Unfortunately, the former requires the user to deeply explore the structure of

the source, that is an error prone and time consuming process when a source is com-

posed of hundreds of unknown tables and attributes. The latter may be too large and too

⋆ Extended abstract of the paper “S. Bergamaschi, E. Domnori, F. Guerra, R. Trillo Lado, Y.

Velegrakis: Keyword Search over Relational Databases: a Metadata Approach, to appear at

SIGMOD 2011” - This work was partially supported by project “Searching for a needle in

mountains of data” (http://www.dbgroup.unimo.it/keymantic/).

complex to be communicated to the user. Understanding the semantics conveyed by the

unified view means to know both the semantics conveyed by the data sources involved

in the integration process and how the semantics of the local views are mapped to the

integrated view. Therefore, it is clear that such a requirement may nullify the whole

motivation for integrating sources: for users holding this knowledge the advantages of

working with an integrated source are highly lowered.

Keyword-based searching has been introduced as a viable alternative to the highly

structured query languages. A number of keyword searching systems over structured

data have been developed, e.g., BANKS, DISCOVER, DBXplorer, Prècis and many

others presented in various surveys [6, 11]. Their typical approach is to perform an off-

line pre-processing step that scans the whole instance data and constructs an index, a

symbol table or some structure which is later used during the run time to identify the

parts of the database in which each keyword appears. Once they discover it, they per-

form a path discovery algorithm to find the different ways that these parts are connected

(e.g., finding minimal joining networks, or Steiner trees).

Unfortunately, although keyword-based techniques can be very successful as local

database services, they cannot be easily applied in large Data Integration Systems. One

of the reasons is that the built index requires continuous maintenance since it is based

on data values that may frequently change. If the index is locally stored in the source,

it cannot be used to index the data of all the sources of a data integration system since

it may be under the responsibility of different owners. Furthermore, in data integration

systems, the data sources may not expose their whole data, but only portions of their

schema, thus making impossible to build an index over the instances. On the other

hand, integration systems rely on metadata, in the form of data types, lexical references,

mappings extracted from the sources to be integrated, meaningful for addressing the

solution of a keyword query, but that are not really exploited by the current keyword

based search engines.

To overcome the above issues, we introduce Keymantic[1, 2] a new framework for

keyword based searching on data integration systems that, in contrast to existing ap-

proaches, exploits intensional knowledge to transform keyword queries into semanti-

cally meaningful SQL queries that can be executed by the data integration system.

The structure of this paper is the following. Section 2 provides a motivating exam-

ple, Section 3 introduces our approach and Section 4 sketches out some conclusion and

future work.

2 Motivating Example

Let us assume that a virtual tourism district composed of a set of companies (travel

agencies, hotels, local public administrations, tourism promotion agencies) wants to

publish an integrated view of their tourism data about a location (see Figure 1). Key-

mantic allows users to query that data source with a two step process: firstly the key-

word query is analyzed for discovering its intended meaning, then a ranked set of SQL

queries, expressing the discovered meaning according to the database structure, is for-

mulated.

Each keyword represents some piece of information that has been modeled in the

database, but, depending on the design requirements of the data source, this piece might

 104

Person

Name Phone City Email

Saah 4631234 London saah@aaa.bb

Sevi 6987654 Auckland eevi@bbb.cc

Edihb 1937842 Santiago edibh@ccc.dd

Reserved

Person Hotel Date

Saah x123 6/10/2009

Sevi cs34 4/3/2009

Edihb cs34 7/6/2009

Hotel

id Name Address Service City

x123 Galaxy 25 Blicker restaurant Shanghai

cs34 Krystal 15 Tribeca parking Cancun

ee67 Hilton 5 West Ocean air cond. Long Beach

City

Name Country Description

Shanghai China ...

Cancun Mexico ...

Long Beach USA ...

New York USA ...

Booked

Person Rest Date

Saah Rx1 5/4/2009

Sevi Rx1 9/3/2009

Restaurant

id Name Address Specialty City

Rx1 Best Lobster 25, Margaritas Seafood Cancun

Rt1 Naples 200 Park Av. Italian New York

Fig. 1. A fraction of a database schema with its data.

have been modeled as data or metadata. Thus, the first task is to discover what each

keyword models in the specific data source and to which metadata / data may be as-

sociated to. The association between keywords and database needs to be approximate:

the synonymous and polysemous terms might allow the discovery of multiple intended

meanings, each one with a rank expressing its relevance. Let us consider, for example,

a query consisting of the keywords “Restaurant Naples”. For instance, a possible mean-

ing of the query might be “find information about the restaurant called Naples”. In this

case, the former keyword should be mapped into a metadata (the table Restaurant)

and the other one into a value of the attribute Name of the same table Restaurant.

A user might have in mind other meanings for the same keywords, for example, “find

the restaurants that are located in the Naples Avenue”, or “in the Naples city”, or “that

cook Naples specialties”. All these intended meanings give rise to different associations

of the keyword Naples; attributes Address, City or Specialty of the table Restau-

rant. This example shows also that keywords in a query are not independent: we expect

that the keywords express different features of what the user is looking for. For this

reason we expect that in our example “Naples” is a value referring to an element of

the Restaurant table. If the user had formulated the keyword query “Restaurant name

Naples”, the number of possible intended meanings would have been reduced, since the

keywords name forces the mappings of Naples into the attribute Name of the table

Restaurant. Notice that different intended meanings may generate a mapping from the

same keyword both into metadata and into data values. For example, in our database

restaurant is the name of a table, but it is also one of the possible values of the attribute

Service in the table Hotel. Finally, the order of the keywords in a query is also another

element to be taken into account since related elements are usually close. If a user asks

for “Person London restaurant New York” one possible meaning of the query is that the

user is looking for the restaurant in New York visited by people from London. Other

permutations of the keywords in the query may generate other possible interpretations.

The second step in answering a keyword query concerns the formulation of an SQL

query expressing one of the discovered intended meanings. In a database, semantic rela-

tionships between values are modeled either through the inclusion of different attributes

under the same table or through join paths across different tables. Different join paths

can lead to different interpretations. Consider, for instance, the keyword query “Person

105

Configurations C
ik

with i=1..n and k=1..mi

Query
j

Query
Keywords

+
Schema

Information

Query
1

Intrinsic Weight
Computation of

Schema Database Terms

Intrinsic Weight
Computation of

Value Database Terms

Selection of the
Best Mappings

to Schema Terms

SW

Generation
of the

Configurations

Mappings
M s

i
with i=1..n

Generation
of the

Interpretations

Interpretations

VW

.....

Contextualization
of VW

based on Ms
i

Pairs < M s
i ,
MV

ik
>

with i=1..n and k=1..m
i

Step 1 Step 2 Step 3 Step 4 Step 5

Selection of the
Best Mappings
to Value Terms

.....

Pairs < M s
i ,

VW
i
>

with i=1..n

.....

.....
.....

Fig. 2. Overview of the keyword query translation process

USA”. One logical mapping is to have the word Person corresponding to the table

Person and the word USA to a value of the attribute Country of the table City. Even

when this mapping is decided, there are different interpretations of the keywords based

on the different join paths that exist between the tables Person and City. For instance,

one can notice that a person and a city are related through a join path that goes through

the City attribute referring to the attribute Name in the table City (determining which

people in the database are from USA), through another path that is based on the table

Hotel (determining which people reserved rooms of Hotels in USA), and also through

another path that is based on the table Restaurant (determining which people are re-

served a table in an American restaurant).

Finding the different semantic interpretations of a keyword query is a combinatorial

problem which can be solved by an exhaustive enumeration of the different mappings

to database structures and values. The large number of different interpretations can be

brought down by using internal and external knowledge that helps in eliminating map-

pings that are not likely to lead to meanings intended by the user. For instance, if one of

the provided keywords in a query is ‘‘320-463-1463’’, it is very unlikely that this

keyword refers to an attribute or table name. It most probably represents a value, and

in particular, due to its format, a phone number. Similarly, the keyword ‘‘Bistro’’

in a query does not correspond to a table or an attribute in the specific database. Some

auxiliary information, such as a thesaurus, can provide the information that the word

“bistro” is typically used to represent a restaurant, thus, the keyword can be associated

to the Restaurant table.

3 From Keywords to Queries

The generation of interpretations (i.e. SQL queries) that most likely describe the in-

tended semantics of a keyword query is based on semantically meaningful configura-

tions, i.e. sets of mappings between each keyword and a database term. We introduce

the notion of weight that offers a quantitative measure of the relativeness of a keyword

to a database term, i.e., the likelihood that the semantics of the database term are the

intended semantics of the keyword in the query. The sum of the weights of the keyword-

database term pairs can form a score serving as a quantitative measure of the likelihood

of the configuration to lead to an interpretation that accurately describes the intended

 106

R1 ... Rn A
R1
1 . . . AR1

n1
. . . ARn

nn
A

R1
1 . . . AR1

n1
. . . ARn

nn

keyword1

keyword2

. . .

keywordk

Fig. 3. Weight table with its SW (light) and VW (dark) parts

keyword query semantics. The range and full semantics of the score cannot be fully

specified in advance. They depend on the method used to compute the similarity. This

is not a problem as long as the same method is used to compute the scores for all the

keywords.

The naive approach for selecting the best configurations is the computation of the

score of each possible configuration and then selecting those that have the highest

scores. Of course, we would like to avoid an exhaustive enumeration of all the possible

configurations, and compute only those that give high scores. The problem of comput-

ing the mapping with the maximum score without an exhaustive computation of the

scores of all the possible mappings is known in the literature as the problem of Bipar-

tite Weighted Assignments [5]. Unfortunately, solutions to this problem suffer from two

main limitations. First, apart from the mutual exclusiveness, they do not consider any

other interdependencies that may exist between the mappings. Second, they typically

provide only the best mapping, instead of a ranked list based on the scores.

To cope with the first limitation, we introduce two different kinds of weights: the in-

trinsic, and the contextual weights. Given a mapping of a keyword to a database term, its

intrinsic weight measures the likelihood that the semantics of the keyword is that of the

database term if considered in isolation from the mappings of all the other keywords

in the query. The computation of an intrinsic weight is based on syntactic, semantic

and structural factors such as attribute and relation names, or other auxiliary external

sources, such as vocabularies, ontologies, domains, common syntactic patterns, etc. On

the other hand, a contextual weight is used to measure the same likelihood but consid-

ering the mappings of the remaining query keywords. This is motivated by the fact that

the assignment of a keyword to a database term may increase or decrease the likeli-

hood that another keyword corresponds to a certain database term. As an example, for

the keyword query ‘‘Restaurant Name Naples’’ expressed on the database in

Figure 1, since the keyword ‘‘Naples’’ is right next to keyword Name, mapping the

keyword Name to the attribute Name of the table Restaurant makes more likely the

fact that the keyword Naples is a name value, i.e., should be mapped to the domain of

the attribute Name. At the same time, it decreases its relativeness to the other database

terms. To cope with the second limitation, we have developed a novel algorithm for

computing the best mappings. The algorithm is based on and extends the Hungarian

(a.k.a., Munkres) algorithm [4].

A visual illustration of the individual steps in the keyword query translation task is

depicted in Figure 2. A special data structure, called weight matrix (see Figure 3), plays

a central role in these steps. The weight matrix is a two-dimensional array with a row

for each keyword in the keyword query, and a column for each database term. The value

of a cell [i, j] represents the weight associated to the mapping between the keyword i
and the database term j. An Ri and ARi

j columns correspond to the relation Ri and

the attribute Aj of Ri, respectively, while a column with an underlined attribute name

107

ARi

j represents the data values that may be contained in the column Aj of table Ri,

i.e., its domain. Two parts (i.e., sub-matrices) can be distinguished in the weight matrix.

One corresponds to the database terms related to schema elements, i.e., relational tables

and attributes, and the other one corresponds to attribute values, i.e., the domains of the

attributes. We refer to database terms related to schema elements as schema database

terms (SW), and to those related to domains of the attributes as value database terms

(V W).

Intrinsic Weight Computation. The first step of the process is the intrinsic weight

computation. The output is the populated SW and V W sub-matrices. The computation

is achieved by the exploitation and combination of a number of similarity techniques

based on structural and lexical knowledge extracted from the data source, and on exter-

nal knowledge, such as ontologies, vocabularies, domain terminologies, etc. Note that

the knowledge extracted from the data source is basically the meta-information that the

source makes public, typically, the schema structure and constraints. In the absence of

any other external information, a simple string comparison based on tree-edit distance

can be used for populating the SW sub-matrix. For the V W sub-matrix the notion of

Semantic Distance [7] can always be used in the absence of anything else. As it happens

in similar situations [10], measuring the success of such a task is not easy since there is

no single correct answer. In general, the more meta-information has been used, the bet-

ter. However, even in the case that the current step is skipped, the process can continue

with the weight matrix where all the intrinsic values have the same default value.

Selection of the Best Mappings to Schema Terms. The intrinsic weights provide a first

indication of the similarities of the keywords to database terms. To generate the promi-

nent mappings, we need on top of that to take into consideration the inter-dependencies

among the mappings of the different keywords. We consider first the prominent map-

pings of keywords to schema terms. For that we work on the SW sub-matrix. Based on

the intrinsic weights, a series of mappings MS
1 ,MS

2 , . . . , MS
n , of keywords to schema

terms are generated. The mappings are those that achieve the highest overall score, i.e.,

the sum of the weights of the individual keyword mappings. The mappings are par-

tial, i.e., not all the keywords are mapped to some schema term. Those that remain

unmapped will play the role of an actual data value and they will be considered in a

subsequent step for mapping to value database terms. The selection of the keywords to

remain unmapped is based on the weight matrix and some cut-off threshold. Those with

a similarity below the threshold remain unmapped. For each mapping MS
i , the weights

of its SW matrix are adjusted to take into consideration the context generated by the

mapping of the neighboring keywords. It is based on the observation that users form

queries in which keywords referring to the same or related concepts are adjacent. The

generation of the mappings and the adjustment of the weights in SW are performed

by an adaptation of the Hungarian algorithm. In particular, the algorithm does not stop

after the generation of the best mapping to continues to the generation of the second

best, the third, etc. Furthermore, some of its internal steps have been modified so that

the weight matrix is dynamically updated every time that a mapping of a keyword to a

database term is decided during the computation. The output of such a step is an updated

weight matrix SWi and, naturally, an updated score for each mapping MS
i . Given the

updated scores, some mappings may be rejected. The selection is based on a threshold.

 108

There is no golden value to set the threshold value. It depends on the expectations from

the keyword query answering systems. The higher its value, the less the interpretations

generated at the end, but with higher confidence. In contrast, the lower the threshold

value, the more the mappings with lower confidence.

Contextualization of V W and selection of the Best Mappings to Value Terms. For

each partial mapping MS
i of keyword to schema terms generated in the previous step,

the mappings of the remaining unmapped keywords to value terms needs to be de-

cided. This is done in two phases. First, the intrinsic weights of the V W sub-matrix

that were generated in Step 1 are updated to reflect the added value provided by the

mappings in MS
i of some of the keywords to schema database terms. This is called

the process of contextualization of the V W sub-matrix, and it increases the weights of

the respective values terms to reflect exactly that. For example, in the keyword query

‘‘Name Alexandria’’ assume that the keyword Alexandria was found dur-

ing the first step to be equally likely the name of a person or of a city. If in Step 2

the keyword Name has been mapped to the attribute Name of the table Person, the

confidence that Alexandria is actually the name of a person is increased, thus, the

weight between that keyword and the value database term representing the domain of

attribute Name should be increased, accordingly. In the second phase, given an updated

V Wi sub-matrix, the most prominent mappings of the remaining unmapped keywords

to value database terms are generated. The mappings are generated by using again the

adapted technique of the Hungarian algorithm. The result is a series of partial mappings

MV
ik , with k=1..mi, where i identifies the mapping MS

i on which the computation of

the updated matrix V Wi was based. Given one such mapping MV
ik the value weights

are further updated to reflect the mappings of the adjacent keywords to value database

terms, in a way similar to the one done in Step 2 for the SW sub-matrix. The outcome

modifies the total score of each mapping MV
ik , and based on that score the mappings are

ranked.

Generation of the Configurations. As a fourth step, each pair of a mapping MV
ik to-

gether with its associated mapping MS
i is a total mapping of the keywords to database

terms, forming a configuration Cik. The score of the configuration is the sum of the

scores of the two mappings, or alternatively the sum of the weights in the weight matrix

of the elements [i, j] where i is a keyword and j is the database term to which it is

mapped through MV
ik or MS

i .

Generation of the Interpretations. Having computed the best configurations, the in-

terpretations of the keyword query, i.e., the SQL queries, can be generated. The score

of each such query is the score of the respective configuration. Recall, however, that

a configuration is simply a mapping of the keywords to database terms. The presence

of different join paths among these terms results in multiple interpretations. Different

strategies can be used to further rank the selections. One popular option is the length of

the join path [8] but other heuristics found in the literature [11] can also be used. It is

also possible that a same interpretation can be obtained with different configurations. A

post-processing analysis and the application of data-fusion techniques [3] can be used

to deal with this issue. We adopt a greedy approach that computes a query for every al-

ternative join path. In particular, we construct a graph in which each node corresponds

to a database term. An edge connects two terms if they are structurally related, i.e.,

109

through a table-attribute-domain value relationship, or semantically, i.e., through a ref-

erential integrity constraint. Given a configuration we mark all terms that are part of the

range of the configuration as “marked”. Then we run a breath-first traversal (that favors

shorter paths) to find paths that connect the disconnected components of the graph (if it

is possible). Then, the final SQL query is constructed by using the “marked” database

terms, and in particular, the tables for its from clause, the conditions modeled by the

edges for its where clause and the remaining attributes for its select clause. After that,

the process is repeated to find a different interpretation, that will be based on a dif-

ferent join path. The final order of the generated interpretations is determined by the

way the different paths are discovered and the cost of the configuration on which each

interpretation is based.

4 Conclusion and future work

We described a novel framework for keyword searching in relational databases. In con-

trast to traditional keyword searching techniques that have access to the actual data

stored in the database, our technique uses intensional knowledge such as schema in-

formation, semantic knowledge, rules specified by users, and techniques that exploit

common values and formats. The work opens many new challenging opportunities and

research directions, such as the exploitation of standard modeling practices to enhance

the configuration generation process and produce more meaningful configurations.

References

[1] S. Bergamaschi, E. Domnori, and Francesco. Keyword search over relational databases: a

metadata approach. In to appear in SIGMOD. ACM, 2011.

[2] S. Bergamaschi, E. Domnori, F. Guerra, M. Orsini, R. T. Lado, and Y. Velegrakis. Keyman-

tic: Semantic keyword-based searching in data integration systems. PVLDB, 3(2):1637–

1640, 2010.

[3] J. Bleiholder and F. Naumann. Data fusion. ACM Comput. Surv., 41(1), 2008.

[4] F. Bourgeois and J.-C. Lassalle. An extension of the Munkres algorithm for the assignment

problem to rectangular matrices. Communications of ACM, 14(12):802–804, 1971.

[5] R. Burkard, M. Dell’Amico, and S. Martello. Assignment Problems. SIAM Society for

Industrial and Applied Mathematics, Philadelphia, 2009.

[6] S. Chakrabarti, S. Sarawagi, and S. Sudarshan. Enhancing search with structure. IEEE Data

Eng. Bull., 33(1):3–24, 2010.

[7] R. Cilibrasi and P. M. B. Vitányi. The google similarity distance. IEEE Transactions on

Knowledge & Data Engineering, 19(3):370–383, 2007.

[8] Y. Kotidis, A. Marian, and D. Srivastava. Circumventing Data Quality Problems Using

Multiple Join Paths. In CleanDB, 2006.

[9] M. Lenzerini. Data integration: A theoretical perspective. In PODS, pages 233–246. ACM,

2002.

[10] E. Rahm and P. A. Bernstein. A survey of approaches to automatic schema matching. VLDB

Journal, 10(4):334–350, 2001.

[11] J. X. Yu, L. Qin, and L. Chang. Keyword Search in Databases. Synthesis Lectures on Data

Management. Morgan & Claypool Publishers, 2010.

 110

Managing and using context information within
the PerLa language
(extended abstract⋆)

F. A. Schreiber, L. Tanca, R. Camplani and D. Viganò

Politecnico di Milano
Dipartimento di Elettronica e Informazione

{schreibe,tanca,camplani}@elet.polimi.it
diego.vigano @mail.polimi.it

Abstract. Self-adaptability in pervasive real-world applications can be
achieved by adopting a context-aware middleware. In this paper, we pro-
pose a context-management extension to the PerLa language and mid-
dleware, which allows for: (i) gathering of data from the environment,
(ii) feeding this data to the internal context model and, (iii) once a con-
text is active, acting on the relevant resources of the pervasive system,
according to the chosen contextual policy.

Keywords: Pervasive system, context-awareness, hybrid intelligence, context
management.

1 Introduction

Pervasive Systems deploy devices which are spatially distributed and possibly
mobile, in order to monitor different kinds of physical phenomena for application
support. Context-awareness is a property inherent to an autonomic Pervasive
System and requires a clear definition of what context is and how the context
parameter values can be extracted from the real world. Context can in fact be
thought of as “any information that can be used to characterise the situation of
an entity” [5,3].
Differently from most of existing approaches, we separate the Operational Per-
vasive System and its Context Management System in two different layers, while
embedding in the same language the functionalities of both: a context model [2]
allows the representation of context in terms of observable entities, which, in
their turn, have some symbolic representation within the system and some of
which correspond to numerical values gathered from the environment sensors.
Gathering context data from the environment requires a simple interface, pos-
sibly based on a declarative approach [11,16], which, on the one side, interacts
with the network of highly heterogeneous physical devices and, on the other, is
correctly interfaced with the internal, symbolic representation of context. In liter-
ature, the context management systems can be classified considering the context

⋆ This work has been funded by the European Commission Programme IDEAS-ERC
Project 227077-SMScom.

model employed [3], the software architecture adopted [9] and the method used
to query the system [8], also called Context Query Language (CQL) [15]. From
the point of view of the architecture the choice lies between a centralised and
a distributed model. Most of the recent projects adopt a distributed architec-
ture (for example [1,7]), whose advantages lie essentially in a greater scalability
of the whole system. In [6] a centralised architecture is instead adopted. By
contrast, PerLa offers a distributed architecture which can be directly deployed
on capable nodes (or the nearest capable node in case of nodes with reduced
computational capability). Another point of analysis is represented by the CQL
adopted to query the system. A first approach is represented by the use of classi-
cal method calls directly on the deployed middleware. This is partially the case
of project [14], which also offers the publish/subscribe paradigm for querying
the system. Other projects introduce a relational (e.g.: SQL) intermediate layer
[6,10] (along with appropriate mapping mechanisms [12]) or XML-based query
languages [13,15]. A final approach is based on RDF languages [1,7]. The PerLa
language, instead, approaches the problem in a novel way introducing a unique
CQL that allows to gather data at the preferred granularity and to perform ac-
tions on the pervasive system simultaneously. Haghighi et al. [8] list a series of
characteristics that a CQL should implement: in the same paper it is shown that
both RDF and SQL-based languages behave efficiently for context management,
while the XML-based languages are more recommended to describe simple data
structures rather than complex knowledge. Project [15] has recently improved
the state of the art of this type of languages.
In this paper we present an extension of the PerLa language and middleware that
overcomes this limitation by introducing a query-based context management sys-
tem relying on the Context Dimension Tree (CDT) context model, introduced
in Section 2. First of all the language is extended in order to introduce, create
and maintain the CDT formalism into PerLa. On one hand this extension will
enable the designer to declare the envisaged contexts, while on the other hand
it will provide the possibility to define the actions that have to be performed
upon each context activation. In parallel, the middleware architecture is also
extended in order to manage the CDT structure, to verify context statuses and
to physically perform the corresponding actions. To explain the concepts intro-
duced in this paper we shall use a running example where a wine production
process is to be monitored. The attention will be focused on the transport phase
of the produced wine, as well as on some of the actors (farmers, oenologists and
truck drivers) that are involved in the process. The paper is then structured as
follows: in Section 2 the CDT context model is presented. Then, after a short
introduction to PerLa, in Section 3 we present the extension to the language
syntax used to create and manage contexts. Conclusions and future work are
discussed in Section 4.

2 The CDT model

In this section we quickly introduce a simplified version of the formalism (i.e.:
the context model [2]) we adopt to model the environment the pervasive system
is operating into. The basic idea is to represent the context in terms of a set of

 112

dimensions, used to capture different characteristics of the environment, and of
the admissible values (or concepts) that can be assumed by the dimensions. In
Figure 1 we present the context schema in the form of a Context Dimension Tree
(CDT) in its graphical notation for the wine monitoring example introduced in
Section 1. In particular we use black nodes for the dimensions and white nodes
for the values.

 !"# $%&'# (')

*('#&'#

+++++,-!./%++01#(21+3-&2'4!-/+5&-6#-++*-(7#-++8#2!"!1('/

87#-%#&/

Fig. 1. The CDT schema (for the wine production process)

The Role dimension describes the “actors” involved: Farmer, Oenologist
and Driver. The Phase dimension describes the phases of the wine produc-
tion process and can assume the values Growth, Ageing and Transport. The
third dimension is related to the risks to be kept under control, with the two
values (concepts) of Overheating, owing to exposure of wine bottles to sun-
light, and Disease which can affect the grapes. A context instance is then a
conjunction of propositions, i.e. Context ≡

∧
i,j(Dimensioni = V aluei,j). As

an example we consider the wine production process CDT and we define the
Transport Monitoring context. The bottled wine, in fact, must not be kept un-
der direct sunlight for more than a certain amount of time to avoid overheat and
a consequent alteration of the wine flavour: Transport Monitoring ≡ (Role =
Driver)∧ (Phase = Transport)∧ (Risk = Overheat). It is worth noticing that
not all possible sets of concepts are valid contexts: for instance the dimension
Role cannot assume simultaneously the Driver and Farmer values (the chil-
dren concepts of a dimension are always to be instantiated in mutual exclusion).
Invalid contexts are thus ruled out by appropriate constraints [2]. Once the con-
text schema has been defined in terms of symbolic observables (e.g. the Overheat
risk), it is possible to analyse how these can be mapped to numeric observables
(e.g.: temperature ranges), which are instantiated by retrieving them from the
pervasive system. The PerLa1 system, presented in the next section, allows to
perform this important task effectively and efficiently.

3 Managing context through PerLa

3.1 The language

As extensively presented in [16], PerLa is a framework to configure and manage
modern pervasive systems. Adopting a data-centric approach [11,4], it relies on a
query language using an SQL-like metaphor. PerLa queries allow to retrieve data
from the pervasive system, to prescribe how the gathered data have to be pro-
cessed and stored and to specify the behaviours of the devices. PerLa supports
three types of queries: the Low Level Queries (LLQs) define the behaviour of a

1 PerLa website: http://perlawsn.sourceforge.net/

 113

(homogeneous group of) node(s), specifying the data selection criteria, the sam-
pling frequency and the elaboration to be performed on sampled data. The High
Level Queries (HLQs) define the high-level elaboration involving data streams
coming from multiple nodes. Such queries specify operations on data streams.
Finally the Actuation Queries (AQs) provide the mechanisms to change parame-
ters of the devices or to send commands to actuators. A typical [16] PerLa LLQ,
deployed on a group of sensors, and used to gather data from the field is shown
below:

. . .
SELECT ID , temperature , humidity , l o ca t i on x , l o c a t i o n y
SAMPLING EVERY 1 m
EXECUTE IF EXISTS(temperature) AND i s i n v i n e y a r d (l o ca t i on x , l o c a t i o n y)
REFRESH EVERY 10m

PerLa is based on a middleware whose architecture exposes two main interfaces:
a high-level interface which allows query injection and a low-level interface that
provides plug&play mechanisms to handle devices. However, the PerLa language,
in its initial version, does not support the definition and the management of
context. To achieve our goal we have extended the original language with a
Context Language (CL), whose syntax has been divided into two parts, called
CDT Declaration and Context creation:

CDT Declaration This part allows the user to build the CDT for the specific
application:

CREATE DIMENSION <Dimension Name>
[CHILD OF <Parent Node>]
{CREATE CONCEPT <Concept Name> WHEN <Condition>
[EVALUATED ON <Low Level Query >]}∗

The CREATE DIMENSION clause is used to declare that a new dimension
must be added to a CDT, possibly as a child of a concept node (CHILD OF
clause). Once a dimension has been declared, it is possible to specify the values
it can assume, using the CREATE CONCEPT/WHEN pair. For each pair the
designer must specify the name and the condition for assuming the specified
values by means of numeric observables that can be measured from the envi-
ronment. We postpone the explanation of the EVALUATED ON clause to the
next Subsection, where it plays a fundamental role. The CDT of Section 2 for
the wine production process is specified by the following set of statements:

CREATE DIMENSION Role
CREATE CONCEPT Farmer WHEN g e t u s e r r o l e () =’ farmer ’
CREATE CONCEPT Oeno log i s t WHEN g e t u s e r r o l e () =’ o eno l og i s t ’
CREATE CONCEPT Driver WHEN g e t u s e r r o l e () =’ dr ive r ’

CREATE DIMENSION Risk
CREATE CONCEPT Disease WHEN g e t i n t e r e s t t o p i c ()=’ d i s ea s e ’
CREATE CONCEPT Overheat WHEN temperature > 30 AND br ightnes s >0.75;

CREATE DIMENSION Phase
CREATE CONCEPT Growth WHEN get phase ()=’growth ’
CREATE CONCEPT Ageing WHEN get phase ()=’ageing ’
CREATE CONCEPT Transport WHEN get phase ()=’ t ransport ’

This CDT is declared using an important feature of the PerLa language: the
get user role(), get phase() and get interest topic() functions are em-
ployed to retrieve context information that cannot be deduced from sensors

 114

readings, but have to do with other aspects of the application. This information
is typically gathered from some external XML source or database. This clearly
highlights how PerLa supports the passage from symbolic to numeric observable:
the Overheat symbolic value is in fact defined in terms of the Temperature and
Brightness physical quantities (thus numeric observables) that can be sampled
from the environment using very simple queries.

Context creation This section allows the user to declare a context from a
defined CDT and control its activation:

CREATE CONTEXT <Context Name>
ACTIVE IF <Dimension>=<Value> [AND <Dimension>=<Value>]∗
ON ENABLE <PerLa Query>
ON DISABLE <PerLa Query> /∗one−shot only ∗/
REFRESH EVERY <Period>

The CREATE CONTEXT statement is used to create a context instance in
PerLa and allows to associate a unique name to it. The ACTIVE IF statement
translates the Context ≡

∧
i,j(Dimensioni = V aluei,j) statement of Section 2

into PerLa. This statement is fundamental for the middleware in order to decide
if a context is active or not. The actions that must be performed in both these
situations must be specified using the ON ENABLE clause and are expressed
using any type of query exposed in Subsection 3.1. The ON DISABLE clause can
be coupled only with “one-shot” queries, that is, queries that are executed only
once upon deactivation of a context, and thus do not create conflicts with the
queries enabled by the next active contexts. The middleware will also perform
the necessary controls according to the condition specified in the REFRESH
clause that completes the syntax. In the next example we show how context
management statements and queries/actuation commands on the target system
are uniformly mixed in order to achieve a context-aware behaviour. For the
Transport Monitoring context we can use the following statements:

CREATE CONTEXT Transport Monitor ing
ACTIVE IF Phase = ’ transport ’ AND Role=’ dr ive r ’ AND Risk=’overheat ’
ON ENABLE:
SELECT temperature , gp s l a t i t ude , gp s l ong i tude
WHERE temperature > 30
SAMPLING EVERY 120 s
EXECUTE IF l o c a t i o n = ’ t ruck depar t ing zone ’

SET PARAMETER ’ alarm ’ = TRUE;
ON DISABLE:
DROP Transport Monitor ing ;
SET PARAMETER ’ alarm ’ = FALSE;
REFRESH EVERY 24 h ;

In this example, after creating the context, a very short LLQ is issued: the
SELECT clause specifies that both temperature and GPS location must be re-
trieved every two minutes (SAMPLING EVERY clause), while the WHERE
clause allows to filter the sampled values. The EXECUTE IF finally deploys the
query only on those devices located into the vineyard truck departing zone. This
query features also an actuation query (AQ) introduced by the SET PARAM-
ETER clause and is used to activate an alarm if the risk of overheat becomes
real.

 115

3.2 The middleware

The internal structure of the PerLa middleware as described in [16] has been
modified to support the Context Language (CL). The new architecture is char-
acterised by the introduction of a Context Manager (CM) in charge of: 1) cre-
ating and maintaining the CDT; 2) detecting which contexts are active or not
in a precise moment; 3) performing the correct actions expressed by the user
according to context statuses. In the following we analyse these steps.

Creation of the CDT During this phase all the necessary numeric observ-
ables (declared using the CREATE CONCEPT/WHEN clauses) are retrieved,
and the EVALUATED ON clause becomes important. In fact, as long as this
clause is unemployed, the CM executes a series of independent LLQs in order to
retrieve the necessary information from the pervasive system. The designer could
be interested in modifying this default behaviour, especially when the environ-
ment changes rapidly and the same observable is employed in different concepts
(leading thus to some inconsistencies using different LLQs). This clause is useful
also to introduce some optimisations (e.g.: discarding some unwanted devices).
For example, on the Overheat dimension:

CREATE CONCEPT Overheat WHEN temperature > 30 AND br i gh tne s s > 0 . 7 5 ;
EVALUATED ON:
SELECT temperature , b r i gh tne s s
EXECUTE IF l o c a t i o n=’ t ruck depar t ing zone ’ AND battery >0.7

In this example the observables temperature and brightness are sampled si-
multaneously using one single query (instead of two independent LLQs). More-
over the query is executed only on those devices that are located in the truck
departing zone and whose battery power is enough to operate efficiently (EXE-
CUTE IF clause); notice that functional and non-functional data are collected
in the same way. Once all the results are available (independently of the pres-
ence of the EVALUATED ON clause) the system can create a series of tables
(one for each dimension with concepts nodes) that contain a column for every
attribute expressed in the CREATE CONCEPT/WHEN clauses. The table re-
ports also the IDs of the devices that were taken into account during the retrieval
phase. Every table entry then represents the actual value (sampled from the en-
vironment) and the device that physically produced it. If we consider again the
Overheat dimension and supposing that the computation of the relative EVAL-
UATED ON returned only the 1,3,4 IDs, a table for this dimension could be the
following:

ID temperature brightness

1 28 0.60
3 31 0.71
4 33 0.80

Table 1. Table for the Overheat dimension

Once all the necessary information has been gathered it is possible to evaluate
every condition expressed by the WHEN clauses used during the CDT decla-
ration. In particular, simply looking up every table, the CM assigns to a CDT
concept node the ID(s) of those devices whose sampled values satisfy the condi-
tion expressed by theWHEN clause of the concept definition. When this phase is

 116

concluded the system knows which devices are in the situation described by the
concepts of every dimension of the CDT. For example, referring to the Overheat
in Table 1, the CM can deduce that only sensor number 4 is detecting the risk
of overheat since both temperature>30 and brightness>0.75 conditions are true
simultaneously, while this is not the case of sensors number 3 and 1. However
it might happen that a WHEN clause be not satisfied by any of the sampled
attributes: in this case no ID can be associated to the corresponding CDT con-
cept. Analogously an ID can appear in more than one concept (as long as they
are not children of the same dimension): this is the case of modern “intelligent”
sensors that can sample more than one attribute simultaneously. With similar
computations the CM also selects the concepts that correspond to the results
calculated by the static functions, such as get user role().

Context detection The purpose of this phase is to discover if one of the
declared contexts has become active or has been deactivated. Remember that a
context is active if the dimensions that define it assume the values specified by
the Context ≡

∧
i,j(Dimensioni = V aluei,j) statement. Considering also the

results of the static functions, the system recognises as active all the contexts
whose CDT concepts contain a not-empty device list. In fact, from the CM point
of view, if one ID has been associated with a concept it means that, for at least
one device, a CDT dimension is currently assuming that value. If this situation
is true for every < Dimension >=< V alue > used to define a context C then
the environment is exactly in the situation expressed by C, and C is considered
as active.

Performing context actions Once a context has been recognised as active,
the CM simply injects the query specified by the ON ENABLE clause into the
middleware dedicated components [16]. At this point the execution flow equals
the one of any other query that is manually injected into the system, and is thus
completely controlled and managed by the middleware dedicated components.

4 Conclusions and future works

In this paper we have presented an extension to the PerLa system in order to
support the definition and management of contexts, using the CDT [2] as a for-
malism to model the environment. Next steps of our work are focused on further
system optimizations and, since more than one context could be simultaneously
active, on conflict detection and resolution.

References

1. J. Euzenat, J. Pierson and F. Ramparany. Dynamic context management for

pervasive applications, volume 23. Cambridge Journals, 2008.

2. C. Bolchini, C.A. Curino, E. Quintarelli, F.A. Schreiber, and L. Tanca. Context

information for knowledge reshaping. Intl. Journal of Web Engineering and Tech-

nology, 5(1):88–103, February 2009.

 117

3. C.Bolchini, C.A. Curino, E. Quintarelli, F.A. Schreiber, and L.Tanca. A data-

oriented survey of context models. ACM SIGMOD Record, 36(4):19–26, Dec 2007.

4. D. Chu, A. Tavakoli, L. Popa, and J. Hellerstein. Enterely declarative sensor

network systems. In Proc. VLDB ’06, pages 1203–1206, 2006.

5. A.K. Dey. Understanding and using context. Personal Ubiquitous Comput., 5(1):4–

7, 2001.

6. P. Fahy and S. Clarke. CASS - a middleware for mobile context-aware applications.

In Workshop on Context Awareness, MobiSys, 2004.

7. T. Gu, H.K. Pung, and D.Q. Zhang. A service-oriented middleware for building

context-aware services. J. Netw. Comput. Appl., 28(1):1–18, 2005.

8. P.D. Haghighi, A. Zaslavsky, and S. Krishnaswamy. An evaluation of query lan-

guages for context-aware computing. In Database and Expert Systems Applications,

2006. DEXA ’06. 17th International Conference on, pages 455 –462, 2006.

9. J. Hong, S. Eui-ho, and K. Sung-Jin. Context-aware systems: A literature review

and classification. Expert Syst. Appl., 36(4):8509–8522, 2009.

10. G. Judd and P. Steenkiste. Providing contextual information to pervasive comput-

ing applications. In Pervasive Computing and Communications, 2003. (PerCom

2003). Proceedings of the First IEEE International Conference on, pages 133 –

142, 23-26 2003.

11. S.R. Madden, M.J. Franklin, J.M. Hellerstein, and W. Hong. TinyDB: an acquisi-

tional query processing system for sensor networks. ACM Trans. Database Syst.,

30(1):122–173, 2005.

12. T. McFadden, K. Henricksen, and J. Indulska. Automating context-aware applica-

tion development. In UbiComp 1st International Workshop on Advanced Context

Modelling, Reasoning and Management, pages 90–95, 2004.

13. D. Nicklas, M. Grossmann, J. Minguez, and M. Wieland. Adding high-level rea-

soning to efficient low-level context management: A hybrid approach. In Pervasive

Computing and Communications, 2008. PerCom 2008. Sixth Annual IEEE Inter-

national Conference on, pages 447–452.

14. H. Peizhao, J. Indulska, and R. Robinson. An autonomic context management

system for pervasive computing. In Pervasive Computing and Communications,

2008. PerCom 2008. Sixth Annual IEEE International Conference on, pages 213

–223, mar. 2008.

15. R. Reichle, M. Wagner, M.U. Khan, K. Geihs, M. Valla, C. Fra, N. Paspallis, and

G.A. Papadopoulos. A context query language for pervasive computing environ-

ments. In Pervasive Computing and Communications, 2008. PerCom 2008. Sixth

Annual IEEE International Conference on, pages 434 –440, 2008.

16. F.A. Schreiber, R. Camplani, M. Fortunato, M. Marelli, and G. Rota. PerLa:

A language and middleware architecture for data management and integration

in pervasive information systems. IEEE Transactions on Software Engineering,

(PrePrints), 2011.

 118

Querying Compressed Knowledge Bases in
Pervasive Computing

Eugenio Di Sciascio1, Michele Ruta1, Floriano Scioscia1, and Eufemia Tinelli2

1 Politecnico di Bari, Via Re David 200, I-70125 Bari, Italy,
[disciascio, m.ruta, f.scioscia]@poliba.it,

2 Universitá degli Studi di Bari, Via Orabona 4, I-70125 Bari, Italy,
tinelli@di.uniba.it

Abstract. In the so-called Semantic Web of Things (SWoT), annotated
information is tied/derived to/from micro-devices, such as RFID tags
and wireless sensors, deployed in an environment. Compression tech-
niques are so needed, due to the verbosity of semantic XML-based lan-
guages. Beyond compression ratio, query efficiency is a key aspect for
knowledge discovery in mobile ad-hoc scenarios where resources are con-
strained and topology is unpredictable. This paper proposes a querying
schema for OWL knowledge bases, serialized in RDF/XML syntax and
homomorphically compressed. The final goal is to allow query evaluation
without requiring decompression. Algorithms are presented to prove the
feasibility of the proposed approach, while practical examples highlight
its usefulness.

1 Introduction and Motivation

In pervasive computing, several factors make information availability as unpre-
dictable: network topology evolution due to node mobility, range limitations
and inherent unreliability of wireless communications, node failure due to en-
ergy depletion. Thus, approaches based on centralized information storage and
management are impractical. Several proposals for collaborative, dynamic re-
source discovery in ad-hoc networks can be found in literature. In some of them
the exploitation of semantics allows to enhance retrieval effectiveness also cop-
ing with volatility and unpredictability. The so-called Semantic Web of Things
(SWoT) aims at the integration of Semantic Web and pervasive computing tech-
nologies, in order to associate semantically rich information to real-world objects,
locations and events. Data is derived and/or carried by inexpensive, disposable
and unobtrusive micro-devices, such as Radio Frequency IDentification (RFID)
tags and wireless sensors, attached to everyday items or deployed in given en-
vironments. Due to power, size and cost constraints, they are usually equipped
with little or no processing capabilities, very small storage and short-range, low-
throughput wireless links. Data should be extracted and processed by agents on
mobile computing devices, through wireless ad-hoc networks.

According to Linked Data best practices, information resources in the Seman-
tic Web should be denoted by dereferenceable URIs (Uniform Resource Identi-
fiers) and annotated in RDF (Resource Description Framework, http://www.w3.

2

org/TR/rdf-primer/) w.r.t. an RDF Schema (http://www.w3.org/TR/rdf-schema/)
or OWL (Web Ontology Language, http://www.w3.org/TR/owl2-overview/)
ontology [1]. Language specifications include a standard XML serialization syn-
tax. Adopted knowledge representation models are grounded on formal, logic-
based semantics. Query languages, e.g., SPARQL (SPARQL Protocol And RDF
Query Language, http://www.w3.org/TR/rdf-sparql-query/), are defined to ex-
tract and combine asserted information, while reasoning engines can perform
automated inference of knowledge entailed by a given Knowledge Base (KB).

One of the most important issues restraining a coherent development of the
SWoT vision is the verbosity of the adopted XML-based languages: it is a signif-
icant hindrance to efficient storage and transmission of semantic annotations, so
that compression techniques become essential. Furthermore, when evaluating en-
coding algorithms from the SWoT perspective, traditional metrics such as com-
pression ratio and speed are not enough: efficiency and effectiveness of queries
on compressed data are critical aspects. Particularly, compression schemes al-
lowing to directly evaluate queries on encoded annotations, without full decom-
pression [2, 3], can be very useful. Unfortunately, so far research has been fo-
cused on data extraction from generic structured documents referred to an XML
Schema. Hence, main motivation for the present work is that efficient execution
of semantic-based queries on compressed KB fragments (ontology segments or
resource annotations) can significantly enhance resource discovery capabilities in
mobile contexts. So this paper introduces a formal framework for querying OWL
Knowledge Bases, serialized in RDF/XML and encoded with COX (Compres-
sor for Ontological XML-based languages) [4], which exploits the homomorphism
property to preserve document structure during compression. Algorithms are de-
fined for the execution of most common elementary queries in the Semantic Web
literature. Main contribution is in demonstrating both feasibility and soundness
of such general-purpose semantic-based interrogations for on-the-fly knowledge
extraction from compressed KBs. Several possibilities are opened for further ap-
plied research, devoted to support the integration in high-level query languages
(e.g., SPARQL) and inference services by simply and properly combining the
proposed query building blocks.

The remaining of the paper is structured as follows. Technical background
about KB compression is briefly recalled, before discussing the proposed ap-
proach in Section 2, while a case study in Section 3 provides a toy example to
highlight usefulness of the proposal. After reporting on relevant related work in
Section 4, Section 5 closes the paper.

2 Framework

2.1 Background

Lossless compression is based on substitution of symbols in the input message
with code words, according to a statistical model for the input source. Huffman
coding and arithmetic encoding [5] are two fundamental techniques. The for-
mer exploits a code table (the huffman tree), derived from symbol frequencies.

 120

3

Widespread universal compression tools gzip (http://www.gzip.org/) and bzip2
(http://bzip.org/) combine Huffman coding with pre-processing input transfor-
mations (Lempel-Ziv LZ77 algorithm and Burrows-Wheeler transform, respec-
tively); the latter has better compression rate but it is also slower. In arithmetic
encoding, instead, the whole message is represented by a real number in the
[0, 1) interval. Disjoint sub-intervals are assigned to all possible symbols, whose
length is proportional to symbol frequency. An input message is then mapped
to an interval I as follows: at the beginning, I = [0, 1); for each symbol S, I is
reduced proportionally to the sub-interval of S. At the end, any value in I will
unambiguously encode the sequence of symbols in the message.

Since Semantic Web languages are based on XML syntax, XML-specific al-
gorithms can achieve higher compression rates than universal ones, by exploiting
inherent syntactic constraints. An important property is homomorphism [2]: ho-
momorphic compression preserves the structure of the original XML data. That
may allow to evaluate queries directly on compressed formats, by detecting docu-
ment pieces which satisfy given query conditions without preliminary decompres-
sion of the whole document. XGrind [2] and XPress [3] are relevant homomor-
phic compression approaches, adopting Huffman coding and Reverse Arithmetic
Encoding (RAE), respectively. They achieve high query performance for com-
pressed XML data by virtue of homomorphism; compression rates, though, are
lower than the best non-homomorphic XML compression algorithms.

COX (Compressor for Ontological XML-based languages) [4] is adopted here
as reference format for querying compressed XML-based semantic annotations. It
exploits different solutions to encode data structures (XML tags, attributes) and
data (attribute values), in a two-step compression process. For data structures,
a RAE variant is used. For attribute values, a dictionary is used to map the most
frequent strings to 1-byte codes. COX deals with tag and attribute names in the
same way. Attributes are distinguished by a “@” prefix. Therefore, in the rest of
the section the word “tag” will refer equivalently to a tag or to an attribute.

In the first step, the XML document is parsed and statistics are gathered.
After parsing, frequency of each tag name is computed as ratio between the num-
ber of occurrences of the tag itself and the total document tags. The [d,D) =
[1.0 + 2−7, 2.0 − 2−15) interval is then split in disjoint sub-intervals, assigning
slightly longer sub-intervals to very rare tags while preserving proportionality
with respect to frequency. That avoids encoding errors for tags with a very low
frequency. All values representing opening tags fall in the interval [d,D). The
interval [1.0, d) is reserved to encode closing tags. Since every possible value is
strictly between 1.0 and 2.0, the first byte will always be 011111112 in 32-bit
floating point representation, so it can be truncated without loss of information
[3]. After the first step a tag header is written at the beginning of the output
file. It contains a sequence of records composed by: 1 byte for the length of the
tag name; the tag name; 3 bytes (after truncation) for encoding the minimum
value of the sub-interval related to the tag. The statistic collection for text string
frequencies is performed concurrently with the analysis of document structure:
strings with both length and frequency higher than heuristic thresholds are en-

 121

4

coded. At the end of the first step, a value header is written after the tag header.
It consists of a sequence of strings, separated by the ffh character. The corre-
sponding codes are single-byte values from 00h to fdh and they are assigned to
strings in progressive order, hence they can be omitted in the header.

In the second step, the body of the output file is produced. Opening and
closing tags, attributes and attribute values are encoded in the same order as
they appear in the input document to preserve homomorphism. Each tag T
is encoded by applying RAE: as input message, the sequence of tag names is
considered, starting with T and going toward its ancestors (hence the adjective
“reverse”) up to the root XML tag. The sub-interval corresponding to this tag
path (named simple-path) is computed; then its minimum limit is represented as
a 32-bit floating point value and the two central bytes are taken to encode T (the
loss of precision due to discarding the least significant byte of the mantissa does
not prevent a correct tag identification). Finally, an attribute value is processed
as follows: if it belongs to the dictionary produced in the first step, it is replaced
by its 1-byte code followed by the delimiter feh, otherwise the string is copied
to output, followed by the delimiter ffh.

2.2 Querying Approach

In the proposed framework, the classical KB definition K = 〈T ,A〉 is adopted,
where the TBox T refers to the ontological knowledge, and the ABox A specifies
the assertional one. The framework deals with KBs in an OWL-DL subset whose
characteristics are:

– T is a simple TBox, i.e., a set of Primitive Concept Specifications (A ⊑ B);
– object properties, data properties and disjoint concepts sets can be defined;
– A is a role-free ABox, i.e., it is a finite set of individuals defined as instances

of a general concept expression C without binary relations between indi-
viduals. C can be a conjunction of atomic concepts, unqualified existential
quantifications, number restrictions and universal quantifications.

The adoption of a role-free ABox allows to reduce reasoning on assertional
knowledge to reasoning on ontological one. Moreover, the selected OWL-DL
subset ensures a good trade-off between expressiveness and computational com-
plexity in real applications, as discussed in [6]. Both keyword-based search and
a set of path-based queries will be proposed, in order to obtain useful classical
inferences on T and query answering on A. In what follows, it will be shown
how, starting from a minimum query set, several other queries can be incremen-
tally built. In fact, the proposed querying approach can be used to cope with
non-standard inference services in [7, 6]; deeper discussion is beyond the scope
of this work. With reference to TBox reasoning, a set of path-based queries is
presented, most of which are exploited in [8]:

– parents(A) - it retrieves all the concepts B such that A is direct sub-class of
B. Obviously, it is possible to retrieve all the ancestors B of A recursively
applying the parent primitive to B until B is different from Top concept.

 122

5

Fig. 1. Instance description in OWL and graph-based representation

– children(A) - it retrieves all the concepts B such that B is direct sub-class
of A. Also in this case it is possible to retrieve all the descendants B of A
applying recursively the children primitive to B until B is different from
Bottom concept.

– properties(A) - it retrieves all the properties P such that A is domain of P .
– leaves(A) - it retrieves all the concepts B as most specific of A. More for-

mally, leaves(A) = {B|B = subClassOf(A)∧¬∃B′ : (B′ = subClassOf(A)∧
B′ = subClassOf(B))}.

With reference to ABox reasoning, two query models are presented: (i) entity-
based search, implemented by means of string matching on the required concepts
and their descendants, and (ii) path-based queries. The former is useful when the
domain knowledge organization is unknown. The latter can be considered as a
solution to the classical query answering problem. Note that a KB instance can
be seen as graph partition reflecting the representational model used in COX
algorithm (see the example in Figure 1). Some nodes can be distinguished as
having the same depth w.r.t. document root (i.e., rdf:RDF tag), and some other
ones are in “partial order” among them. Hence, with reference to the graph in
Figure 1, owl:Restriction tag directly precedes owl:allValuesFrom tag (i.e.,
one hop of distance), while owl:allValuesFrom and owl:onProperty tags are
at the same depth level.

The proposed query engine refers to the RDF/XML serialization recom-
mended by OWL 2 language specifications. The support for all syntactic variants
of RDF/XML is not explicitly dealt with.

Primitives. The following simple-paths will be referenced in query execution
algorithms to find elements in the RDF model. For reader’s convenience, they
are not reported in reverse order.

P1 rdf : RDF → owl : Class → @rdf : about
P2 rdf : RDF → owl : ObjectProperty → @rdf : about
P3 rdf : RDF → owl : Class → rdfs : subClassOf → @rdf : resource
P4 rdf : RDF → owl : ObjectProperty → rdfs : domain → @rdf : resource
P5 rdf : RDF → rdf : Description → @rdf : about
P6 rdf : Description → rdf : Type → owl : Class → owl : IntersectionOf →

owl : Restriction → owl : onProperty → @resource

 123

6

P7 rdf : Description → rdf : Type → owl : Class → owl : IntersectionOf →
owl : Restriction → owl : onProperty → owl : allV aluesFrom →
owl : Class → @rdf : about

P8 rdf : Description → rdf : type → owl : Class → owl : intersectionOf

→ rdf : Description → @rdf : about

Query execution is based on a set of primitives for accessing COX compressed
documents, whose structure, as said, consists of a tag header HT , a value header
HV and a body B. The primitives are listed in Table 1 and explained hereafter.
HT , HV , B are supposed to be always accessible. Data complexity characteriza-
tion is provided, along with required (read-only) accesses w.r.t. input size.

– lookupTag searches for a tag name in HT ; if found, it returns its associated
interval, else it returns null.

– lookupValue searches for a string value in HV ; if found, it returns its associ-
ated 1-byte code, else it returns the value of the input argument.

– lookupValueLike searches for HV within strings containing the input ar-
gument; it returns the (possibly empty) set of 1-byte codes associated to
matching strings.

– lookupCode searches for a code in HV ; if found, it returns its associated
string, else it returns null.

– computeSimplePath computes the simple path interval; it uses the arithmetic
encoding algorithm described in Section 2.1 and requires a lookupTag call
for each element in the simple path.

– findPathsWithValue takes in input an interval i and a string value v; it gets
c := lookupV alue(v), then it scans B to find all occurrences of the simple
path encoded by i followed by c; they are returned as positions (in bytes)
from the B beginning.

– findPathsWithValueLike is similar to the previous primitive. It takes in input
an interval i and a string value v, and it scans B to find all occurrences of
the simple path encoded by i followed by a string containing v; they are
returned as positions (in bytes) from the B beginning.

– getValuesAfter takes in input an interval i and a position n; it scans the
document from position n, up to the end of the related XML element. It
returns a (possibly empty) set of string values following attributes encoded
with a value in i.

– getValuesBefore scans the document backwards from position n up to the
beginning of the nth XML element.

Queries. Algorithm 1 and Algorithm 2 exploit simple-paths P1 and P3 and
COX access primitives to find parents and children of a given class, respectively.
Algorithm 3 (resp. 4) calls Algorithm 1 (resp. 2) to find the class ancestors (resp.
descendants). In order to find leaves of a given class the previous algorithms have
to be exploited, as reported in Algorithm 5. Algorithm 6 uses simple-path P4 to
look up for a domain relationship between the input class and a property name,
then P2 to find the property name by scanning the compressed document back-
wards. Algorithm 7 performs keyword-based search using partial string matching
both in the document header and body. Finally, Algorithm 8 finds the ABox in-
dividuals that are instances of a class intersection.

 124

7

Name Input Output Complexity

lookupTag(t) tag name t interval or null O(|HT |)
lookupV alue(v) string value v code of v or v itself O(|HV |)
lookupV alueLike(v) string value v (possibly empty) set of

codes of strings contain-
ing v

O(|HV |)

lookupCode(c) code c between 0 and 253 string at position c in
HV or null

O(|HV |)

computeSimplePath(P) simple path P interval or null O(|P | × |HT |)
findPathsWithV alue(i, v) interval i of simple path,

string value v
(possibly empty) set of
occurrences, as positions
from start of document

O(|B| + |HV |)

findPathsWithV alueLike(i, v) interval i of simple path,
string value v

(possibly empty) set of
occurrences, as positions
from start of document

O(|B|)

getV aluesAfter(i, n) interval i, position n (possibly empty) set of
strings

O(|B| + |HV |)

getV aluesBefore(i, n) interval i, position n (possibly empty) set of
strings

O(|B| + |HV |)

Table 1. Access primitives for a COX compressed document

Algorithm 1 parents(a)
Require: a class name, P1 and P3 simple-paths
Ensure: P set of parents of a
1: P := ∅
2: i1 := computeSimplePath(P1)
3: i2 := computeSimplePath(P3)
4: N := findPathsWithV alue(i1, a)
5: for all n ∈ N do

6: P := P ∪ getV aluesAfter(i2, n)

7: end for

Algorithm 2 children(a)
Require: a class name, P1 and P3 simple-

paths
Ensure: C set of children of a
1: C := ∅
2: i1 := computeSimplePath(P3)
3: i2 := computeSimplePath(P1)
4: N := findPathsWithV alue(i1, a)
5: for all n ∈ N do

6: C := C ∪ getV aluesBefore(i2, n)

7: end for

Algorithm 3 ancestors(a)
Require: a class name
Ensure: A set of ancestors of a
1: A := ∅
2: P := parents(a)
3: A := P
4: for all p ∈ P do

5: A := A ∪ ancestors(p)

6: end for

Algorithm 4 descendants(a)
Require: a class name
Ensure: D set of descendants of a
1: D := ∅
2: C := children(a)
3: D := C
4: for all c ∈ C do

5: D := D ∪ descendants(c)

6: end for

Algorithm 5 leaves(a)
Require: a class name
Ensure: L set of leaves of a
1: L := ∅
2: C := children(a)
3: if C == ∅ then

4: L := L ∪ {a}
5: else

6: for all c ∈ C do

7: L := L ∪ leaves(c)
8: end for

9: end if

Algorithm 6 properties(a)
Require: a class name, P2 and P4 simple-

paths
Ensure: P list of properties having a as domain
1: P := ∅
2: i1 := computeSimplePath(P4)
3: i2 := computeSimplePath(P2)
4: C := ancestors(a) ∪ a
5: for all c ∈ C do

6: N := findPathsWithV alue(i1, c)
7: for all n ∈ N do

8: P := P ∪ getV aluesBefore(i2, n)
9: end for

10: end for
3 Case Study

In order to clarify how the proposed framework works and how the different query
models can be used, a simple case study in RFID supply chain management is

 125

8

Algorithm 7 keyword −
based search(A1, . . . , An)
Require: a1, . . . , an names to search, P1 simple path
Ensure: C set of classes syntactically similar to

a1, . . . , an

1: C := ∅
2: i := computeSimplePath(P1)
3: for k = 1 to n do

4: V := lookupV alueLike(ak)
5: for all v ∈ V do

6: if v! = null then

7: n := findPathsWithV alue(i, v)
8: if n! = ∅ then

9: C := C ∪ {lookupCode(v)}
10: end if

11: else

12: n := findPathsWithV alueLike(i, v)
13: if n! = ∅ then

14: C := C ∪ {v}
15: end if

16: end if

17: end for

18: end for

Algorithm 8 entity −
based search(a1, . . . , an)
Require: a1, . . . , an classes names, P5

and P8 simple paths
Ensure: Ins list of individuals instance

of the intersection of a1, . . . , an

1: Ins := ∅
2: i1 := computeSimplePath(P8)
3: i2 := computeSimplePath(P5)
4: for 1 = 1 to n do

5: Ci := descendants(ai) ∪ {ai}
6: for all c ∈ Ci do

7: N :=
findPathsWithV alue(i1, c)

8: for all n ∈ N do

9: Insi := Insi ∪
getV aluesBefore(i2, n)

10: end for

11: end for

12: end for

13: Ins := Ins1 ∩ . . . ∩ Insn

considered, where each RFID tag stores a compressed semantic annotation of
the product/stock it is attached to. In [6], backward-compatible extensions of
EPCglobal RFID tag data structure were devised to accommodate an RDF
product description, that could be read by means of standard RFID reader-tag
air interface protocol. However, the case study concerns semantic-based queries
upon KB in compressed COX format at a logical level, thus it can be applied to
any physical data storage model.

Let us consider a large distribution warehouse, receiving several kinds of
products manufacturers. A truck fleet is used to deliver products toward sale
points. Each truck is endowed with a mobile computing device with embed-
ded semantic-enabled RFID reader and on-board query processing capabilities.
When a product is loaded into the truck storage compartment, the reader ex-
tracts the compressed annotation from the RFID tag of the product, and queries
it in order to check: (i) if the product type is compatible with those the truck
is allowed to transport and (ii) if characteristics of the storage compartment are
adequate for the product (e.g., lighting, humidity, temperature and any spe-
cial storage or security equipments). Any incompatibility would likely indicate
an error in truck assignment or product routing within the warehouse, hence it
must be discovered immediately, through on-the-fly semantic query processing.

A stock S of Cavendish bananas is loaded on a truck T , which is allowed to
transport fruit. Storage compartment of T provides no thermostat, hence it can
only keep products at room temperature. S has an RFID tag with the compressed
semantically annotated product description, expressed w.r.t. a suitable product
ontology. Let us suppose that the product annotation coincides with Figure
1 and that the following assertions are in the reference ontology; Notation3
(http://www.w3.org/DesignIssues/Notation3.html) is adopted here for reader’s
convenience:

 126

9

Algorithm 9 checkUniversalRestriction(p, f)
Require: p property, f atomic filler, P6, P7 simple-paths
Ensure: return true if the individual contains a ∀p.f restriction, false otherwise
1: i1 := computeSimplePath(P6)
2: i2 := computeSimplePath(P7)
3: D := descendants(f) ∪ {f}
4: N := findPathsWithV alue(i1, p)
5: for all n ∈ N do

6: V := getV aluesAfter(i2, n)
7: for all v ∈ V do

8: if v ∈ D then

9: return true
10: end if

11: end for

12: end for

13: return false

@prefix rdfs: <http://www.w3.org/2000/01/rdf-schema#> .

@prefix o: <http://sisinflab.poliba.it/food.owl#> .

o:Banana rdfs:subClassOf o:Fruit .

o:Uncontrolled_Temperature rdfs:subClassOf o:Temperature .

o:Room_Temperature rdfs:subClassOf o:Uncontrolled_Temperature .

o:Storage_Temperature rdfs:range o:Temperature .

Entity-based and keyword-based search - According to Algorithm 8, the
computing device embedded in the truck runs entity − based search(Fruit) on
the description of S. Cavendish is described as an instance of Banana, which is
subclass of Fruit, hence it is returned. It is useful to point out that a keyword-
based search can support the selection of suitable ontology classes before an
entity-based search.

Path-based search - When known the KB structure and organization, it
is possible to compose more complex queries for instance retrieval. In the above
example, the device embedded in the truck has to check if the product descrip-
tion is compliant with the ∀Storage Temperature.Uncontrolled Temperature
restriction. To do so, Algorithm 9 is executed with p = Storage Temperature
and f = Uncontrolled Temperature. Intervals for simple-paths are computed
first, and the set D of descendants of f is extracted from the TBox. Then the
universal restriction is searched in line 4: if it is found and its filler belongs to
D, the constraint is satisfied and function returns true. Notice that expand-
ing the search for descendants of the filler, makes the check semantic-based
rather than purely syntactic. In the example, checking the individual in Fig-
ure 1 returns a positive answer, because Room Temperature is a subclass of
Uncontrolled Temperature. Other constraints can be verified in a similar fash-
ion; as an optimization, computed intervals for simple-paths can be cached for
reuse during query processing on the same compressed RDF annotation.

 127

10

A partial implementation of the query engine has been performed, including
the primitives in Table 1. Experiments were executed on a notebook with Intel
Core 2 Duo CPU (2.0 GHz clock frequency), 3 GB RAM and Ubuntu 10.04 OS
(Linux 2.6.32 kernel version). Algorithm 9 was tested on a KB with 175 concepts,
11 roles and 15 instances (original OWL size is 114 kB, COX compressed size is
31 kB). Average execution time was 460 ms and main memory usage peak was
1.51 MB. In a further test, 260 findPathsWithValue primitives were executed
with pseudo-random arguments: Figure 2 reports the distribution of times. These
preliminary results suggest that the approach is viable. Since the implementation
is not complete, comparative tests w.r.t. other query engines cannot be reported
at this time.

Fig. 2. Execution time of findPathsWithValue primitive

4 Related Work

With reference to XML-based languages, several tools supporting efficient query-
ing over compression schemes exist. XGrind [2] can perform (i) exact-match and
prefix-match queries directly on compressed values and (ii) range and partial-
match queries on values decompressed on-the-fly. XPress [3] exploits RAE to im-
prove the path-based queries. XPress query engine converts a label path expres-
sion into a sequence of intervals. Then, by using this sequence, the query executor
checks whether the encoded values of XML tags are in a given interval of the se-
quence or not. XQueC [9] exploits indexing and XML storage strategies since it
is focused on search speed rather than compression efficiency. The above tools ex-
ecute path-based queries expressed in XPath (http://www.w3.org/TR/xpath/),
which allow syntactic match of document elements and are strictly tied to the
XML Schema for the particular document. Therefore, it is not possible to reuse
an existing approach for semantic-based queries.

 128

11

In known strategies for storing and querying RDF annotations, data struc-
tures and optimizations are focused on a database perspective [8]. The Semantic
Web community has generally used traditional database systems [10]. As a con-
sequence, most of the RDF query processing techniques are based on database
query processing and optimization techniques, mainly focused on compression
[11] and indexing approaches [12, 13]. Nevertheless, all these technologies do not
cope with mobile computing issues. An interesting exception is the MQuery
[14] framework for ubiquitous computing. It creates a compressed index of RDF
graphs for improving context-aware retrieval, according to the idea that a mo-
bile user wants to access specific data depending on given situations. The main
drawback w.r.t. the approach proposed here is the limited flexibility and expand-
ability, as MQuery provides a pre-defined query interface for selecting only from
four possible interrogations.

Studies on the above works have suggested main query models expected by
semantic-based applications: (i) full-text search, i.e., keyword or string matching;
(ii) queries based on data structure, i.e., path-based and structure-based queries;
(iii) a combination of them. As a consequence, the presented framework included
both keyword-based search and a set of path-based queries.

5 Conclusion

A framework has been presented for querying knowledge bases expressed in
OWL, serialized in RDF/XML and processed with a homomorphic compression.
It is particularly suitable for scenarios dipped in the Semantic Web of Things vi-
sion. Primitives for querying compressed semantic annotations have been devised
and used to perform interrogations on both the TBox and KB instances. The
implementation of the framework in a software tool is ongoing. It will provide the
needed insight into performance benefits and costs, allowing to evaluate possible
optimizations. Moreover, it will support the development of a semantic-based
query and reasoning engine for compressed KBs, by exploiting basic queries to
implement high-level query languages and inference services commonly used in
the Semantic Web.

References

1. Bizer, C., Heath, T., Berners-Lee, T.: Linked data-the story so far. Int. J. Semantic
Web Inf. Syst. 5(3) (2009) 1–22

2. Tolani, P., Haritsa, J.: XGRIND: A Query-friendly XML Compressor. In: Proc. of
the 18th Int. Conf. on Data Engineering (ICDE.02), IEEE (2002) 225234

3. Min, J., Park, M., Chung, C.: A compressor for effective archiving, retrieval, and
updating of XML documents. ACM Transactions on Internet Technology 6(3)
(2006) 223–258

4. Scioscia, F., Ruta, M.: Building a Semantic Web of Things: issues and perspec-
tives in information compression. In: Semantic Web Information Management
(SWIM’09). In Proc. of the 3rd IEEE Int. Conf. on Semantic Computing (ICSC
2009), IEEE Computer Society (2009) 589–594

 129

12

5. Witten, I., Neal, R., Cleary, J.: Arithmetic coding for data compression. Commu-
nications of the ACM 30(6) (1987) 520–540

6. Di Noia, T., Di Sciascio, E., Donini, F.M., Ruta, M., Scioscia, F., Tinelli, E.:
Semantic-based Bluetooth-RFID interaction for advanced resource discovery in
pervasive contexts. Int. Jour. on Semantic Web and Information Systems 4(1)
(2008) 50–74

7. Ruta, M., Zacheo, G., Grieco, L.A., Di Noia, T., Boggia, G., Tinelli, E., Camarda,
P., Di Sciascio, E.: Semantic-based Resource Discovery, Composition and Substi-
tution in IEEE 802.11 Mobile Ad Hoc Networks. Wireless Networks 16(5) (2010)
1223–1251

8. Christophides, V., Plexousakis, D., Scholl, M., Tourtounis, S.: On labeling schemes
for the Semantic Web. In: The 12th Int. Conf. on World Wide Web, ACM (2003)
544–555

9. Skibiski, P., Swacha, J.: Combining Efficient XML Compression with Query
Processing. In: Advances in Databases and Information Systems. Volume 4690.
Springer Berlin / Heidelberg (2007) 330–342

10. Sakr, S., Al-Naymat, G.: Relational processing of RDF queries: a survey. SIGMOD
Rec. 38 (June 2010) 23–28

11. Atre, M., Chaoji, V., Zaki, M.J., Hendler, J.A.: Matrix Bit loaded: a scalable
lightweight join query processor for RDF data. In: The 19th Int. Conf. on World
Wide Web, ACM (2010) 41–50

12. Delbru, R., Toupikov, N., Catasta, M., Tummarello, G.: A node indexing scheme
for web entity retrieval. In: The Semantic Web: Research and Applications. Volume
6089. (2010) 240–256

13. Zhang, S., Yang, J., Jin, W.: SAPPER: Subgraph Indexing and Approximate
Matching in Large Graphs. Proc. of the VLDB Endowment 3(1) (2010) 1185–1194

14. Zhang, Y., Zhang, N., Tang, J., Rao, J., Tang, W.: Mquery: Fast graph query via
semantic indexing for mobile context. In: The 2010 IEEE/WIC/ACM Int. Conf. on
Web Intelligence and Intelligent Agent Technology - Volume 01, IEEE Computer
Society (2010) 508–515

 130

Context-aware data tailoring through
Answer Set Programming ⋆

Extended Abstract

Angelo Rauseo, Davide Martinenghi, and Letizia Tanca

Politecnico di Milano - Dipartimento di Elettronica e Informazione, Milan, Italy
rauseo@elet.polimi.it, martinen@elet.polimi.it, tanca@elet.polimi.it

Abstract. In this paper we describe a technique for context-aware data
tailoring by means of Answer Set Programming (ASP). We use ASP tech-
niques to describe and generate the feasible contexts compatible with a
context specification structure called Context Dimension Tree. We define
suitable context-dependent views that, as soon as a specific feasible con-
text is selected, retain only those data that are meaningful with respect
to the context.

1 Introduction

In a world of great complexity and abundance of varied data and datasets, it
is important to remove, from the answers we seek, all data that are not really
interesting to the context in which they are used and thus do not constitute real
information. The process of removing this “out-of-context noise” is commonly
referred to as context-aware data tailoring [1].

In the literature, a context-aware perspective has been applied to manage:
(i) the capability to adapt content presentation to different channels or to dif-
ferent devices, like in CSCP [2] or MAIS (http://www.mais-project.it), which con-
figure the software on board of a mobile device based on presentation, device
characteristics and available channel; (ii) agreement and shared reasoning among
peers with the aim of building smart environments, like in CoBra [3], where an
agent-based architecture supports context-aware computing in physical spaces
(e.g., living rooms, vehicles, corporate offices and meeting rooms); (iii) modeling
what the user is currently doing [4] or his/her physical situation [7]; (iv) making
user interaction implicit by adapting information to user’s needs, like in QUA-
LEG [10],with context-aware service, or, in general, discovery in pervasive en-
vironments; (v) managing knowledge chunks: with an information management
perspective, [9, 8] extend the relational model to deal with context introducing
facets of the data under different contexts.

Our work falls into this last category, since in this paper we use Answer Set
Programming (ASP) techniques with the aim of tailoring the data to present to

⋆ This research is partially supported by the European Commission, Programme
IDEAS-ERC, Project 227977-SMScom. D. Martinenghi acknowledges support from
the Search Computing (SeCo) project, Programme IDEAS-ERC.

users only the interesting fragments. We adopt a context representation model,
called Context Dimension Tree (CDT) [1], that allows designers to characterize
the contexts which are significant – and allowed – in a given scenario. Using
ASP we are able to retain the orthogonality of context modeling with respect
to data management, while adopting the same framework as for data represen-
tation. Building on preliminary work presented in [6], we represent contextual
information via disjunctive logic programs using the approach of ASP: given a
program representing a CDT, each feasible context is represented by a model of
the program. When extensional data are added, data tailoring is then obtained
by extending the program with suitable views, defined by the designer, that in-
dicate which parts of the data should be retained depending on the available
contextual information.

Overall, the main contribution of this work is the design of an ASP framework
for supporting data tailoring in context-aware systems. The advantage of this
framework is that it serves as a natural way of defining situational, dynamic user
views over a global database schema.

The rest of the paper is organized as follows. In Section 2, after introducing
the notion of context, we define CDTs as the main tool for modeling context.
In Section 3, we describe our representation of feasible contexts with respect to
a CDT by disjunctive logic programs. In Section 4, we show how to retain only
those data that are relevant for a given context by adding suitable views to the
program. Finally, in Section 5 we conclude.

2 Context modeling

The Context Dimension Tree– formally defined in [1] –, is an orthogonal and
extensible context representation tool that can be used not only in context-
aware data tailoring, but also for different applications like service adaptivity or
sensor-query configuration.

Fig. 1. A Context Dimension Tree (CDT) designed to support a car insurance company

The CDT, an example of which is reported in Figure 1, is a tree-shaped
structure composed of two kinds of nodes: black nodes, which represent context

 132

dimensions, and white nodes, which represent context values. The hierarchical
nature of the CDT grants different “levels of abstraction” to represent contexts.
Context dimensions (black nodes) model different perspectives from which the
domain of interest can be seen with respect to the user, the system and their in-
teractions. The values these dimensions can take are represented as white nodes.
A context is obtained as a set of dimension values, thus of white nodes. In order
for the context to be projected over the data, a view is assigned to each context,
thus contextual views should be designed which only select the portion of the
data that is interesting with respect to the context of use.

The CDT reported in Figure 1 represents the contexts designed for tailor-
ing the data of a car insurance company. The first-level dimensions (Location,
Interest Topic, Role) determine, by means of their directly attached values,
the main classification of data and users associated with them, while second-
order dimensions attached to the agent value (Position, Agent Type) provide
a more detailed specification to the agent figure when needed.

For instance, in Figure 1, the context {promoter, traveler, emea} repre-
sents the perspectives of a promoter, travel agent in EMEA region, while the
context {chief, amer} represents a chief agent in the AMERICAS region. Both
interact with the system and require access to meaningful data with respect to
their situations. Contexts can thus be built from the CDT by appropriately
assembling sets of context values. In order to be valid, a context built from the
CDT has to satisfy the following two Validity Properties:

1. A context must neither contain two values that are children of the same
parent dimension, nor two that descend from a common ancestor dimension
but not from a common ancestor value other than root.

2. A context must not contain both a value and its ancestor value(s).

For example {customer, promoter} and {customer, agent} violate validi-
ty property 1. Validity property 2 is violated by the context {agent, promoter}.

The basic tree structure of the CDT is also enriched with the support for
the definition of application constraints. The designer can annotate the CDT,
specifying forbidden associations of value nodes within the same context by
means of lines connecting pairs of white nodes. In the example CDT in Figure 1
we find two such restrictions: the values accident and promoter cannot be
together in the same context (promoter agents do not have access to information
on accidents); the same holds for chief and traveler (a chief agent never
travels). The use of constraints allows us to define a forbidden context as a
context whose set of values contains at least one of the forbidden value pairs.1

A feasible context is a context that is a valid context and is not a forbidden
context. The association of a feasible context with the corresponding data is
established by the following notion: the relevant area associated with a context
C is the data view considered by the designer as interesting for a user or an

1 Note that forbidden contexts are strictly application-dependent, while the validity
properties defined before are independent of the single application at hand, and
rather refer to structural properties of the CDT.

 133

application which is in context C. The notion of relevant area is the actual
implementation of data tailoring, and will be defined by means of a disjunctive
logic program. The designer is responsible for the definition of the appropriate
CDT with respect to the modeled domain and application needs, along with the
relevant areas associated with the contexts generated from that CDT.

3 Context representation and generation through ASP

We now provide ASP-compliant description guidelines for the CDT model. Once
the problem of representing contexts has been solved with the CDT, we address
the main objectives of this paper: i) how to generate the feasible contexts of a
CDT so that they will be available for use, and ii) how to define relevant areas
and associate them with different contexts.

We use the DLV system [5] as our main development tool and report below
the DLV representation of part of the example CDT in Figure 1 as a set of facts.
Both values and dimensions are implemented by the definition of predicates:
value(Value node) the former, dimension(Dimension node) the latter.

dimension(location). value(root). value(amer).
dimension(interest topic). value(parc). . . .

The following facts specify examples of the direct dimension-to-value connec-
tions using the dim2val(D, V) predicate

dim2val(location, parc).
dim2val(interest topic, accident). . . .

Once the direct connections have been provided to the system, the tree struc-
ture also requires to define the order relationship among both dimension and
value nodes. Below we describe the connections between each value and its sub-
dimensions, and their inheritance via val2dim(V, D) and val2dim path(V, D):

val2dim(agent, position). val2dim(agent, agent type).
. . .
val2dim path(V, D) :- val2dim(V, D).
val2dim path(V, D) :- val2dim(V, D1), dim2val(D1, V1), val2dim path(V1, D).

The dim2val path(D, V) predicate determines which value V is a descendant
of a dimension D:

dim2val path(D, V) :- dim2val(D, V).

dim2val path(D, V) :- dim2val(D, V1), val2dim(V1, D1), dim2val path(D1, V).

The common ancestor val(V1, V2) and common ancestor dim(V1, V2) hold if
values V1 and V2 have a common ancestor value or dimension, respectively:

sub value(Vu, Vd) :- val2dim(Vu, D), dim2val path(D, Vd).

common ancestor val(V1, V2) :- sub value(V, V1), sub value(V, V2), V! = root.

common ancestor dim(V1, V2) :- dim2val path(D, V1), dim2val path(D, V2).

 134

Each feasible context corresponds to a model of the disjunctive logic program
that encodes the definition, properties and constraints of the CDT. This is the
natural way of approaching any problem in ASP, in which the multiple solutions
of a problem (here, the feasible contexts) correspond to the multiple models of
the program. The values (white nodes) composing a context are here represented
as atoms with predicate context elem in the model. As usual in ASP, the choice
of whether a model includes or excludes an element is made via the “guessing
phase”: context elem(X) ∨ −context elem(X) :- value(X), not root node(X).
In particular, the rule indicates that any value that is not the root is either a
context element or not a context element (but not both). Mutual exclusion is
granted by the use of the so-called true negation, indicated in the DLV syntax
with a minus symbol (“−”) preceding a predicate name. (Standard negation-as-
failure, instead, is indicated with the “not” keyword.) True negation is basically
interpreted as part of the predicate name, with the implicit addition of a con-
straint in denial form stating mutual exclusion with the non-negated predicate,
like the following one: :- context elem(X),−context elem(X).

Another standard technique is used to enforce non-emptiness of a feasible
context: the “non empty context” flag is on whenever at least one context ele-
ment is present, and the constraint below imposes, via a sort of double negation,
that the flag be on.

non empty context :- context elem(X).
:- not non empty context.

The validity properties defined in Section 2 must now be enforced by means
of constraints over context elements:

Validity property 1

:- context elem(V1), context elem(V2), V1! = V2,dim2val(D, V1), dim2val(D, V2).
:- context elem(V1), context elem(V2), V1! = V2,common ancestor dim(V1, V2),
not common ancestor val(V1, V2).

Validity property 2

:- context elem(V), context elem(Vu), sub value(Vu, V).

Similarly, we declare the application-dependent constraints to enforce the
exclusion of forbidden contexts

:- context elem(chief), context elem(traveler).

:- context elem(accident), context elem(promoter).

4 Associating context with data

At runtime, the feasible context(s) obtained with the techniques shown in the
previous section is selected as the active context(s). The selection can be made
either manually – by a designer or the user him/herself – or automatically, by
a context manager that uses extra knowledge to infer the proper active context.

 135

The program described in Section 3 is enriched with context elem facts specifying
the active context and with facts for all the extensional relations of the dataset
to which the contextualization is applied. When the user, or the application, re-
quires access to one of these extensional relations, the system will instead provide
the contextual view over that relation, corresponding to the active context.

The first step we describe to obtain data tailoring is the design-time creation
of specialized views over the dataset, which we will call partial views and which
associate each context element with a portion of the dataset. Starting from
partial views, complex contextual views are automatically built, which tailor
data associating contexts with relevant areas.

4.1 Partial views

Partial views have to be defined at design time in tight association with the
development of the CDT they refer to. Each partial view will be linked to a
particular value node from the CDT and it will return a (possibly little) fragment
of the dataset which has been recognized as interesting by the designer.

In the CDT model, value nodes placed at different levels provide different
abstraction granularities ; accordingly, in general relevant areas related to values
placed high in the tree will include, often strictly, relevant areas corresponding
to values at deeper levels. The partial view for a relation r has the same schema
as the original relation it is built upon, plus an additional argument indicating
the context element.

Consider a database for the insurance domain, an excerpt of whose schema
follows:

customer(Id, FName, Country, RiskLevel, Gender) refunding(InsId, Date, Amount, Cause)
insurance(Id, ContractCode, AgentId, CustId) geo area(Area, Country)
agent(Id, FullName, Country, Grade, TravelStatus) . . .

We show an example of partial view for the table customer:

%%% filtering on the Interest Topic refunding
p viewcustomer(CId, FName, Country, Risk, Gen, refunding) :-
customer(CId, FName, Country, Risk, Gen), insurance(InsId, , , CId),
refunding(InsId, , ,), context elem(refunding).

%%% filtering on the Location through a variable
p viewcustomer(Id, FName, Country, Risk, Gender, Location) :-
customer(Id, FName, Country, Risk, Gender), geo area(Location, Country),
context elem(Location).

Here, we have conditions used to (i) use insurance ID, with the insurance

and refunding relations, to retain those customers with an insurance with re-
funding procedures, and (ii) specify the right location using geo area from the
dataset, which associates areas with countries, in the partial view tailoring the
location. Note that the first partial view refers specifically to the refunding

value of the InterestTopic, while for the second partial view we produce a
different partial view for each location by using a variable (Location).

 136

4.2 Contextual views

We show now the pattern for defining a contextual view of the relation customer,
but the technique is general and is used to build all the contextual views, each
as intersection of the partial views associated with the actual context elements.

c viewcustomer(Id, FName, Country, Risk, Gender) :-
customer(Id, FName, Country, Risk, Gender),
not −c viewcustomer(Id, FName, Country, Risk, Gender).

−c viewcustomer(Id, FName, Country, Risk, Gender) :-
customer(Id, FName, Country, Risk, Gender), context elem(CE),
not p viewcustomer(Id, FName, Country, Risk, Gender, CE).

The first rule indicates that a tuple is transferred from customer to the view
unless the tuple is known not to be part of the view. The second rule states
that a tuple from customer is known not to be part of the view if there is some
context element such that the tuple does not belong to the corresponding partial
view. Therefore, a tuple is retained in the contextual view if and only if it is in
the partial view corresponding to each context element of the context currently
active, which gives the required semantics of a contextual view as intersection
of the partial views of the context components.

Query:
q(FName) :- c viewcustomer(, FName, , ,).

Relations:
% customer(Id, FName, Country, RiskLevel, Gender)
customer(0, gordon brown, uk, high, m).
customer(1, barack obama, us, moderate, m).
customer(8, albert a gore, us, low, m).

% geo area(Area, Country)
geo area(emea, uk). geo area(amer, us).

% insurance(InsId, ContractCode, AgentId, CId)
insurance(in1, c4, uk1, 0). insurance(in2, c3, us2, 1).
insurance(in9, c4, us1, 8).

% refunding(InsId, Date, Amount, Cause)
refunding(in1, 20100606, 5000, bonus). refunding(in2, 20100809, 5000, bonus).

Context elements:
context elem(amer). context elem(refunding).

Answer:
{q(barack obama)}

Table 1. Query selecting customer names relevant to the active context

Once a context is active, any query on the relations in the dataset will be
redirected over the contextual views, which have the same schemata as the orig-
inal relations, so that only the interesting or permitted data will be available

 137

in the answer. Let us assume that the active context consists of the elements
{amer,refunding}, which are therefore part of the program as context elem

facts. In the example reported in Table 1, the customer relation is replaced in the
query by the c viewcustomer predicate. In this particular context, only the data
related to customers who requested a refunding procedure in the AMERICAS
region will be presented to the user. The query answer consists of the intersection
of those sets of names corresponding to the persons selected by the partial view
for the customer relation related to the context element amer (i.e., barack obama

and albert a gore), and refunding (i.e., barack obama and gordon brown).

5 Conclusions

Thanks to the native multi-model nature of Answer Set Programming, it has
been possible to realize a straightforward and uniform definition of contexts and
context-aware views. Contexts have been defined keeping in mind a data-oriented
attitude, and they have been generated, orthogonally with respect to the data.

Future developments will deal with: (i) address contextualization also beyond
the task of data tailoring, and (ii) support run-time modifications and changing
of the CDT, needed to deal with a fully dynamic ubiquitous system.

References

1. C. Bolchini, C. Curino, E. Quintarelli, F. A. Schreiber, and L. Tanca. Context
information for knowledge reshaping. Int. Journal on Web Engineering and Tech-
nology, 5(1):88–103, 2009.

2. S. Buchholz, T. Hamann, and G. Hübsch. Comprehensive structured context pro-
files (CSCP): Design and experiences. In Proc. of 1st Intl Work. on Context Mod-
elling and Reasoning, pages 43–47, 2004.

3. H. Chen, T. Finin, and A. Joshi. An intelligent broker for context-aware systems.
In Proc. of Intl Conf on Ubiquitous Computing - Poster Session, pages 183–184,
2003.

4. M. Kaenampornpan and E. O’Neill. An intergrated context model: Bringing ac-
tivity to context. In Proc. of Work. on Advanced Context Modelling, Reasoning
and Management, 2004.

5. N. Leone, G. Pfeifer, W. Faber, T. Eiter, G. Gottlob, S. Perri, and F. Scarcello.
The dlv system for knowledge representation and reasoning. ACM Trans. Comput.
Logic, 7(3):499–562, 2006.

6. G. Orsi and L. Tanca. Context modelling and context-aware querying: can datalog
be of help? In Datalog 2.0 Workshop, March 2010, Proceedings, 2010.

7. D. Preuveneers, J. van den Bergh, D. Wagelaar, A. Georges, P. Rigole, T. Cler-
ckx, E. Berbers, K. Coninx, and K. de Bosschere. Towards an extensible context
ontology for ambient intelligence. In Proc. of the 2nd European Symp. on Ambient
Intelligence, pages 148–159, 2004.

8. Y. Roussos and T. Sellis. A model for context aware relational databases. Technical
Report TR-2008-6, National Technical University of Athens, 2008.

9. Y. Roussos, Y. Stavrakas, and V. Pavlaki. Towards a context-aware relational
model. In Proc. of 1st intl Context Representation and Reasoning Work., pages
7.1–7.12, 2005.

10. A. Segev and A. Gal. Putting things in context: a topological approach to mapping
contexts to ontologies. Journal on data semantics IX, pages 113–140, 2007.

 138

On the Power of Enforcing Local Consistency⋆

Gianluigi Greco1 and Francesco Scarcello2

Dept. of Mathematics1 and DEIS2, University of Calabria, 87036, Rende, Italy
ggreco@mat.unical.it, scarcello@deis.unical.it

Abstract. Enforcing local consistency is a well-known technique to
simplify the evaluation of conjunctive queries. A fundamental result
in database theory states that the class of queries for which—on ev-
ery database—local consistency entails global consistency is precisely
the class of acyclic queries. In the last few years, several efforts have
been made to define structural decomposition methods isolating larger
classes of nearly-acyclic queries, yet retaining the same nice properties
as acyclic ones. In particular, it is known that queries having (general-
ized) hypertree-width at most k can be evaluated in polynomial time,
and that this structural property is also sufficient to guarantee that k-
local consistency solves the problem, as for acyclic queries. However,
the precise power of such an approach was an open problem: Is it the
case that bounded generalized hypertree-width is also a necessary con-
dition to guarantee that (k)local consistency entails global consistency?
The paper provides a positive answer to the question. In fact, it pre-
cisely characterizes the power of enforcing local consistency in the more
general framework of tree projections, of which any known structural
decomposition method is just a special instance.

1 Properties of Acyclic Conjunctive Queries

Acyclic conjunctive queries, i.e. queries with an acyclic query hypergraph, were
the subject of many seminal research works since the early ages of database
theory. Indeed, these queries enjoy three properties that are crucial for the design
of efficient query optimizers.

Firstly, acyclic instances can be efficiently solved. From an acyclic query, we
can build (in linear time) a join tree [3], which is a tree whose vertices corre-
spond to the various atoms and where the subgraph induced over all the atoms
containing any given variable is a tree. According to Yannakakis’s algorithm [17],
Boolean acyclic queries can be evaluated by processing any of their join trees
bottom-up, by performing upward semijoins, thus keeping the size of the inter-
mediate relations small. At the end, if the relation associated with the root atom
of the join tree is not empty, then the answer of the query is not empty. For non-
Boolean queries, after the bottom-up step described above, one can perform the
reverse top-down step by filtering each child vertex from those tuples that do
not match with its parent tuples. The filtered database, called full reducer, then

⋆ A longer version appeared in the proceedings of ACM PODS 2010 [9].

2 Gianluigi Greco and Francesco Scarcello

Fig. 1. A tree projection Ha of HQ0 w.r.t. HV0 ; On the right: A join tree JTa for Ha.

enjoys the global consistency property, i.e., no tuple can be missed if we compute
the join of all (relations associated with) query atoms (with respect to the new
database). Moreover, by exploiting this property, all solutions can be computed
with a backtrack-free procedure (i.e., with backtracks occurring only looking for
further solutions, never for wrong choices).

Secondly, acyclicity is efficiently recognizable. Indeed, deciding whether a
hypergraph is acyclic is feasible in linear time [16] and belongs to the class
L (deterministic logspace). In fact, this follows from the fact that hypergraph
acyclicity belongs to SL [6], and that SL is equal to L [15].

And, finally, the class of acyclic instances coincides with the class of queries
where local consistency entails global consistency. We say that local (also, pair-
wise) consistency holds if, for every pair of query atoms p, q, p⋉ q = p
= ∅ and
q ⋉ p = q
= ∅ hold. The acyclic instances that fulfil this property also fulfil the
global consistency property [2]. Thus, by enforcing local consistency, i.e., by tak-
ing the semijoins between all pairs of atoms until a fixpoint is reached, we may
immediately answer the query (either the database becomes empty and hence
the query has no answer, or the resulting database is a full reducer). In addition,
and more surprisingly, if a class of instances can be answered by means of this
approach, then it only contains acyclic instances [2].

Generalizations of Acyclicity. Structures arising from real applications,
however, are hardly precisely acyclic. Yet, they are often not intricate and, in
fact, tend to exhibit some limited degree of cyclicity, which suffices to retain
most of the nice properties of acyclic ones.

Several efforts have been recently spent to investigate invariants that are
best suited to identify nearly-acyclic hypergraphs, leading to the definition of a
number of so-called structural decomposition methods (such as the (generalized)
hypertree [7], the fractional hypertree [12], and the component hypertree [8] de-
compositions). These methods aim at transforming a given cyclic hypergraph
into an acyclic one, by organizing its edges (or its nodes) into a polynomial
number of clusters, and by suitably arranging these clusters as a tree, called
decomposition tree. The original problem instance can then be evaluated over
the decomposition tree, with a cost that is exponential in the cardinality of the
largest cluster, also called width of the decomposition, and polynomial if this
width is bounded by some constant. Despite their different technical definitions,
there is a simple mathematical framework that encompasses all the above de-

 140

On the Power of Enforcing Local Consistency 3

composition methods, which is the framework of the tree projections [10]. In this
setting, a query Q is given together with a set V of views, whose schemas are
defined over the variables in Q. The question is whether (parts of) the views
can be arranged as to form a tree projection, i.e., a novel acyclic query that still
“covers” Q. By representing Q and V via the hypergraphs HQ and HV , where
hyperedges one-to-one correspond with the sets of variables in the query and
view atoms, respectively, the tree projection problem reveals its graph-theoretic
nature: A tree projection of HQ w.r.t. HV is an acyclic hypergraph Ha such that
each hyperedge of HQ is contained in some hyperedge of Ha, which is in its turn
contained in a hyperedge of HV . Whenever such a hypergraph Ha exists, we say
that the pair of hypergraphs (HQ,HV) has a tree projection.

As an example, it is well-known (see, e.g., [11]) that a query Q has generalized
hypertree width bounded by k if, and only if, there is a tree projection of HQ

w.r.t. Hk
Q, the latter being the hypergraph associated with the set of all the

views that can be built by joining all the possible sets of k atoms in Q. In fact,
the various decomposition methods just differ in how they define the set of views
to be built for evaluating Q. In the tree projection framework, views are instead
arbitrary and might be even materialized beforehand.

Example 1. Consider the Boolean conjunctive query

Q0 : r1(A,B,C) ∧ r2(A,F) ∧ r3(C,D) ∧ r4(D,E, F)∧
r5(E,F,G) ∧ r6(G,H, I) ∧ r7(I, J) ∧ r8(J,K),

whose associated hypergraph HQ0
is depicted in Figure 1, together with the

other structures discussed next.
To answer Q0, assume that a set V0 of views is available comprising the

views associated with the query atoms, plus four additional views. The set of
attributes of each view (variables in {A, ...,K}) is a hyperedge in the hypergraph
HV0

(query views are depicted as dashed hyperedges). In the middle between
HQ0

and HV0
, Figure 1 reports the hypergraph Ha which covers HQ0

, and which
is in its turn covered by HV0

—e.g., {C,D} ⊆ {A,B,C,D} ⊆ {A,B,C,D,H}.
Since Ha is in addition acyclic (just check the join tree JTa), Ha is a tree

projection of HQ0
w.r.t. HV0

. ⊳

2 Tree Projection Properties and Open Questions

The interest on the tree projection framework goes back to the eighties, when
it was noticed that queries that admit a tree projection can be evaluated in
polynomial time [10] (see, also, [14]). Thus, tree projections smoothly preserve
the first crucial property of acyclic queries. On the other hand, tree projections
are not efficiently recognizable [8], i.e., the second property is not preserved.

Our knowledge on the third property is less clear instead. Indeed, the question
about the precise relationship between tree projections and local and global
consistencies was firstly raised in [2], and remained open so far, despite it was
attacked via different approaches and proof techniques, which gave some partial
results, reported below.

141

4 Gianluigi Greco and Francesco Scarcello

Let V be an arbitrary set of views that also contains views associated with
query atoms. Let lc(VDB) denote that the views (evaluated over DB) enjoy the
local consistency property, let gc(QDB) denote that the query (evaluated over
DB) enjoys the global consistency property, and let QDB
= ∅ denote that the
answer of Q on DB is not empty. The picture in the literature is as follows:

• The existence of a tree projection of HQ w.r.t. HV entails that, ∀DB,
lc(VDB) → gc(QDB) [14].

• For the case of tree projections corresponding to generalized hypertree de-
compositions, the existence of a tree projection of HQ′ w.r.t. HV , where Q′

is the core of Q and HV = Hk
Q, entails that, ∀DB, lc(VDB) → QDB
= ∅ [4].

The result holds for any query Q′ that is homomorphically equivalent to Q,
denoted by Q′ ≈hom Q (instead of just for its core, which is any smallest one).

• For queries with bounded arity, and considering tree projections that cor-
respond to tree decompositions [13] (the most general method for structures
having bounded arity), a tree projection of HQ′ w.r.t. HV , where Q′ is the
core of Q and HV = Htk

Q is the hypergraph whose hyperedges are all possible
sets of at most k + 1 variables, exists if, only if, ∀DB, lc(VDB) → QDB
= ∅ [1].

Note that the first result states that the existence of a tree projection of
the query is a sufficient condition for the global consistency property to hold,
whenever the database is local consistent. It was conjectured that the existence
of a tree projection is also a necessary condition [10, 14] for having this property.
In fact, the second result states a more liberal sufficient condition for the decision
problem [4] (for the special case of generalized hypertree decompositions), but we
shall see that it is not sufficient for actually computing query answers. The third
result provides instead a necessary and sufficient condition for query answering
via local consistency, based on tree decompositions [1]. Yet, this condition holds
only for structures of fixed arity and, again, only for the decision problem.

From this picture, it emerges that the original question about global consis-
tency, which is related to the computation problem, did not obtain even partial
answers. In fact, from the above recent results one may suspect that the men-
tioned conjecture may not hold, in general. This is because in the general setting,
where we may have queries with multiple occurrences of the same relation sym-
bol, the concept of the core of a query Q plays a crucial role [5], as it should be
clear from the next example.

Example 2. Consider the queries: Q1 : r(A,B) ∧ r(B,C) ∧ r(C,D) ∧ r(D,A)
and Q2 : r(A,B) ∧ r(B,C) ∧ r(D,C) ∧ r(A,D). These queries are completely
equivalent as far as their hypergraphs are concerned, sinceHQ1

= HQ2
. However,

Q1 is already a core, while a core of Q2 is the acyclic sub-query r(A,B)∧r(B,C).
By focusing on Q2 rather than on its core, we could overestimate its intricacy. ⊳

However, the above conjecture (about the necessity of the existence of tree
projections for having global consistency entailed by local consistency) might
still hold in the original setting considered in [10], where all relational symbols
in a query are distinct.

 142

On the Power of Enforcing Local Consistency 5

3 Results on Tree Projections

In this paper, we provide a clear picture of the relationship between tree pro-
jections and local and global consistencies. Concerning the decision problem of
checking whether the query has a solution, we show that the sufficient condi-
tions identified for some special cases are also necessary, even in the most general
framework. However, the technical machinery needed for obtaining our results is
quite different from the one used in [1] for tree decompositions, which does not
work when we have arbitrary signatures or arbitrary views. The main ingredients
of our proofs are a nice connection between a suitable chase and possible tree
projections, and the finite controllability of union of conjunctive queries.

The following are equivalent:

(1) For every database DB, lc(VDB) entails QDB
= ∅.
(2) There is a subquery Q′ ≈hom Q for which (HQ′ ,HV) has a tree

projection.

Unfortunately, we prove that unless P = NP there is no polynomial-time
algorithm that may compute a solution, even if some homomorphically equivalent
subquery has a tree projection (and thus the decision problem is actually solved
by local consistency). In particular, this negative result holds even for the special
case of tree decompositions on structures with fixed arities.

Our second contribution is to single out the (stronger) conditions under which
local consistency entails global consistency. Firstly, we prove that the conjecture
of [10] was correct, if there are no multiple occurrences of the same relation
symbol: the existence of a tree projection of the whole query is also a necessary
condition. Moreover, we show that in general things are much more intricate, and
to find a necessary and sufficient condition requires to carefully exploit possible
endomorphisms of the query. It emerged that to characterize when, at local
consistency, an atom q contains all, and only, the correct tuples of the query Q
projected over the variables var(q) = {X1, ..., Xn} of q, we must look for tree
projections of some “output-aware” substructures of Q.

We say that {X1, ..., Xn} is tp-covered in Q if there is a tree projection of
(HQ′ ,HV), where Q′ is some core of the novel query Q∧ r(X1, ..., Xn), in which
r is a fresh relation symbol. Note that we cannot talk about “the” core of this
query, since different isomorphic cores may behave differently with respect to
the available views, in the setting of tree projections. In fact, Q′ is now some
minimal subquery forced to contain the desired output variables.

Example 3. Consider the query Q4 : r(A,B) ∧ r(B,C) ∧ r(A,C) ∧ r(D,C)∧
r(D,B) ∧ r(A,E) ∧ r(F,E), which is graphically reported in Figure 2, where
edge orientation just reflects the position of the variables in the various (binary)
query atoms. Consider the set of views V4 = views(Q4)∪{v1(A,B,C), v2(A,F)},
i.e., assume that there are two additional views covering the variables {A,B,C}
and {A,F}, respectively. Then, note that Q5 : r(A,B) ∧ r(B,C) ∧ r(A,C) and
Q6 : r(D,B)∧r(B,C)∧r(D,C) are two (isomorphic) cores of Q4, but they have

143

6 Gianluigi Greco and Francesco Scarcello

Fig. 2. The query Q4, its cores Q5 and Q6, the cores of the queries Q4 ∧ atom({F,E})
(with its tree projection), and Q4∧atom({A,F}), and the tuples in the database DB4.

different structural properties. Indeed, (HQ5
,HV4

) admits a tree projection (note
in the figure that the view over {A,B,C} “absorbs” the cycle), while (HQ6

,HV4
)

does not. Consider now the set of variables {F,E}, which does not occur in any
core of the query, and the novel query Q4 ∧ atom({F,E}). This query has a
unique core, which is again depicted in Figure 2. Notice that this core does not
coincide with any of the two cores of the original query. Nonetheless, it admits a
tree projection, consisting of the hyperedges {F,E}, {A,E}, and {A,B,C}, as
illustrated in the figure. Thus, {F,E} is tp-covered in Q4.

On the other hand, the hypergraphs associated with the cores of both Q4 ∧
atom({D,C}), and Q4∧atom({D,B}) are precisely the same as the hypergraph
HQ6

associated with the core Q6, that is, the triangle with vertices D,B,C
having no tree-projection w.r.t. to HV4

. It follows that both {D,C} and {D,B}
are not tp-covered in Q4. Finally, for an example application with arbitrary set
of variables (i.e., not just contained in query atoms), consider the set {A,F}.
Consider then the query Q4∧atom({A,F}) and note that its core does not have
a tree projection. Thus, {A,F} is not tp-covered in Q4. ⊳

The following are equivalent:

(1) For every database DB, lc(VDB) entails gc(QDB).
(2) For each query atom q, var(q) is tp-covered in Q.

Note that, whenever (2) holds and one is interested in output variables in-
cluded in some query atom, then all solutions are immediately available.

Our third contribution in the general framework of the tree projections is
then to deal with those cases where one is interested in computing answers over
an arbitrary subset of variables covered by some available view.

The following are equivalent:

(1) For every DB, lc(VDB) entails “views containing O are correct”.
(2) The set of variables O is tp-covered in Q.

 144

On the Power of Enforcing Local Consistency 7

Example 4. Consider the database DB4 shown in Figure 2 for the views
v1(A,B,C), v2(A,F), v3(A,B), v4(B,C), v5(A,C), v6(D,B), v7(D,C),
v8(A,E), and v9(F,E). The database is local consistent. Observe that, e.g.,
v5(A,C) contains exactly the tuples that we get by evaluating Q4 on DB4 over
the output variables {A,C}. However, v6(D,B), v7(D,C), and v2(A,F) contain
two tuples that do not belong to any answer of the query. ⊳

4 Applications to k-local Consistency

The results we have stated above in the general framework of tree projections can
be specialized to the case known as k-local consistency, that is, the case where
local consistency is enforced among views obtained by considering all possible
groups of k variables or k atoms. It is well known and also observed above
that such groups of views may be used to characterize tree-decompositions and
hypertree decompositions, respectively. However, the precise power of enforcing
local consistency in the latter case was an open question, while for the case of
groups of k-variables, this question was recently closed, at least for the decision
problem [1]. We next provide a full answer to these questions, by focusing for
the sake of simplicity on the general (and more open case) of groups of k atoms.

Let k > 0 be any natural number, and let Q be a conjunctive query and DB
a database. Let Vk be the set of views that, besides views associated with query
atoms, contains all views obtained as the conjunction of any group {q1, . . . , qk′}
of atoms from Q, with k′ ≤ k. Let DBk be its corresponding database, that
is, the database that contains, for any such a view in Vk, the join of atoms
{q1, . . . , qk′} w.r.t. DB (i.e., the subquery of QDB over these atoms). Also, denote
by tpk-covered the tp-covered property where Vk is used in place of V. Then, we
next provide the precise characterization of the power of k-local consistency:

The following are equivalent:

(1) For every database DB, lc(VDBk

k) entails “views containing O
are correct”.

(2) The set of variables O is tpk-covered in Q.

Note that the result is not a trivial consequence of the previous one. Indeed,
the database DB over which we enforce local consistency is not arbitrary any-
more, because the relation associated with each view is computed by means of a
join of at most k relations from DB. Hence, some further effort is needed to show
that (1) entails (2). In fact, for any set O that is not tp-covered in Q, we are able
to show a counterexample database DB such that its derived database DBk has
the desired property: some view containing the variables O is not correct after
enforcing local consistency on Vk. For completeness, note that this property, at
local consistency, entails that every view containing O is not correct.

Finally, we provide an even stronger and more readable result precisely char-
acterizing the power of k-local consistency in terms of generalized hypertree
decompositions. For simplicity, we next report its specialization to the decision
problem (O = ∅), which is also the affirmative answer to the open question in [4].

145

8 Gianluigi Greco and Francesco Scarcello

The following are equivalent:

(1) For every database DB, lc(VDBk

k) entails QDB
= ∅.
(2) Q has a core having generalized hypertree width at most k.

Even in this case, observe that the result is an easy but not trivial corollary
of the previous one, because of a subtle issue. Let Q′ be any core of Q, and recall
that Q′ may be much smaller than Q. Thus, the set of views that can be used
to form a k-width hypertree decomposition of Q′ only come from groups of k
atoms occurring in Q′. It follows that this set may be much smaller than the
full set Vk which is built from the full query Q, and which is considered in the
tpk-covered notion (and hence in the previous result).

References

1. A. Atserias, A. Bulatov, and V. Dalmau. On the Power of k-Consistency, In Proc.
of ICALP’07, pp. 279–290, 2007.

2. C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the Desirability of Acyclic
Database Schemes. Journal of the ACM, 30(3), pp. 479–513, 1983.

3. P.A. Bernstein and N. Goodman. The power of natural semijoins. SIAM Journal
on Computing, 10(4), pp. 751–771, 1981.

4. H. Chen and V. Dalmau. Beyond Hypertree Width: Decomposition Methods With-
out Decompositions. In Proc. of CP’05, pp. 167–181, 2005.

5. V. Dalmau, Ph.G. Kolaitis, and M.Y. Vardi. Constraint Satisfaction, Bounded
Treewidth, and Finite-Variable Logics. In Proc. of CP’02, pp. 310–326, 2002.

6. G. Gottlob, N. Leone, and F. Scarcello. The complexity of acyclic conjunctive
queries. Journal of the ACM, 48(3), pp. 431–498, 2001.

7. G. Gottlob, N. Leone, and F. Scarcello. Hypertree decompositions and tractable
queries. Journal of Computer and System Sciences, 64(3), pp. 579–627, 2002.

8. G. Gottlob, Z. Miklós, and T. Schwentick. Generalized hypertree decompositions:
NP-hardness and tractable variants. Journal of the ACM, 56(6), 2009.

9. G. Greco and F. Scarcello. The power of tree projections: local consistency, greedy
algorithms, and larger islands of tractability. In Proc. of PODS’10, pp. 327–338.

10. N. Goodman and O. Shmueli. The tree projection theorem and relational query
processing. Journal of Computer and System Sciences, 29(3), pp. 767–786, 1984.

11. G. Greco and F. Scarcello. Tree Projections: Hypergraph Games and Minimality.
In Proc. of ICALP’08, pp. 736–747, 2008.

12. M. Grohe and D. Marx. Constraint solving via fractional edge covers. In Proc. of
SODA ’06, pp. 289–298, 2006.

13. N. Robertson and P.D. Seymour. Graph minors III: Planar tree-width. Journal of
Combinatorial Theory, Series B, 36, pp. 49–64, 1984.

14. Y. Sagiv and O Shmueli. Solving Queries by Tree Projections. ACM Transaction
on Database Systems, 18(3), pp. 487–511, 1993.

15. O. Reingold. Undirected ST-connectivity in log-space, Journal of the ACM, 55(4),
2008.

16. R.E. Tarjan, and M. Yannakakis. Simple linear-time algorithms to test chordality of
graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs.
SIAM Journal on Computing, 13(3):566-579, 1984.

17. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of VLDB’81,
pp. 82–94, 1981.

 146

A Constructive Framework for View Updating
(Extended Abstract)

Enrico Franconi and Paolo Guagliardo

franconi@inf.unibz.it — paolo.guagliardo@stud-inf.unibz.it

KRDB Research Centre, Free University of Bozen-Bolzano, Italy

1 Introduction
Updating a database by means of a view requires the changes made on the view
to be properly propagated to the underlying database. This task of “translating”
a view update into a suitable database update is non-trivial and it poses several
challenges indeed. The most subtle kind of update anomaly is given by changes
not directly wanted nor explicitly made by the user, originating in the view as a
“side-effect”. An additional difficulty is represented by the fact that there can be
more database updates corresponding to a given update on the view. Lastly, yet
another complication concerns updates that modify the database even though
this is not strictly necessary in order to reflect the changes.

A general and precise understanding of the view update problem is due to the
seminal work [1] by Bancilhon and Spyratos, who devise an abstract framework
in which they formalise the problem and provide an elegant solution to it. They
introduce the fundamental notion of view complement, representing what is miss-
ing from a view in order to have the same informative content of the underlying
database. Moreover, they introduce the constant complement principle, stating
that the changes done on a view must not influence the content of its complement
during the translation process. Bancilhon and Spyratos provide no constructive
characterisation of their approach, stating that “computational algorithms (if
they exist) must be sought in specific problems: for example, schemata defined
by functional dependencies and views derived by projections”. Most of the sub-
sequent work on view updates is centred on the framework [1] and, in particular,
its application to the relational model.

Cosmadakis and Papadimitriou [4] consider a restricted setting that consists
of a single database relation, in which views are just projections over the attrib-
utes of such a “universal” relation. They give necessary and sufficient conditions
for the translatability of insertions, deletions and replacements under constant
complement and they also study the complexity of finding a suitable complement
that makes a given update translatable. Even though an effective method based
on the Chase is provided for checking translatability, it is only applicable in the
very limited setting consisting of a single database relation with projective views
and functional and join dependencies at the database level.

In the context of SQL databases, Lechtenbörger [6] gives a characterisation
of the constant complement principle in terms of undo operations, showing that
view updates are translatable under constant complement precisely if users have
the chance to undo all effects of their updates using further view updates. It is
then argued that testing whether this holds could be an alternative to checking
whether users can observe all effects of their updates in the view schema, but no
effective method for doing so is proposed.

Gottlob et al. [5] extend the results of Bancilhon and Spyratos to the class of
so-called consistent views, which properly contains the class of views translating
under constant complement. The main difference between the two is that, during
the translation of an update on a consistent view, the complement is not required
to remain invariant, but it is allowed to “decrease” according to a suitable partial
order. Indeed, in the case in which the partial order is the equality, the framework
coincides with the one in [1]. Also in this generalised framework, no constructive
characterisation and effective methods for checking the translatability of updates
and computing their translations are provided.

In [1], Bancilhon and Spyratos deal with constraints in an implicit way and
only at the database level. Here, we revisit their framework by considering ex-
plicit constraints on both the database and the view schemas, along with inter-
schema constraints that implicitly define the view mappings. All the constraints
are expressed as a theory in first-order logic (FOL). We introduce the new notion
of view under constraints, we give a constructive characterisation, based on lo-
gical definability, of such views, their inverses and complements, and we provide
an effective method for checking whether a FOL-expressible view update can be
translated under the constant complement principle.

2 Preliminaries
An n-ary relation on a set A, where n ∈ N is called the arity of the relation, is
a set of n-tuples of elements of A. A signature is a finite set of relation symbols,
each of which has an associated arity. A relational structure I over a signature
σ is a pair 〈∆I , ·I〉, where ∆I is a (possibly infinite) domain of objects and ·I is
an interpretation function that associates each symbol r ∈ σ with a relation rI

on ∆I of appropriate arity (that is, if r is an n-placed relation symbol, then rI

is an n-ary relation). For relational structures I = 〈∆, ·I〉 and J = 〈∆, ·J 〉 over
two disjoint signatures σ and σ′, respectively, I ⊎J = 〈∆, ·I ∪ ·J 〉 is a relational
structure over σ ∪ σ′.

A constraint is a closed first-order logic formula ϕ. We denote by sig(ϕ) the
set of relation symbols occurring in ϕ and we say that ϕ is over a signature σ
if sig(ϕ) ⊆ σ. We extend sig(·) to sets of constraints in the natural way. Given
two disjoint signatures σ and σ′ and a finite set Σ of constraints over σ ∪ σ′, we
say that a relation symbol r ∈ σ is implicitly defined by the relation symbols in
σ′ under Σ if and only if, for every two Σ-models I and J such that ∆I = ∆J ,
we have that rI = rJ whenever pI = pJ for every p ∈ σ′. We say that r ∈ σ is
explicitly defined by the relation symbols in σ′ under Σ if and only if there exists
a FOL formula φr(x) over σ

′, with as many free variables as the arity of r, such
that Σ |= ∀x

(
r(x) ≡ φr(x)

)
. The formula φr(x) is called an explicit definition

(or simply definition) of r with respect to σ′ under Σ.
Clearly, if a relation symbol r ∈ σ has an explicit definition w.r.t. σ′ under

constraints Σ, then r is also implicitly defined by σ′ under Σ, because fixing the
interpretation of the relation symbols in σ′ determines the interpretation of r. In
other words, explicit definability always implies implicit definability. In general,
the converse does not hold, that is, knowing that a certain symbol is implicitly
defined by some other ones does not mean that we can find an explicit definition
of it in terms of those symbols. A fundamental result due to Beth [2] establishes
that this is actually the case for FOL.

 148

Theorem (Beth’s Definability). Let σ and σ′ be disjoint signatures, and let Σ
be a finite set of constraints over σ ∪ σ′. If r ∈ σ is implicitly definable from σ′

under Σ, then r has an explicit definition with respect to σ′ under Σ.

Note, however, that the above does not hold for all fragments of first-order logic,
because even though a FOL explicit definition is always guaranteed to exist, this
might not belong to the particular fragment under consideration. In this work,
we consider constraints expressed in FOL, for which it is possible to effectively
check for implicit definability and for which explicit definitions can be construct-
ively obtained by means of rewriting techniques based on interpolation, e.g., as
described in [3]. So, by reducing our problem to testing for implicit definability
and computing explicit definitions, we have found a constructive solution to it.

A database schema is a signature R = {R1, . . . , Rn} of database symbols and
a view schema is a signature V = {V1, . . . , Vk} of view symbols not occurring
in R. A database state is a relational structure over R and a view state is a
relational structure over V. We denote the sets of all database and view states
by S and T , respectively. For a database state s ∈ S and a view state t ∈ T
having the same domain, the relational structure s ⊎ t is called a global state
over R ∪ V. We consider a satisfiable finite set Σ of global constraints over the
signature R∪V. As R and V are disjoint, Σ is partitioned into subsets ΣR, ΣV

and ΣRV , which we call the database constraints, the view constraints and the
inter-schema constraints, respectively. A database state s (resp., view state t)
is Σ-consistent (or globally consistent, or consistent with the global constraints)
iff there exists a view state t (resp., database state s) with the same domain
such that s ⊎ t is a model of Σ. We denote the set of Σ-consistent database
states (resp., view states) by SΣ (resp., TΣ). A renaming over a signature σ is a
bijective function ren : σ → σ′, where σ′ is disjoint from σ. We extend ren(·) to
signatures, relational structures and (sets of) constraints in the natural way.

The central notion we rely on is that of view under constraints, which natur-
ally extends with explicit constraints the definition of view used in [1]. Indeed,
when only database constraints are present the two notions essentially coincide,
although in [1] constraints (at the database level) are considered only implicitly.

Definition 1 (View under constraints). A view fromR to V under Σ is a total
mapping f : SΣ → TΣ such that s ⊎ f(s) |= Σ for every s ∈ SΣ . �

We write R։Σ V to indicate that every V ∈ V is implicitly definable from
R under constraints Σ. In addition, we also use V ։Σ R, R /։Σ V and V /։ΣR
with the obvious meaning. Since R and V are disjoint, every model of Σ has the
form s⊎ t, where s ∈ S and t ∈ T are (globally consistent) states with the same
domain. Therefore, we can characterise definability in terms of states as follows.

Definition 2. We say that R defines V under Σ (written R։Σ V) if and only
if, for every s ∈ S and t, t′ ∈ T , whenever s ⊎ t |= Σ and s ⊎ t′ |= Σ, it is the
case that t = t′. �

In general, there might exist more than one view satisfying a given set of con-
straints. An important connection between views under constraints and definab-
ility is that one and only one mapping is possible exactly when each view symbol
is defined by the database symbols under the given constraints.

Theorem 1. R։Σ V iff there is one and only one view from R to V under Σ.

149

The above theorem gives a characterisation of the views that are expressible by

means of constraints in FOL. In what follows, we write R։
f
Σ V to indicate that

R։Σ V and f is the (one and only) view induced by the constraints Σ from R
to V. Every function f can be made surjective by restricting its codomain to its
image: we call the resulting function the surjection induced by f or the surjective
restriction of f . We use concatenation to indicate composition, e.g., fg denotes
the composition of f with g.

3 The View Update Problem
In this section, we formally state the problem of view update, by reviewing and
adapting some of the “classical” definitions given in [1] to our logic-based setting
with constraints.

A database update is a function d : S → S that associates each database state
with another, possibly the same. Similarly, a view update is a function u : T → T
associating each view state with another, possibly the same. We denote by UR

and UV the sets of all database and view updates, respectively. An update u ∈ UV

is called strict on f iff there exists t ∈ f(SΣ) such that u(t)
= t. In other words,
a strict update does not coincide with the identity mapping on the image of f .
The set of all the updates that are strict on f is denoted by Uf .

Given a view under constraints and a view update, we want to find a suitable
database update that propagates the changes to the base relations in a consistent
way. More specifically, the view update should be translated as a database up-
date that brings the database into a new state from which, by applying the view
definition, we reach exactly the updated view state. In addition, we also want to
avoid unjustified and unnecessary changes in the database, in the sense that if
the view update does not modify the view state, then the database update must
not modify the corresponding database state. These requirements are formalised
below (cf. Definition 3.1 in [1]).

Definition 3 (Translation). Let f be a view from R to V under Σ, let d ∈ UR

and u ∈ UV . We say that d is a translation of u (w.r.t. f) iff (1) uf = fd and
(2) ∀s ∈ SΣ , uf(s) = f(s) =⇒ d(s) = s. �

A translation of a given update on a view f can only exist if the updated view
state lies in the image of f ; otherwise, there would be no chance of reaching the
new view state through f from some database state, which is what Definition 3
indeed requires. Hence, before we start looking for a translation, we should first
make sure that the given view update allows for one.

Definition 4 (Translatability). Let f : SΣ → TΣ be a view from R to V under
Σ. A view update u ∈ UV is translatable (w.r.t. f) if and only if for each s ∈ SΣ

there exists s′ ∈ SΣ such that f(s′) = uf(s). �

Note that the condition of translatability given in Definition 4 is equivalent to
saying that u is translatable iff u

(
f(SΣ)

)
⊆ f(SΣ).

Translatability of view updates ensures that there is a translation, but does
not rule out the possibility that more than one might exist, which is problematic
because we would not know how to choose one. Therefore, we are only interested
in view updates that are uniquely translatable, that is, for which there exists one
and only one translation.

 150

When the view mapping is injective, a view update is translatable if and only
if it is uniquely translatable and the following theorem gives a characterisation
of its unique translation.

Theorem 2. Let f be an injective view under Σ, let u ∈ UV be translatable and

let d ∈ UR. Let f̂ denote the surjection induced by f and let û be obtained from
u by restricting its domain and codomain to f(SΣ).

1Then, d is a translation of

u if and only if d = f̂−1ûf̂ .

In order to be able to apply the result of Theorem 2, we need to know, in the
first place, whether a view is injective. More importantly, once in the presence of
an injective view, we also need some way of computing the inverse of its surjective
restriction, so as to effectually obtain the unique translation of any translatable
view update. Therefore, below we study the injectivity and surjectivity of views
under constraints using logical definability, with the aim of giving a constructive
characterisation of their inverse.

Lemma 1. Let f be a view from R to V under Σ and let V ։
h
Σ R. Then, 1) f is

injective; 2) the restriction of h to the image of f is the inverse of the surjection
induced by f .

Note that in the above lemma, f can be any view under constraints. In the case
of a view induced by the constraints, we have the following:

Lemma 2. Let R։Σ V and let f be the view from R to V induced by Σ. Then,
1) f is surjective; 2) f is injective if and only if V ։Σ R.

Assuming the view to be induced by the constraints is a restriction almost always
satisfied in practise. In fact, a view is usually specified by providing an explicit
definition for each view symbol, in terms of the database symbols. For instance,
each (virtual) view table in SQL is defined by means of a named SELECT-query
over the database tables.

The following is an important consequence of Lemma 1 and Lemma 2, stating
that it is possible to invert a view induced by a set of constraints iff the database
symbols are implicitly defined by the view symbols under the same constraints,
in which case the inverse is also effectively computable. In such a situation, the
constraints induce two views that are indeed one the inverse of the other.

Theorem 3. Let R։
f
Σ V. Then, f is invertible if and only if V ։h

Σ R, and in
such a case h = f−1.

The next step towards the application of Theorem 2 is the translatability of
view updates, of which we give an interesting characterisation in what follows.
The general idea consists in imposing additional constraints on the view schema
so that every legal view update is translatable.

A consistent set of constraints overR∪V isR-defining iff it contains only for-
mulas, one for each R ∈ R, of the form ∀x

(
R(x) ≡ φR(x)

)
, with sig

(
φR(x)

)
⊆ V.

Clearly, an R-defining set Θ is such that V ։Θ R and induces a function θ from
V to R. Since Θ does not contain nor entail any database or view constraints,
every view state t ∈ T is Θ-consistent and therefore in the domain of θ. We know
by Beth’s theorem that whenever V ։Σ R there is an explicit definition for each

1 As u is assumed to be translatable, u
(
f(SΣ)

)
⊆ f(SΣ).

151

of the database symbols in terms of the view symbols, that is, the constraints
entail an R-defining set Θ. In such a case, we call the V-embedding of Σ the set
Σ̃V of view constraints obtained by replacing, for each R ∈ R, every occurrence
of R(x) in Σ with the definition φR(x) given in Θ. The V-embedding of a set
Σ of global constraints is a set of view constraints having the same “restrictive-
ness” of the whole Σ, but with the advantage that they can be checked locally
on the view schema. Indeed, it turns out that a view state is Σ-consistent iff it

is a model of Σ̃V and this is of particular importance for surjective views.

Theorem 4. Let f be a surjective view from R to V under Σ, let V ։Σ R and

let u ∈ UV . Then, u is translatable if and only if u(t) |= Σ̃V for every t ∈ TΣ.

Note that, under the assumptions of Theorem 4, every globally consistent view
state is in the image of the view and, moreover, satisfies the V-embedding of the
global constraints. Thus, the above result essentially says that we have to make
sure that, by updating a view state that is legal w.r.t. the embedded constraints,
we always end up in another legal view state.

Let ren be a renaming over R ∪ V and let ren(V) = V ′. Then, a V ′-defining
set Ξ of constraints over V ∪V ′ represents a view update. Indeed, the function ξ
induced by Ξ takes a view state t over V and returns an updated view state ξ(t)
over V ′. The view update expressed by Ξ is the function associating each t ∈ T
with ren−1

(
ξ(t)

)
. From Theorem 4, we then get the following characterisation of

the translatability of those view updates expressible as a logical theory.

Theorem 5. Let f be a surjective view from R to V under Σ, let V ։Σ R and

let u ∈ UV be expressed by Ξ. Then, u is translatable iff Σ̃V ∪ Ξ |= ren
(
Σ̃V

)
.

Under the assumptions of the above theorem, the view f is injective by Lemma 1.
Hence, by Theorem 2 every translatable view update u has the unique translation
f−1uf . However, we might not be able to compute f−1 unless R։Σ V, in which
case Theorem 3 ensures that the inverse of f is the view from V to R induced by
Σ. If R։Σ V, V ։Σ R and Ξ expresses a translatable view update u, we have
that V ։Ξ ren(V) and ren(V) ։ren(Σ) ren(R), therefore the unique translation
of u is the database update expressed by the set Υ such that R ։Υ ren(R),
obtained by replacing in ren(Σ) every occurrence of ren(V) with its definition in
terms of V and, in turn, every occurrence of V with its definition in terms of R.

4 The View Complement
The lack of injectivity in a view causes a loss of information due to the fact that
distinct database states are mapped to the same view state. In order to be able
to distinguish between distinct database states, we need some extra “hints” that,
combined with what is already known from the view itself, give a full account of
the database content. This additional data is provided by another view, called
a view complement, as it “complements” the partial information of a lossy view.

For the rest of this section, let R, V and W be pairwise disjoint signatures,
and let Σ and Γ be finite sets of constraints over R∪V and R∪W, respectively,
such that their union is consistent.

Definition 5 (View complement). Let f be a view from R to V under Σ and
let g be a view from R to W under Γ . We say that g is a complement of f iff
(1) SΣ = SΓ and (2) ∀s, s′ ∈ SΣ , s
= s′ ∧ f(s) = f(s′) =⇒ g(s)
= g(s′). �

 152

In other words, a complement of f is a view g operating on the same domain of
f and capable of distinguishing between distinct database states which f maps
to the same view state. Note that there exists at least one complement for every
view, namely the “identity” mapping over the whole database.

The idea of view complement was first introduced by Bancilhon and Spyratos
in [1]. Our definition is indeed based on their work (cf. Theorem 4.2 in [1]) with
the additional requirement that f and g must have the same domain, which has
to be explicitly enforced here as we are in a setting with views under constraints.
Since the notion of view complement is symmetric, in that g is a complement of
f iff f is a complement of g, we will sometimes simply say that two views f and
g are “complementary”.

Given two views f and g under constraints Σ and Γ , respectively, their union
is the function f ⊎ g associating each s ∈ SΣ ∩ SΓ with the state f(s) ⊎ g(s).
The union of f and g turns out to be a view under Σ ∪Γ and, when f and g are
induced by their associated constraints, f ⊎ g is indeed induced by Σ ∪ Γ . The
connection between complementarity and injectivity of views is given by the fact
that two views under constraints and with the same domain are complementary
if and only if their union is injective.

Lemma 3. Let f be a view from R to V under Σ, let g be a view from R to W
under Γ and let SΣ = SΓ . Then, f⊎g is injective iff f and g are complementary.

Below we give a characterisation of complementarity between two views induced
by constraints in terms of logical equivalence and definability.

Theorem 6. Let R։
f
Σ V and R։

g
Γ W. Then, f and g are complementary if

and only if Σ̃R ≡ Γ̃R and V ∪W ։Σ∪Γ R.2

Therefore, one way of finding a complement of a given view f induced by a set of
constraints Σ consists in abducing another set of constraints Γ consistent with
Σ and satisfying the conditions of Theorem 6, which guarantees that the view
g induced by such a Γ is indeed a complement of f .

Following the rationale that the only purpose for which a view complement
is made available is that of allowing for a lossy view to be updatable, we demand
that the information it provides be invariant during the update process. In other
words, view updates must never modify, neither directly nor indirectly, any data
that belongs to the view complement. Putting together translatability of updates
and invariance of the complement results in the formal notion given below (cf.
Definition 5.1 in [1]).

Definition 6 (g-translatability). Let f be a view under Σ and let g be a com-
plement of f . A view update u ∈ UV is called g-translatable iff for each s ∈ SΣ

there exists s′ ∈ SΣ such that (1) f(s′) = uf(s) and (2) g(s′) = g(s). �

That is, a view update is g-translatable if it is translatable (according to Defini-
tion 4) and, in addition, leaves the complement g unchanged. For this reason, we
say that such an update is translatable under constant complement. In general,
there might be more than one complement of a given view, and an update is g-
translatable or not depending on the particular complement g we consider. Thus,

2
Σ̃R and Γ̃R denote the R-embeddings of Σ and Γ , respectively.

153

the choice of a complement defines an “update policy” by assigning unambiguous
semantics to the view updates.

The following theorem establishes an important relationship between trans-
latability w.r.t. a view under constant complement and translatability w.r.t. the
union of a view and its complement.
Theorem 7. Let f and g be complementary, let u ∈ UV and let v ∈ UW \ Ug.
Then, u is g-translatable w.r.t. f if and only if u⊎ v is translatable w.r.t. f ⊎ g.

This allows us to extend the result obtained for the translatability of updates
on injective views to the case of g-translatability.

Theorem 8. Let R ։
f
Σ V, let R ։

g
Γ W and let g be a complement of f . Let

Π̃ be the (V ∪W)-embedding of Σ ∪ Γ and let ren be a renaming over R ∪ V ∪
W. Let u ∈ UV be expressed by Ξ and let Ω be the W-defining set such that
∀x .W (x) ≡ ren

(
W (x)

)
for each W ∈ W. Then, u is g-translatable if and only

if Π̃ ∪Ξ ∪Ω |= ren(Π̃).

5 Conclusion
We presented a framework for view update based on the notion of “view under
constraints”. On the one hand, such a framework “extends”—so to say—the one
of Bancilhon and Spyratos by adding explicit constraints also at the view level.
Indeed, when there are no inter-schema constraints nor constraints on the view
schema, the notion of view under constraints coincides with the notion of view
used in [1]. On the other hand, our framework is an instance of Bancilhon and
Spyratos’ abstract one, in that we essentially consider only view mappings that
are expressible by means of first-order logic constraints.

Using logical definability, we gave a constructive characterisation of when and
whether a view induced by a set of constraints is invertible, so as to being able to
effectively compute the (unique) translation of a view update that is translatable
and expressible in FOL. Indeed, we also provided an applicable method, based
on the Beth’s definability property and the idea of local “embedding” of the con-
straints, for testing whether a FO-expressible view update is translatable (under
constant complement). We have an experimental tool, based on a FOL theorem
prover, that checks for implicit definability and derives explicit definitions, and
thus it can be used for testing the criterion of translatability we presented here
and for computing the corresponding translation.

References
1. F. Bancilhon and N. Spyratos. Update semantics of relational views. ACM Trans-

actions on Database Systems, 6(4):557–575, December 1981.
2. E. W. Beth. On Padoa’s method in the theory of definition. Indagationes Mathem-

aticae, 15:330–339, 1953.
3. A. Borgida, J. de Bruijn, E. Franconi, I. Seylan, U. Straccia, D. Toman, and G. Wed-

dell. On finding query rewritings under expressive constraints. In Proc. SEBD, 2010.
4. S. S. Cosmadakis and C. H. Papadimitriou. Updates of relational views. Journal of

the Association for Computing Machinery, 31(4):742–760, October 1984.
5. G. Gottlob, P. Paolini, and R. Zicari. Properties and update semantics of consistent

views. ACM Transactions on Database Systems, 13(4):486–524, December 1988.
6. J. Lechtenbörger. The impact of the constant complement approach towards view

updating. In Proceedings of PODS 2003, pages 49–55, San Diego, CA, June 2003.

 154

Top-k Query Processing with Parallel Probing of
Data Sources

Adnan Abid and Marco Tagliasacchi

Dipartimento di Elettronica e Informazione – Politecnico di Milano,
Piazza Leonardo da Vinci, 32 – 20133 Milano, Italy

{abid,tagliasa}@elet.polimi.it

Abstract Rank join problem performs a relational join between the gi-
ven relations by assigning numeric scores to the join results based on
the given scoring function, and returns the join results with the highest
scores. These rank join operators compute the top-K join results by ac-
cessing a subset of input relations. This paper addresses the problem of
getting top-K join results from two or more search services characterized
by non-negligible response times. There are two main objectives, to mi-
nimize the overall data access time, and also avoiding the access to the
data that does not contribute to get the top-K join results. This paper
proposes a rank join operator that achieves these objectives by using a
score guided data pulling strategy. This data pulling strategy minimizes
the data access time by extracting the data in parallel from all Web ser-
vices, while it avoids the access to the data not useful to get the top-K
join results by pausing and resuming the data access from these Web
services, based on the score values of the retrieved tuples. An extensive
experimental study validates the importance of the proposed approach
and shows that it accomplishes the task in much less time, while incur-
ring few extra data accesses, as compared to the existing best approaches
in terms of making least data accesses.

Keywords: rank joins, rank queries, score guided data pulling, top-K queries

1 Introduction

Consider a person who wants to plan his visit to Paris by searching for a good
quality hotel and a restaurant, which are situated close to each other and are
highly recommended by their customers. This can be accomplished by extracting
information from suitable Web services and merging the information to get the
top rated resultant combinations, as contemplated in Search Computing [3]. A
sample rank query based on the above example is the following:

SELECT h.name, r.name, 0.6*h.rating+0.4*r.rating as score
FROM Hotels h, Restaurants r
WHERE h.zip = r.zip AND h.city= ‘Paris’ AND r.city = ‘Paris’
RANK BY 0.6*h.rating+0.4*r.rating

The recent solutions to rank join problem [5][6][8] focus on providing instance
optimal algorithms regarding the I/O cost i.e. to minimize the amount of data
to be accessed in order to find the top-K join results. Hash Rank Join (HRJN*)
[6] is an instance optimal algorithm in terms of I/O cost and it introduces a
physical rank join operator. HRJN* has been further improved in [5] and [8].
These algorithms access data from the data sources in a serial manner, i.e. they
access data from one source, process it and then fetch the data from the next
most suitable source. The latter is selected based on a pulling strategy, which
determines the source to be accessed to, in order to minimize the I/O cost.
However, in the context of using Web services as data sources, data processing
time is found to be negligible as compared to data fetching time. So, most of
the time is spent in waiting for retrieving the data. This requires the design of a
rank join operator that is specifically conceived to meet the objectives of getting
top-K join results quickly and restricting access to unwanted data, when using
Web services or similar data sources.

2 Preliminaries

Consider a query Q whose answer requires accessing a set of Web services
S1, ..., Sm, that can be wrapped to map their data in the form of tuples as
in relational databases. Each tuple ti ∈ Si is composed of an identifier, a join
attribute, a score attribute and other named attributes. The tuples in every
Web service are sorted in descending order of score, where the score reflects the

relevance with respect to the query. Let t
(d)
i denote a tuple at depth d of Si.

Then σ(t
(d)
i) ≥σ(t

(d+1)
i), where σ(ti) is the score of the tuple ti. Without loss of

generality, we assume that the scores are normalized in the [0,1] interval.
Each invocation to a Web service Si retrieves a fixed number of tuples, referred
to as chunk. Let (CSi) denote the chunk size, i.e. the number of tuples in a
chunk. Furthermore, Si provides one chunk of tuples in a specified time, which
is referred to as its average response time (RTi). Let t = t1 ⋈t2 ⋈...tm denote
a join result formed by combining the tuples retrieved from the Web services,
where ti is a tuple that belongs to the Web service Si. This join result is assi-
gned an aggregated score based on a monotone score aggregation function, σ(t)
= f(σ(t1), σ(t2), .., σ(tm)). The join results obtained by joining the data from
these Web services are stored in a buffer Sresult in descending order of their
aggregate score.
Bounding Schemes: Let τi denotes the local threshold of a Web service Si

which represents an upper bound on the possible score of a join result that can
be computed by joining any of the unseen tuples of Si to either seen or unseen
data of the rest of the Web services. The global threshold τ of all the Web ser-
vices is the maximum among the local thresholds i.e. τ = max{τ1, τ2, ..., τm}.
The bounding scheme is responsible for computing τ , the upper bound of any
join result formed by unseen data. The global threshold can be computed based
on two possible bounding schemes. The corner bound and tight bound [5].

 156

3 Methodology

We propose a new rank join operator Controlled Parallel Rank Join (cPRJ)
which involves Web services characterized by non-negligible response time.

3.1 Data Pulling Strategy

A näıve pulling strategy can be to keep on extracting data from all the Web
services in parallel until their local threshold becomes equal or below the score

of K − th seen join result i.e. τi ≤σ(t
(K)
result

). We call this strategy Parallel Rank
Join (PRJ). However, PRJ may result extracting unwanted data if a Web service
stops before the others, that is, its local threshold has reached below the score
of, the then top-K − th join result in the output buffer Sresult. In this case,
there is a possibility that the other Web services having higher local thresholds
produce join results with better aggregate score values and terminate with an
even higher local threshold. Resultantly, the Web service which has stopped
earlier has incurred extra data fetches. Thus, our proposed data pulling strategy
not only uses parallel data extraction to reduce the time to fetch the data, but
at the same time, controls over the access to the unwanted data by pausing and
resuming data extraction from the Web services.

3.1.1 State Machine: In order to refrain from accessing the data that do not
contribute to the top-K join results every Web service is controlled by using a
state machine shown in Figure 1. The Web services are assigned a particular state
after the completion of data fetch from any Web service. The Ready state means
that the data extraction call should be made for this Web service. The Wait
state means that the data extraction from this Web service should be paused.
The Stop state means that further data extraction from this Web service will not
contribute to determining the top-K join results. Lastly, the Finish state means
that all the data from this Web service has been retrieved. The state transitions
are exemplified below in Section 3.1.3. On retrieving a chunk of tuples from Web
service Si the following operations are performed in order:

1. Its local threshold τi is updated and global threshold is updated accordingly.
2. New join results are computed from the current chunk of Si and are stored in

the buffer Sresult in descending order of score. The size of the buffer Sresult

is bound by the value of K.
3. All join results having aggregated score above τ are reported to the user.
4. If this is the last chunk then Si is put to Finish state and τi is set to 0.

Apart from this the following operations are also performed:

1. Every Web service Si, which is not in Stop or Finish state, is checked and

is put into Stop state, if σ(t
(K)
result

) ≥τi.
2. A Web service Sw that is in Wait state is kept in Wait state, if there is

any other Web service Sj which is in Ready state and τj > τw, and the
time needed to bring τj less than τw, is greater than both RTw and RTj .
Otherwise, it is put to Ready state otherwise.

157

Figure 1. The state machine according to which each Web service is manipulated

3.1.2 Time to Reach (ttr) The decisions to put a service from Ready to
Wait, and Wait to Ready state are based on the computation of time to reach
(ttr), which is the time to bring down the local threshold of a Web service lo-
wer than any other Web service’s threshold. The estimation of ttr involves the
calculation of decay in score for a Web service Sj having higher local threshold
than Si. We use Autoregressive Moving Average forecasting method [2] for the
calculation of score decay. After estimating the unseen score values we can com-
pute the total number of tuples needed to bring the τj lower than the value of
τi. This number is then divided by the chunk size of Sj i.e. CSj , to get the
number of chunks to bring the threshold down. If number of chunks are greater
than one then number of chunks are multiplied by RTj , and the elapsed time
ETj , the time since the last data extraction call is issued for Sj is subtracted
i.e. ttrj = (chunks ×RTj) −ETj , otherwise ttrj is set to 0.

3.1.3 State Transitions in the State Machine: The state transitions
shown in Figure 1 are exemplified below with the help of Figure 2(a). There are
3 Web services S1, S2 and S3 with RT1 = 400ms,RT2 = 700ms and RT3 = 900ms,
for simplicity, score decay for all Web services is kept linear.
Ready to Finish: If a Web service has been completely exhausted, i.e. all the
data from it has been retrieved then its state is changed from Ready to Finish.
Ready to Stop and Wait to Stop: If a Si is in Ready or Wait states then it

should be put into Stop state if σ(t
(K)
result

) ≥τi.
Ready to Ready, Ready to Wait, Wait to Ready and Wait to Wait:
A Web service Si in Ready state is put to Wait state, or a Web service Si in
Wait state is put to Ready state by analyzing the local thresholds of all other
Web services which are in Ready state. Figure 2(b) presents the algorithm for
setState function, lines 4-17 present the algorithm for this process. Below is the
explanation of the algorithm for a Web service Si:

– Consider a set J containing all the Web services having local thresholds
greater than that of τi and are in Ready state. The algorithm estimates the
time to reach (ttrj), for every Web service Sj ∈ J to bring τj lower than τi
as explained in Section 3.1.2. The ttr is the highest value among ttrj .

– If ttr ≥RTi then Si is put to Wait state, otherwise to Ready state.

 158

Bootstrapping: The phase before extraction of at least one chunk from all
Web services is considered as bootstrapping phase. Any Web service is allowed
to make maximum 2 data fetches in this phase.
Fetch Call for Long Awaited Web Services: If a Web service is put to
Wait state for a long time in this case the algorithm gives one data extraction
call to Si by putting it to Ready state. This call is issued if, the WAIT TIMEi,
time since Si has been retained in Wait state is more than c ×RTx, where Sx,
is the Web service with maximum response time which is not in Stop or Finish
state (lines 13-15 of Figure 2(b)).

(a) (b)

Figure 2. (a) Execution of the cPRJ with 3 Web services, over time line against local
thresholds. (b) The setState algorithm

4 Experimental Study and Discussion

4.1 Methodology

Data Sets: We have conducted the experiments on both synthetic data, and
real Web services. The experiments are based on the query in Example 1 by
generating many different synthetic data sources with various parameter settings.
The relevant parameters are presented in Table 1. The real Web services used for
the experiments are Yahoo! local and Yelp.com for points of interest in a city. We
also used eatinparis.com for restaurants and venere.com for hotels. For fairness,
we compute these metrics for 5 different cities in case of real Web services, and
over 10 different data sets for synthetic data, and report the average.

159

Table 1. Operating Parameters (defaults in bold)

Full Name Parameter Tested Values

Number of results K 1,20,50,100
Join Selectivity JS 0.005, 0.01, 0.015, 0.02
Score Distribution SD Uniform Distrib., Zipfian Distrib., Linear Distrib., Mixed
Response Time RT 500/500, 500/1000, 500/1500
Chunk Size CS 5/5, 5/10, 5/15
Number of relations m 2,3,4

Approaches: We compare three algorithms: HRJN* augmented with a tight
bounding scheme, PRJ and the proposed cPRJ. An important consideration is
that HRJN* augmented with tight bound threshold cannot be beaten in terms of
I/O cost, whereas PRJ cannot be out-performed in terms of time taken, provided
the time taken for joining the data is negligible.
Evaluation Metrics: The major objective of the proposed approach is to reduce
the time taken to get the top-K results by minimizing the data acquisition time
with the help of parallelism. So, we consider time taken (wall clock time) as the
primary metric. The reduction in time is obtained by compromising on possibly
some unwanted data extraction. Therefore, we consider sum depths [5], total
number of tuples retrieved from all Web services, as the other metric.

4.2 Results

Experiments with Synthetic Data: In Figure 3 we show the results of the
experiments for CS, RT and SD parameters. Figure 3(b) shows that cPRJ in-
curs 0-3% more and PRJ incurs 8-10% more I/O cost than HRJN* in case of
different values for one of CS, RT and SD. Whereas, If we augment all these in
one scenario then cPRJ incurs 3% more I/O cost than HRJN* and PRJ costs
29% more I/O cost than HRJN*. Whereas, Figure 3(a) shows that for all cases
the time taken by both parallel approaches is almost same and is 10-40% less
than HRJN*.

(a) (b)

Figure 3. Performance comparison of the algorithms on synthetic data sources for the
parameters show in Table 1.

 160

Real Web Services: We performed experiments with real Web services for
different values of K and different values of m. Figures 4(a) and 4(c) show that
both parallel approaches take same amount of time which is 20-25% less than
HRJN* in case of different values of K and is 14-35% less than HRJN* in case
of different values of m. Figures 4(b) and 4(d) show that the I/O cost incurred
by proposed cPRJ is 4-11% more than ideal HRJN*, whereas, PRJ takes 8-38%
extra data fetches.
As a whole, the overall performance of cPRJ is much better than PRJ as it
has almost same I/O cost as of HRJN* whereas, it takes almost same time as
of PRJ, whereas, PRJ has higher I/O cost than HRJN*. Thus, in the diverse
settings it brings the best of both worlds.
The other three parameters JS, m and K do not have any impact, individually.
However, if SD, RT and CS have heterogeneous values then JS, m and K also
come into play as shown in Figure 4.

(a) (b)

(c) (d)

Figure 4. Performance of the algorithms with real services. Figures (a) and (b) are for
the experiments with venere.com and eatinparis.com. Figures (c) and (d) are experi-
ments with different number of sources using Yahoo! Local and yelp.com

5 Related Work

We discuss the existing solutions which involve only sorted access to the data.
The NRA algorithm [4] finds the top-K answers by exploiting only sorted ac-
cesses to the data. But, this algorithm may not report the exact object scores.
Another example of no random access top-K algorithms is the J* algorithm [1].
It uses a priority queue containing partial and complete join results, sorted on

161

the upper bounds of their aggregate scores. The algorithm completes and re-
portes the join result at the top of the queue. This algorithm is expensive in
terms of memory and I/O costs as compared to HRJN* in most of the cases.
HRJN [6] is based on symmetrical hash join. The operator maintains a hash table
for each relation involved in the join process, and a priority queue to buffer the
join results in the order of their scores. It also maintains a threshold τ and uses
a data pulling strategy to compute join results. Some recent improvements in
HRJN algorithm are presented in [5] and [8]. These algorithms use tight bound
to compute top-K join results and show their comparative analysis.
Another interesting and objectively similar work has been done in [7], but the
proposed algorithm Upper incorporates both serial and random accesses to the
data sources, whereas, in our case we only use sorted access to the data sources.

6 Conclusion

We have proposed a new rank join algorithm cPRJ, for multi-way rank join
while using parallel data access. This algorithm is specifically designed for dis-
tributed data sources which have a non-negligible response time e.g. the Web
services available on the Internet. It uses a score guided data pulling strategy
which helps computing the top-K join results. The results based on the experi-
ments conducted on synthetic and real Web services show that the I/O cost of
the proposed approach is nearly as low as optimal I/O cost of HRJN*, and it
computes the join results as quick as PRJ approach which cannot be beaten in
terms of time taken. As a next step, we anticipate that this parallel rank join
operator can be enhanced for pipe joins.

7 Acknowledgments

This research is part of the “Search Computing” project, funded by the European
Research Council, under the 2008 Call for “IDEAS Advanced Grants”.

References

1. Nastev A., Chang Y., Smith J. R., Li C, and Vittor J. S. Supporting incremental
join queries on ranked inputs. In VLDB Conference.

2. P. J. Brockwell. Encyclopedia of Quantitative Finance. 2010.
3. Stefano Ceri. Search Computing: Challenges and Directions. LNCS. 2010.
4. R. Fagin, A. Lotem, and M. Naor. Optimal aggregation algorithms for middleware.

Journal of computer and system sciences, 66(4):614–656, 2003.
5. Jonathan Finger and Neoklis Polyzotis. Robust and efficient algorithms for rank

join evaluation. In SIGMOD Conference, pages 415–428, 2009.
6. I. Ilyas, W. Aref, and A. Elmagarmid. Supporting top-k join queries in relational

databases. The VLDB journal, 13(3):207–221, 2004.
7. Amélie Marian, Nicolas Bruno, and Luis Gravano. Evaluating top- queries over

web-accessible databases. ACM Trans. Database Syst., 29(2):319–362, 2004.
8. Karl Schnaitter and Neoklis Polyzotis. Optimal algorithms for evaluating rank joins

in database systems. ACM Trans. Database Syst., 35(1), 2010.

 162

ChaseT: A Tool For Checking Chase
Termination

Andrea De Francesco, Francesca Spezzano and Irina Trubitsyna

DEIS, Università della Calabria, 87036 Rende, Italy
{adefrancesco,fspezzano,irina}@deis.unical.it

Abstract. The chase algorithm is a fixpoint algorithm whose aim is to
fix inconsistencies of database instances with respect to a set of data
dependencies. The chase procedure may be non-terminating and several
techniques and criteria for checking chase termination have been pro-
posed. This paper presents ChaseT , a tool that allows users to design
data dependencies and apply different criteria and algorithms for check-
ing chase termination. Moreover, ChaseT is able to execute the chase
procedure in order to repair the possible inconsistent database provided
by the user. This paper starts introducing the chase algorithm and the
techniques for checking chase termination and then focuses on the archi-
tecture and the use-case scenarios of ChaseT .

1 Introduction

The Chase is a simple fixpoint algorithm, proposed 30 years ago [1, 11], testing
and enforcing implication of data dependencies in database systems. It plays im-
portant roles in database theory as well as in practical applications such as data
exchange, data integration, data warehousing, federated databases and others
[2, 4, 5, 10]. It is also used, directly or indirectly, on an everyday basis by people
who design databases, and it is used in commercial systems to reason about the
consistency and correctness of a data design.

The problem that the chase wants to solve is the following: given a database
instance D and a set of constraints Σ, both defined over an underlying database
schema R, fix the database consistency if D �|= Σ (i.e. the constraints are not sat-
isfied by the current instance). The algorithm works by inserting tuples, that may
contain null values because of the existentially quantification in the constraints,
and replacing labeled nulls (with either constants or other labeled nulls) so that
the resulting database satisfies Σ. Since, in general, it is undecidable whether the
chase algorithm terminates [6], it is important to identify criteria for Σ which
guarantee that the chase terminates for all database instances. These criteria
ensure to design ’safe’ sets of constraints and are useful in all database fields
where inconsistencies may arise, including data exchange applications, database
integration, data warehousing and federated databases.

The following example shows a set of constraints for which the chase could
be non-terminating.

Example 1. Consider the set of constraints Σ1:

∀x S(x) → ∃y E(x, y)
∀x ∀y E(x, y) → S(y)

and the database instance consisting of the tuple S(a). Since the database does
not satisfy the first constraint, a tuple E(a, n1) should be inserted, where n1 is
a new labeled null value. At this point the second constraint is not satisfied and
the tuple S(n1) should be added to the database. Continuing with the chase
process of adding tuples to make the database consistent, an infinite number of
tuples E(n1, n2), S(n2), E(n2, n3), S(n3), . . . should be inserted. �

Generally, in the literature two different chase procedures are considered:
standard and oblivious. Intuitively, a standard chase step applies only when
there exists a mapping from the body of a constraint to the database instance
and the head of the constraint is not satisfied, while an oblivious one always
applies when there exists the mapping from the body to the instance, even if the
constraint is satisfied. Two different types of oblivious chase have been used in
the literature: naive and skolem [13, 12].

Example 2. Consider the constraint

r : ∀x∀z E(x, z) → ∃y E(x, y)

and the database D = {E(a, b)}. Under the standard chase, the constraint is
satisfied and the chase terminates without any application of a chase step. Under
the oblivious skolem chase only a tuple E(a, n1) is added, whereas under the
oblivious naive chase an infinite number of tuples E(a, n1), E(a, n2), E(a, n3)...
is added. �

This paper offers a survey on the well-known chase termination criteria [7, 6,
13, 12] and rewriting approaches [8] and presents ChaseT , a tool supporting the
application of the chase algorithm. The user can submit the database instance,
possibly inconsistent w.r.t. a given set of constraints, and fix its consistency by
executing the desired chase procedure. The tool can be also used in database
design to avoid the definition of dependencies where the chase could be non-
terminating. Indeed, ChaseT allows users to design data dependencies and apply
different criteria and algorithms for checking chase termination.

Organization. The paper is organized as follows. Section 2 introduces basic
notions on chase algorithms. Sections 3 and 4 present a survey on the well-known
chase termination conditions and rewriting techniques, respectively. Finally, in
Section 5 the ChaseT system is described and in Section 6 conclusions are drawn.

2 Preliminaries

We introduce the following disjunct sets of symbols: (i) an infinite set Consts of
constants, (ii) an infinite set Nulls of labeled nulls and (iii) an infinite set V ars
of variables.

A relational schema R is a set of relational predicates R, each with its as-
sociated arity ar(R). An instance of a relational predicate R of arity n is a set
of ground atoms in the form R(c1, . . . , cn), where ci ∈ Consts ∪ Nulls. Such

 164

(ground) atoms are also called tuples or facts. We denote by D a database in-
stance constructed on Consts and by J,K the database instances constructed
on Consts∪Nulls. Given an instance K, Nulls(K) (resp. Consts(K)) denotes
the set of labeled nulls (resp. constants) occurring in K. An atomic formula (or
atom) is of the form R(t1, . . . , tn) where R is a relational predicate, t1, . . . , tn
are terms belonging to the domain Consts ∪ V ars and n = ar(R).

Let K be a database over a relational schema R and S ⊆ R, then K[S] de-
notes the subset of K consisting of instances whose predicates are in S (clearly
K = K[R]). Analogously, if we have a collection of databases KC = {K1, . . . , Kn}
where each Ki is defined over a schema Ri and let S ⊆ ∩i∈[1...n]Ri, then
KC [S] = {K1[S], . . . , Kn[S]}.

Given a relational schema R, a tuple generating dependency (TGD) over R is
a formula of the form ∀x ∀z φ(x, z) → ∃y ψ(x,y), where φ(x, z) and ψ(x,y) are
conjunctions of atomic formulas over R; φ(x, z) is called the body of r, denoted
as Body(r), while ψ(x,y) is called the head of r, denoted as Head(r). An equality
generating dependency (EGD) over R is a formula of the form ∀x φ(x) → x1 =
x2, where x1 and x2 are among the variables in x.

In the following we will often omit the universal quantification, since we
assume that variables appearing in the body are universally quantified and vari-
ables appearing only in the head are existentially quantified. In some cases we
also assume that the head and body conjunctions are sets of atoms.

Definition 1 (Homomorphism). Let K1 and K2 be two instances over R
with values in Consts∪Nulls. A homomorphism h : K1 → K2 is a mapping from
Consts(K1)∪Nulls(K1) to Consts(K2)∪Nulls(K2) such that: (1) h(c) = c, for
every c ∈ Consts(K1), and (2) for every fact Ri(t) of K1, we have that Ri(h(t))
is a fact of K2 (where, if t = (a1, ..., as), then h(t) = (h(a1), ..., h(as))). �

Similar to homomorphisms between instances, a homomorphism h from a
conjunctive formula φ(x) to an instance J is a mapping from the variables x to
Consts(J) ∪ Nulls(J) such that for every atom R(x1, . . . , xn) of φ(x) the
fact R(h(x1), . . . , h(xn)) is in J .

For any database instance D and set of constraints Σ over a database schema
R, a solution for (D, Σ) is an instance J such that D ⊆ J and J |= Σ (i.e. J
satisfies all constraints in Σ). A universal solution J is a solution such that for
every solution J ′ there exists a homomorphism h : J → J ′. The set of universal
solutions for (D,Σ) will be denoted by USol(D,Σ).

Chase step Let K be a database instance.

1. Let r be a TGD φ(x, z) → ∃yψ(x,y). Let h be a homomorphism from φ(x, z)
to K such that there is no extension of h to a homomorphism h′ from φ(x, z)∧
ψ(x,y) to K. We say that r can be applied to K with homomorphism h. Let
K ′ be the union of K with the set of facts obtained by: (a) extending h to
h′ such that each variable in y is assigned a fresh labeled null, followed by
(b) taking the image of the atoms of ψ under h′. We say that the result of

applying r to K with h is K ′, and write K →
r,h

K ′. (A variant of this step is
the oblivious one that applies to an instance K if there is a homomorphism h

 165

from φ(x) to K. We write K →
∗,r,h

K ′ to denote the application of an oblivious
chase step.)

2. Let r be an EGD φ(x) → x1 = x2. Let h be a homomorphism from φ(x)
to K such that h(x1) �= h(x2). We say that r can be applied to K with
homomorphism h. More specifically, we distinguish two cases.

(a) If both h(x1) and h(x2) are in Consts the result of applying r to K with

h is “failure”, and K →
r,h

⊥.
(b) Otherwise, let K ′ be K where we identify h(x1) and h(x2) as follows:

if one is a constant, then the labeled null is replaced everywhere by the
constant; if both are labeled nulls, then one is replaced everywhere by
the other. We say that the result of applying r to K with h is K ′, and

write K →
r,h

K ′.

Definition 2 (Chase [7]). Let Σ be a set of TGDs and EGDs, and let K be
an instance.

– A chase sequence of K with Σ is a sequence (finite or infinite) of chase steps

Ki →
r,hi

Ki+1, with i = 0, 1, ..., K0 = K and r a dependency in Σ.

– A finite chase of K with Σ is a finite chase sequence Ki →
r,hi

Ki+1, 0 ≤ i < m,
with the requirement that either (a) Km =⊥ or (b) there is no dependency
r of Σ and there is no homomorphism hm such that r can be applied to Km

with hm. We say that Km is the result of the finite chase. We refer to case
(a) as the case of a failing finite chase and we refer to case (b) as the case
of a successful finite chase. �

In [7] it has been shown that, for any instance D and set of constraints Σ: (i)
if J is the result of some successful finite chase of 〈D,Σ〉, then J is a universal
solution; (ii) if some failing finite chase of 〈D, Σ〉 exists, then there is no solution.

Constraints equivalence The equivalence between two sets of constraints Σ1

and Σ2 defined, respectively, over two schemas R1 and R2, is given with respect
to two sets of relations R,S ⊆ R1 ∩ R2 called, respectively, input and output
relations.

Given two sets of constraints Σ1 and Σ2 over the two database schemas
R1 and R2, respectively and two sets of relations R,S ⊆ R1 ∩ R2, we say
that 〈R1, Σ1〉 ⊑R/S 〈R2, Σ2〉 if for every database D over R, USol(D, Σ1)[S] ⊆
USol(D,Σ2)[S]. Moreover, we say that 〈R1, Σ1〉 and 〈R2, Σ2〉 are equivalent
with respect to R/S and write 〈R1, Σ1〉 ≡R/S 〈R2, Σ2〉 if both 〈R1, Σ1〉 ⊑R/S

〈R2, Σ2〉 and 〈R2, Σ2〉 ⊑R/S 〈R1, Σ1〉. When R = S = R1 ∩R2 we simply write
〈R1, Σ1〉 ⊑ 〈R2, Σ2〉 and 〈R1, Σ1〉 ≡ 〈R2, Σ2〉.

3 Chase termination conditions

This section presents a brief overview on the well-known chase termination condi-
tions that guarantee for every database D the termination of all chase sequences
in polynomial time in the size of D.

 166

Weak acyclicity. Fagin et al. [7] introduced a criterium, called weak acyclicity
(WA), checking whether the set of constraints does not present cyclic conditions
for which a new null value forces (directly or indirectly) the introduction of
another null in the same position. Let Σ be a set of TGDs over a database
schema R, then pos(Σ) denotes the set of positions Ri such that R denotes
a relational predicate of R, i is the i-wise attribute of R, and there is an R-
atom appearing in Σ. Weak acyclicity is based on the construction of a directed
graph dep(Σ) = (pos(Σ), E), called the dependency graph, where E is defined
as follows. For every TGD φ(x, z) → ∃yψ(x,y) in Σ, then: i) for every x in x
occurring in position Ri in φ and in position Sj in ψ, add an edge Ri → Sj (if
it does not already exist); ii) for every x in x, appearing in position Ri in φ and
for every y in y appearing in position Tk in ψ, add a special edge Ri →

∗ Tk (if it
does not already exist). Σ is weakly acyclic if dep(Σ) has no cycle going through
a special edge.

Stratification. Deutsch et al. proposed an extension of weak acyclicity called
stratification (Str) [6]. The extension states that chase termination can be checked
locally by considering subsets of constraints that might cyclically cause to fire
each other. Given a set of constraints Σ and two constraints r1, r2 ∈ Σ, we say
that r1 ≺ r2 iff there exists a relational database instance K1 and two homomor-
phisms h1 and h2 such that i) K1 �|= h1(r1) ii) K1 →r1,h1K2, iii) K2 �|= h2(r2) and
iv) K1 |= h2(r2). Intuitively, r1 ≺ r2 means that firing r1 can cause the firing
of r2. We say that Σ is stratified iff the constraints in every cycle of the chase
graph G(Σ) = (Σ, {(r1, r2)|r1 ≺ r2}) are weakly acyclic.

Example 3. Consider the set Σ3:

r : E(x, y) ∧ E(y, x) → ∃u, v E(x, u) ∧ E(u, v) ∧ E(v, x)

stating that each node involved in a cycle of length 2 is also involved in a cycle
of length 3 and the two cycles share an edge. Since r �≺ r (i.e. r does not fire
itself) the chase graph G(Σ3) is acyclic and, therefore, Σ3 is stratified. �

For every database D, stratification ensures the existence of a chase sequence
which terminates in polynomial time in the size of D [6]. In order to guarantee
the termination of all chase sequences, since stratification does not, the improve-
ment of stratification criterium, called c-stratification (CStr) has been proposed
[13]. Basically, c-stratification defines a different chase graph Gc and applies a
constraints whenever the body of a constraints is satisfied. In particular, r1 ≺c r2

iff i) K1 →∗,r1,h1K2, ii) K2 �|= h2(r2) and iii) K1 |= h2(r2).

Safety. Meier et al. proposed a different extension of weak acyclicity called
safety (SC) [13]. The improvement is based on the fact that only the effective
propagation of null values should be considered in the graph. A position Ri is
said to be affected if there is a constraint r : φ(x, z) → ∃yψ(x,y) in Σ and
either i) there is a variable y in y appearing in position Ri in ψ, or ii) there is a
variable x in x appearing both in position Ri in ψ and only in affected positions
in the body of r. The set of affected positions of Σ is denoted by aff(Σ).

 167

Given a set of TGDs Σ, the propagation graph of Σ, denoted as prop(Σ) =
(aff(Σ), E′), is a subset of dep(Σ) = (pos(Σ), E) such that E′ contains the
edges in E whose positions are affected (since aff(Σ) ⊆ pos(Σ)). Moreover, Σ
is said to be safe if prop(Σ) does not contain cycles with special edges.

Example 4. Consider the below set of constraints Σ4:

S(x) → ∃y E(x, y)
N(y) ∧ E(x, y) → S(y)

which is not weakly acyclic since S1→
∗ E2 and E2 → S1. However, E2 does not

propagate null values to S1 as the variable y also appears in the relation N which
does not contain null values. So, position S1 cannot contain nulls as well, i.e. it
is not affected, and Σ4 is safe. �

Basically, safety conditions consider only affected positions, i.e. positions
which may actually contain null values [3]. Both stratification and safety extend
weak acyclicity, but they are not comparable (i.e. there are sets of constraints
which only satisfy one of the two criteria).

Super-weak acyclicity. A different extension has been introduced in [12] under
the name of Super-weak Acyclicity (SwA). Basically, SwA takes into account the
fact that variables may appear more than once in the body of constraints and,
therefore, when different nulls are inserted in positions associated with the same
variable, constraints are not fired. The super-weak acyclicity builds a trigger
graph Υ (Σ) = (Σ,E) where edges define relations among constraints. An edge
ri � rj means that a null value introduced by a constraint ri is propagated
(directly or indirectly) into the body of rj .

Example 5. Let Σ5 be the below set of constraints:

N(x) → ∃y, z E(x, y, z)
E(x, y, y) → N(y)

Σ5 is super-weakly acyclic and stratified but not safe. �

Let Σ be a set of TGDs and let sk(Σ) be the logic program obtained by
skolemizing Σ, i.e. by replacing each existentially quantified variable y appearing
in the head of a TGD r by the skolem function fr

y (x), where x is the set of
variables appearing both in the body and in the head of r. A place is a pair
(a, i) where a is an atom of sk(Σ) and 0 ≤ i ≤ ar(a). Given a TGD r and an
existential variable y in the head of r, we define Out(r, y) as the set of places
(called output places) in the head of sk(r) where a term of the form fr

y (x) occurs.
Given a TGD r′ and a universal variable x′ of r′, In(r′, x′) denotes the set of
places (called input places) in the body of r′ where x′ occurs.

Given a set of variables V, a substitution θ of V is a function mapping each
v ∈ V to a finite term θ(v) built upon constants and function symbols. Two
places (a, i) and (a′, i) are unifiable and we write (a, i) ∼ (a′, i) iff there exist
two substitutions θ and θ′ of (respectively) the variables a and a′ such that
a[θ] = a′[θ′]. Given two sets of places Q and Q′ we write Q ⊑ Q′ iff for all q ∈ Q
there exists some q′ ∈ Q′ such that q ∼ q′.

 168

Given a set Q of places, Move(Σ, Q) denotes the smallest set of places Q′

such that Q ⊆ Q′, and for every rule r = Br → Hr in sk(Σ) and every variable
x, if Πx(Br) ⊑ Q′ then Πx(Hr) ⊆ Q′, where Πx(Br) and Πx(Hr) denote the
sets of places in Br and Hr where x occurs.

Given a set Σ of TGDs and two TGDs r, r′ ∈ Σ, we say that r triggers r′ in
Σ and we write r � r′ iff there exists an existential variable y in the head of r,
and a universal variable x′ occurring both in the body and head of r′ such that
In(r′x′) ⊑ Move(Σ,Out(r, y)). A set of constraints Σ is super-weakly acyclic iff
the trigger graph Υ (Σ) = (Σ, {(r, r′)|r � r′}) is acyclic.

The super-weak acyclicity extends safety [8] but is not comparable with (c)-
stratification.

Other criteria guaranteeing chase termination in PTIME have been also pro-
posed. In particular, a criterium generalizing both c-stratification and safety,
but not comparable with SwA, has been introduced in [13] under the name
of inductive restriction (IR). In addition, the criterium for the Termination of
Oblivious Chase (TOC) has been defined in [12] as well; it is more general than
SwA, but undecidable. Recently new criteria have been proposed in [9]. More
specifically, a more powerful notion of c-stratification, called WA-Stratification
has been given, and a new criterium, called local stratification (LS), combining
the chase graph of WA-stratification and the unifying notion of SwA, has been
proposed as well. LS results more general than IR, WA-stratification and SwA.

4 Rewriting approach

In [8] an orthogonal technique has been proposed which is able to extend all
criteria above discussed. The technique consists in rewriting the original set of
constraints Σ into an ‘equivalent’ set Σα, where predicate symbols are adorned,
and verifying the structural properties for chase termination on Σα. More specifi-
cally, an adorned predicate is of the form pα1...αm(x1, ..., xm) where αi = b means
that the variable xi is bounded, otherwise (αi = f) we say that xi is free.

Intuitively, bounded terms can take values from finite domains; consequently,
constant terms are always adorned with the symbol b. If each body variable of
a TGD is associated with a unique adornment we say that the adornment of
the body is coherent. Given a TGD r : φ(x, z) → ∃yψ(x,y) and let α be a
coherent adornment for the body atoms, then HeadAdn(r, φα(x, z)) denotes the
adorned head of r (with respect to the adorned body φα(x, z)) obtained by
adorning head atoms as follows: i) every universally quantified variable has the
same adornment of the body occurrences, ii) constants are adorned as b; iii)
existentially quantified variables are adorned as f .

Rewriting algorithm. Given a set of TGDs Σ over a schema R the cor-
responding rewriting set Adn(Σ) consists of the union of four sets of TGDs:
the base set Base(Σ), the derived set Derived(Σ), the input set In(Σ) and
the output set Out(Σ). The rewriting is performed by means of the function
Adn. It starts by adorning, for each TGD, body predicates with strings of b
symbols and adorning heads according to the body adornments by using the

 169

function HeadAdn (base set); then, each new adorned predicate symbol is used
to generate new adorned constraints until all adorned predicate symbols are used
(derived set); at the end, TGDs mapping source relations into relations adorned
with strings of b symbols (input set) and TGDs mapping relations having the
same predicate and different adornments into a unique relation (output set) are
added.

Example 6. Consider the following set of constraints Σ6:

N(x) → ∃y E(x, y)
S(x) ∧ E(x, y) → N(y)

Initially, Adn(Σ6) contains two constraints derived by adorning the body vari-
ables as bound (Base(Σ6))

r1 : Nb(x) → ∃y Ebf (x, y)
r2 : Sb(x) ∧ Ebb(x, y) → Nb(y)

In the second step two new constraints are generated (Derived(Σ6)). Due to the
new predicate Ebf, the following constraint, derived from constraint r2, has been
introduced:

r3 : Sb(x) ∧ Ebf (x, y) → Nf (y)

At this point the new predicate symbol Nf has been generated and, thus, a new
constraint derived from r1 is added:

r4 : Nf (x) → ∃y Eff (x, y)

From the new predicate Eff no new constraint is generated since the variable
x in the body of the second constraint is bounded as it also appears in the
predicate Sb. The rewritten set of constraints is weakly acyclic. �

To show the equivalence between Σ and Σα the following definition has been
introduced. For any input database schema R and set of constraints Σ over R, we
shall denote with (i) R̂ = {p̂(A1, ..., An) | p(A1, ..., An) ∈ R} the output schema
derived from R, (ii) Adn(R, Σ) = R ∪ {pα(A1, ..., An) | p(A1, ..., An) ∈ R ∧ pα

appears in Adn(Σ)}∪R̂ the schema obtained by adding to R the schemas of the

relations introduced in the rewriting of constraints, (iii) Map(R) = R ∪ R̂ the
union of the input and output schemas, and (iv) Map(Σ) = Σ∪{p(x1, ..., xn) →
p̂(x1, ..., xn)|p(A1, ..., An) ∈ R} the set of constraints containing, in addition to
Σ, a set of TGDs mapping tuples over the input schema to tuples over the output
schema.

Theorem 1. [8] For every set of TGDs Σ over a database schema R,

〈Map(R), Map(Σ)〉 ≡
R/R̂ 〈Adn(R, Σ), Adn(Σ)〉.

The previous theorem states that for every database D over a schema R and
for each universal solution J derived by applying the source TGDs Σ to D there
is a universal solution K derived by applying the rewritten constraints Adn(Σ)

to D such that J [R̂] = K[R̂] and vice versa.

 170

It is worth noting that if Σ satisfies a chase termination criterium T , defined
on the base of structural properties, then the rewritten set Σα satisfies T as well,
but the vice versa is not true, that is there are significant classes of constraints
for which Σα satisfies T and Σ does not.

Improvements (Adn+ function [8]). The rewriting technique can be further
improved by using different types of adornments for free variables. Thus, instead
of simply using f to denote that a position may contain null values, we will
use adornments of the form fi, where i is a fresh subscript. In order to have
terminating sequences we will also use substitutions for adornments sequences
and we will add a constraint only if there is no adorned constraint having similar
structure, i.e. there is no substitution θ such that rαθ = rβ . In particular, a
substitution θ is a set of pairs fi/fj such that i �= j; obviously, the same symbol
cannot be used in both left and right sides of substitutions, i.e. a symbol fj used
to replace a symbol fi cannot be substituted in θ by a symbol fk.

Given a set of TGDs Σ over a schema R we denote by Adn+(Σ) the cor-
responding set of constraints obtained by rewriting Σ by means of the func-
tion Adn+. Moreover, the new schema Adn+(R, Σ) is defined analogously as
Adn(R, Σ).

Theorem 2. [8] For every set of TGDs Σ over a database schema R,

〈Map(R),Map(Σ)〉 ≡
R/R̂ 〈Adn+(R, Σ), Adn+(Σ)〉.

The following theorem states that the rewriting of constraints allows us to
recognize larger classes of constraints for which chase termination is guaranteed.

Theorem 3. [8] For T∈{WA,Str, CStr,SC,SwA}, T � Adn-T � Adn+-T . �

5 System Description

ChaseT implements the above criteria and techniques for checking chase termi-
nation and allows users to execute chase algorithms. Its architecture is depicted
in Fig. 1 and consists of six main modules which allow users to define data depen-
dencies, check chase termination properties, visualize explanations and execute
chase algorithms. The Graphical User Interface (GUI) allows the user to provide
the set Σ of data dependencies and three parameters: i) γ, denoting the type of
chase she/he is interested in (standard, skolem oblivious, naive oblivious), ii) τ ,
denoting the selected termination criterium (WA, SC, SwA or CStr), and iii)
ρ, denoting the possible rewriting technique she/he wants to apply (Adn, Adn+
or none). Through the GUI is is also possible to submit a database instance D
(stored as set of facts in a text file) and fix its possible inconsistencies by run-
ning the desired chase algorithm. If the user wants to check the termination of
the selected chase algorithm by applying a rewriting technique, the input set of
dependencies Σ is rewritten (by the module Rewriter) into a set of adorned de-
pendencies Σα. Since the rewriting output also depends on the particular chase
procedure the user wants to check, the Rewriter module receives in input Σ and

 171

Fig. 1. ChaseT architecture

the parameters ρ and γ and gives in output the rewritten set of constraints Σα.
The system also allows users to check termination conditions without indicating
any specific criterium. In such a case all techniques are applied and the system
returns the properties of the input dependencies (see the bottom right window
in Fig. 2). Fig. 2 shows how the user interacts with the system through the GUI.
The left window shows the input set of dependencies, while the rewritten set of
dependencies is showed in the right window; parameters are introduced through
check boxes.
It is worth noting that the data dependencies defined by the user are first parsed
(by the module Parser) to check syntactic errors and inconsistencies (e.g. the
use of predicates having the same name and different arity).
For the analysis of the structural properties of a set of dependencies Σ, the
Checker builds two specific graphs for the selected criterium: the constraints
graph shows how constraints may activate each other, while the position graph
shows how nulls may propagate through positions. For instance, the constraints
graph denotes i) the chase graph if the underlying criterium is c-stratification,
and ii) the trigger graph if the underlying criterium is super-weak acyclicity.
Concerning the position graph, it could denote the dependency graph or the
propagation graph according to the selected criterium. The construction of the
graphs is performed by the module Graph Builder which receives in input the
set of dependencies Σ, the criterium τ and the type of chase γ. The graphs can
be visualized using a graph visualization tool for a better understanding of data
dependency properties (see Fig. 3).
The module Chase Executor applies the desired chase algorithm (specified by
the parameter γ) to an input database D and a set of data dependencies Σ; the
result of the execution is showed by the DB Visualizer and stored in a new text
file. This module also receives in input a time limit ∆ used for dependencies
which are not recognized as terminating by the Checker to stop possible non
terminating executions.

The system has been developed in Java using Eclipse IDE and is download-
able from wwwinfo.deis.unical.it/chaset. The GUI has been written using the
Swing Java libraries and the open source library JGraphX for the visualization
of graphs. The interactions among the different modules are carried out through

 172

Fig. 2. ChaseT User Interface

interfaces so that each module can be easily modified without any inference on
the other modules.

In the following, a typical use-case scenario of ChaseT is shown. Suppose,
for instance, that the user wants to check the termination of the standard chase
procedure for the set of constraints of Example 6. As shown in Fig. 2, the user
introduces the set of constraints Σ in the “Input data dependency” window,
selects “standard” as chase type and tries to test the known termination con-
ditions (Run test button) by taking into account that more general techniques
require greater computational effort and the explanation is more complex. For
the example shown in Fig. 2 the application of all termination conditions to the
original set of dependencies produces a negative result. However, the application
of the simplest rewriting generates the equivalent set Adn(Σ), which is weakly
acyclic. The rewritten set of constraints can be visualized in the “Adorned data
dependency” window (using the Adorning button).

The user can also visualize on the screen the graphs generated by the Graph
Builder in order to analyze graphs and understand the behaviors of the different
termination criteria. As shown in Fig 3, the dependency graph of Σ contains a
cycle going through a special edge (“Dependency graph” window) instead the
dependency graph of Adn(Σ) is acyclic (see “Adorned dependency graph” win-
dow). In order to execute the chase algorithm (Execute Chase button) the user
also loads a database instance and fixes the time limit ∆ in the “Chase Execu-
tor” window. The result can be viewed in the “Result” window and stored in
the selected textual file.

6 Conclusion

This paper has presented a tool supporting the application of the chase algo-
rithm. In particular, we have reported the chase termination criteria and the
rewriting techniques implemented in the current version of ChaseT and then

 173

Fig. 3. Graph visualizer

described the architecture of the system and the use-case scenarios. As future
work we plan to extend the set of chase termination criteria with new criteria
and techniques proposed in [9].

References

1. Alfred V. Aho, Catriel Beeri, and Jeffrey D. Ullman. The theory of joins in rela-
tional databases. ACM Trans. Database Syst., 4(3):297–314, 1979.

2. Leopoldo E. Bertossi. Consistent query answering in databases. SIGMOD Record,
35(2):68–76, 2006.

3. Andrea Cal̀ı, Georg Gottlob, and Michael Kifer. Taming the infinite chase: Query
answering under expressive relational constraints. In Description Logics, 2008.

4. Jan Chomicki. Consistent query answering: Five easy pieces. In ICDT, pages 1–17,
2007.

5. Giuseppe DeGiacomo, Domenico Lembo, Maurizio Lenzerini, and Riccardo Rosati.
On reconciling data exchange, data integration, and peer data management. In
PODS, pages 133–142, 2007.

6. Alin Deutsch, Alan Nash, and Jeffrey B. Remmel. The chase revisited. In PODS,
pages 149–158, 2008.

7. Ronald Fagin, Phokion G. Kolaitis, Renée J. Miller, and Lucian Popa. Data ex-
change: semantics and query answering. Theor. Comput. Sci., 336(1):89–124, 2005.

8. Sergio Greco and Francesca Spezzano. Chase termination: A constraints rewriting
approach. PVLDB, 3(1):93–104, 2010.

9. Sergio Greco, Francesca Spezzano, and Irina Trubitsyna. Stratification criteria
and rewriting techniques for checking chase termination. PVLDB, 4(7), 2011. To
appear.

10. Maurizio Lenzerini. Data integration: A theoretical perspective. In PODS, pages
233–246, 2002.

11. David Maier, Alberto O. Mendelzon, and Yehoshua Sagiv. Testing implications of
data dependencies. ACM Trans. Database Syst., 4(4):455–469, 1979.

12. Bruno Marnette. Generalized schema-mappings: from termination to tractability.
In PODS, pages 13–22, 2009.

13. Michael Meier, Michael Schmidt, and Georg Lausen. On chase termination beyond
stratification. CoRR, abs/0906.4228, 2009.

 174

The Open Source release of the MOMIS Data

Integration System

Sonia Bergamaschi1, Domenico Beneventano1, Alberto Corni1, Entela Kazazi2,
Mirko Orsini2, Laura Po1, Serena Sorrentino1

1 DII, Università di Modena e Reggio Emilia
Via Vignolese 905, 41125 Modena - Italy

firstname.lastname@unimore.it
2 Data River S.r.l.,

Via Vignolese 905, 41125 Modena - Italy
firstname.lastname@datariver.it

Abstract. MOMIS (Mediator EnvirOnment for Multiple Information
Sources) is an Open Source Data Integration system able to aggregate
data coming from heterogeneous data sources (structured and semi-
structured) in a semi-automatic way. DataRiver3 is a Spin-Off of the
University of Modena and Reggio Emilia that has re-engineered the
MOMIS system, and released its Open Source version both for com-
mercial and academic use. The MOMIS system has been extended with
a set of features to minimize the integration process costs, exploiting
the semantics of the data sources and optimizing each integration phase.
The Open Source MOMIS system have been successfully applied in sev-
eral industrial sectors: Medical, Agro-food, Tourism, Textile, Mechanical,
Logistics. This paper describes the features of the Open Source MOMIS
system and how it is able to address real data integration challenges.

1 Introduction

Data integration involves combining data residing on different sources and pro-
viding users with a unified view of these data [9]. In the past years the problem
of data integration has been largely discussed by the research community [8].
With the increasing volumes of data and the growing need to share informa-
tion, data integration has become a fundamental process in the field of business
applications.

The size of the market for data integration tools has been estimated at ap-
proximately $1.35 billion as of the end of 2009. A projected five-year compound
annual rate of approximately 9.4% will yield a market of approximately $2.1
billion by 2014 [14].

As pointed out in [14], “Customers are seeking low-cost, good enough data in-
tegration capabilities”. MOMIS is distributed by DataRiver as an Open Source

3 http://www.datariver.it/

tool to be competitive compared to big vendors and to benefit from the con-
tribution of the Open Source community that can develop and make available
extensions of the system.

The goal of the Open Source MOMIS system is the minimization of the inte-
gration process costs. A data integration project is often developed by integration
designers that have a partial knowledge of the data sources and of the applica-
tion domain. Even if the designers have a good knowledge of the application
domain, often they are not skilled on the techniques to integrate the data stored
in the data sources. In traditional Data Integration Systems, designers have to
manually build the integrated schema, defining all the mappings between each
global class/attribute and the corresponding local classes/attributes on the local
data sources, thus the integration process requires several days/weeks depending
on the size of the integration project. Another drawback is due to the fact that
designers can see the global result of the integration only at the end of the overall
integration process, and it is only at that time that they can refine mappings in
order to improve the integrated schema.

To overcome these problems, a first result of integration is semi-automatically
derived by MOMIS and proposed to the designer in few minutes; she/he can then
improve this integration result, through an iterative refinement process and a
set of features (described in details in Section 3). The main features proposed
in MOMIS are: (1) a GUI that facilitates the integration process, (2) a set of
explore and preview tools that allow the designer to preview the integration
result during each phase, (3) the possibility to create different unified views to
explore the global result of the data integration process, (4) a suite of tools to
semantically annotate data sources w.r.t. a common lexical reference; these tools
allow the designer to import/export the local source annotations, and permit to
extend the lexical reference itself with domain glossaries, (5) a preview of the
query plan that allows the designer to visualize, for each executed global query,
the set of queries that compose the query plan.

Commercial and Open Source Data Integration Systems on the market, do
not provide the semi-automatic generation of the Global Schema and the au-
tomatic generation of mappings. The MOMIS System helps the designer inte-
grating data sources in a semi-automaic way, exploiting the semantics of data
sources. In [3], the MOMIS system have been demonstrated to be able to support
all the twelve queries of the THALIA benchmark for data Integration Systems,
by simply extending and combining the declarative translation functions avail-
able in MOMIS and without any overhead of new code.

MOMIS development started in 1997 and the research activity continued
within several national and international projects through the years. MOMIS was
successfully exploited in several scenarios, e.g., for the integration of molecular
and phenotypic data sources and the development of an integrated information
system for cereals breeders in the CEREALAB project4 and for the integration of
several tourism web sites and the development of a Tourism Vertical Web Portal

4 http://www.cerealab.unimore.it/

 176

in the WISDOM project5. Moreover, the Open Source MOMIS system has been
used on real-data sets to integrate clinical data of patients. This work has been
conducted in the Olive Tree Project for sharing data about Cancer registries of
ten different countries in the Mediterranean Sea. The application of the MOMIS
system have been demonstrated to be effective with a considerable saving in
time, compared to the manual building of the integrated schema implemented
in traditional Data Integration Systems.

The paper is organized as follows: Section 2 presents the MOMIS system, by
describing its architecture and by identifying the main phases of the data inte-
gration process. In Section 3, we describe the features that have been introduced
in the open source version of the tool. In Section 4, the web site, documentation,
tutorials and community of the Open Source MOMIS system are presented. At
the end, Section 5 sketches out the future development directions.

2 The Data Integration Process and Architecture

In this section, we present the MOMIS architecture and the main phases of the
data integration process. A full and detailed description of MOMIS is out of our
scope and can be found in [6, 2, 5].

MOMIS builds a unified schema, called Global Schema (GS), of several (het-
erogeneous) data sources (also called local sources), and allows users to formulate
queries on it. It follows a Global-As-View (GAV) approach for the definition of
mappings between the GS and local schemas: the GS is expressed in terms of the
local schemas. MOMIS performs data integration following a virtual approach
that preserves the autonomy and security of the original data sources. The GS
generation process is composed by four main phases:

1. Local Source Upload: (see Figure 1-1) the integrator designer exploits
the wrapper tool (see Figure 2) to logically extract the schema of each local
source and convert it into the common language ODLI3

6.
2. Local Source Annotation: (see Figure 1-2) the designer is asked to anno-

tate the local sources, i.e. to associate to class and attribute names (in the
following also called terms) one or more meanings w.r.t. a common lexical
reference, that in our case is the lexical database WordNet [10]. WordNet is a
thesaurus for the English language, that groups terms (called lemmas in the
WordNet terminology) into sets of synonyms called synsets, provides short
definitions (called gloss), and connects the synsets through a wide network
of semantic relationships.
The designer can manually select a base form and the appropriate WordNet
meaning(s) (i.e. synset(s)) for each term and/or perform automatic anno-
tation (see Section 3). Moreover, in the MOMIS Open Source version, the
designer can extend WordNet with domain glossaries (see Section 3). The

5 http://www.dbgroup.unimo.it/wisdom/
6 ODLI3 is an object-oriented language, with an underlying Description Logic, deriving
from the standard ODMG.

 177

Fig. 1. The MOMIS data integration process.

Local Source Annotation phase is performed by the Global Schema Designer
tool (see Figure 2).

3. Semantic Relationships Extraction: (see Figure 1-3) starting from the
annotated local schemas, MOMIS derives a set of intra and inter-schema se-
mantic relationships in the form of: synonyms (SYN), broader terms/narrower
terms (BT/NT) and related terms (RT) relationships. The set of seman-
tic relationships is incrementally built by adding: structural relationships
(deriving from the structure of each schema), lexical relationships (deriving
from the element annotations, by exploiting the WordNet semantic network),
designer-supplied relationships (representing specific domain knowledge) and
inferred relationships (deriving from Description Logics equivalence and sub-
sumption computation). The Semantic Relationship Extraction phase is per-
formed by the Global Schema Designer tool (see Figure 2).

4. GS generation: starting from the discovered semantic relationships and the
local source schemas, MOMIS generates a GS consisting of a set of global
classes, plus Mapping Tables which contain the mappings to connect the
global attributes of each global class with the local source attributes . The
GS generation is a process where classes describing the same or semantically
related concepts in different sources are identified and clusterized into the
same global class (see Figure 1-4).

The designer may interactively refine and complete the proposed integration
result through the GUI provided by the Global Schema Designer tool. In
particular, he can: modify the proposed global classes and mappings; select
the appropriate Join Function for each global class; define Transformation
Functions in order to transform the local attribute values into the corre-
sponding global attribute values; and solve possible data conflicts through

 178

Fig. 2. The MOMIS architecture.

the definition of Resolution Functions (applied to each global attribute to
obtain, starting from the values computed by the Transformation Functions
the corresponding value of the global attribute).

Finally, once obtained the desired integration result, a user can pose queries
on the GS by using the Query Manager tool (see Figure 2). As MOMIS follows
a GAV approach, the query processing is performed by means of query unfold-
ing [3]. The query unfolding process generates for each global query (i.e. a query
on the GS) a Query Plan composed by a set of queries:

– a set of local queries that have to be executed on the local sources simulta-
neously by means of wrapper,

– a mapping query for merging the partial results (defined by means of the
join function),

– a final query to apply the resolution functions and residual clauses.

In the Open Source version of MOMIS, we implemented the Query Manager
Web Service which allows to integrate MOMIS with other applications (e.g.
Business Intelligence solutions). Moreover, a user-friendly Web Application (see
Figure 2) has been implemented to guide an end-user, without experience on data
integration solutions, to easily compose and execute queries on the integrated
schema.

3 Features

The MOMIS system has been re-engineered and extended by DataRiver with
a set of features and components to address several important data integration
challenges and speed up data integration projects:

 179

Fig. 3. The MOMIS GUI.

Multiple Global Schemas. Within the MOMIS system, each project can be
composed by several alternative Global Schemas representing different views of
the set of the underlying data sources. The creation of a new project is performed
by following few steps: first of all, the designer creates a new project, then uploads
the local sources and starts the creation of a new GS by editing each section that
composes the integration process; once completed the GS the designer can:

– pose queries on the created GS

– upload other sources

– create a new GS on the local sources (or a subset of the local sources)

The Global Schemas can be easily imported/exported from a Data Integration
project to other projects.

User-friendly and flexible GUI. In order to guide the designer through
the integration process, a very intuitive, flexible and user-friendly interface has
been designed. MOMIS has been developed as an Eclipse Rich Client Platform7

(RCP) application that allows developers to use the IBM’s open source popular

7 http://wiki.eclipse.org/Rich Client Platform

 180

Eclipse platform8 to create flexible and extensible desktop applications. All sys-
tem components are built as plug-ins of the Eclipse development environment,
which supports also an easy incorporation of new tools. As shown in Figure 3, the
MOMIS GUI is divided in three main sections: Source Explorer, Global Schema
Explorer and Global Schema Designer.

Annotation Suite. The annotation phase is one of the most critical and ex-
pensive step because it deeply affects the subsequent phases.

Usually integration projects involve large data sources, with hundreds of
tables and attributes, coming from a particular domain of interest (e.g. medical,
biological, tourism). The manual annotation of each data source element is a
time consuming and potentially boring work that can lead to omissions and
errors. Moreover, the semantics of local schemas could not be represented in the
lexical resource, in such cases the designer is unable to select the exact meaning
for a term, thus generating missing or inaccurate annotations.

Therefore, a set of tools have been developed in order to optimize the anno-
tation phase and help the designer during the extension of the lexical reference:

– Annotation Importer: the reuse of previous annotations is an important
feature. For this reason, a tool for easily importing source annotations from
a GS to another GS has been developed.

– WordNet Extender: the WordNet Extender [1] tool enables the exten-
sion of the lexical reference with domain glossaries. An intuitive GUI (see
Figure 4), for the extension of the lexical reference, guides the designer to
perform step-by-step operations such as providing new terms (lemmas), writ-
ing definitions for new concepts (glosses) and building relationships between
the added concepts and the pre-existing ones. In order to optimize the an-
notation phase and increase the annotation accuracy, we implemented an
automatic annotation algorithm which includes stemming and stop words
removal functionalities.

– Automatic Annotation: The main advantage of automatic annotation is
simply speed: wholly or partially automated methods facilitate the annota-
tion of large sets of classes. If the lexical reference has been extended, the
automatic annotation algorithm associates to each data source element the
more recent meaning of the domain glossary, else, it associates to the data
source element the first meaning present in WordNet9.

– Hypernym Graph Viewer: to help the designer to build sound relation-
ships between the added synsets and the pre-existing ones, we implemented
the Hypernym Graph Viewer tool (see Figure 5). A hypernym relationship
is a WordNet semantic relationship that connects two synsets where the first
generalizes the second (e.g. animal is a hypernym of dog); the opposite of
hypernym is the hyponym relationship (e.g. student is a hyponym of per-
son). The hypernym relationships chain of a specific lemma (more precisely,

8 http://www.eclipse.org/
9 Synsets in WordNet are ranked in the order of their utilization frequency.

 181

Fig. 4. Wordnet Extender.

of the set of synsets associated to a lemma) or of a specific synset is shown
by an interactive graph. The designer can navigate the graph by focusing on
a specific synset to view only the branch of its hypernyms, or by using the
keyword search.
Figure 4 and 5 show an example; a designer has to integrate data coming from
tourism data sources, in particular data that refer to hotels and camps. Let
us suppose the designer does not find satisfactory the meaning associated to
hotel (i.e.“a building where travelers can pay for lodging and meals and other
services). From the Hypernym Graph Viewer the designer can notice that
the synset associated to hotel is a hyponym of the synset “a structure that
has a roof and walls”. The designer creates a new synset for the lemma hotel
by introducing the gloss “a lodging that provides accommodation, meals and
other services for paying guests”. Then, the designer links the new synset of
hotel with the synset associated to the lemma living accommodations and
defines a new hypernym relationship.

– Lexical shared Repository: once the lexical reference has been extended,
the designer can export the domain glossary and reuse it in other projects.
Moreover, the glossary can be shared by different designers at the same time.
WordNet is distributed as a set of data files. The WordNet internal organi-

 182

Fig. 5. Hypernym Graph.

zation has been extrapolated and all the terms, definitions and relationships
are stored in an embedded relational database. We have chosen the Hyper-
SQL10 DBMS, a lightweight and Open Source DBMS written in Java. The
HyperSQL WordNet database has been embedded and distributed within
the MOMIS system, so that no configuration is required. If an extended lex-
ical reference has to be shared by an organization, a shared repository can
be created by using the Open Source MySQL11 DBMS Server to store data.
The MOMIS system can be configured to use this shared lexical reference
and so, the designer can exploit already defined domain glossaries.

Data Preview functionalities. A data preview tool is helpful in each phase
of the integration process as it provides an instant view of data at any step.
By this tool, designers can explore the content of local source attributes, pre-
view the partial integration results and then refine the GS. As described before,
the annotation phase is one of the most critical as it deeply affects the subse-
quent phases. Table and attribute names are often labeled with abbreviations
or company codes. The data preview tool may help the designer choosing the
right meaning of a term in all these cases where the labels do not represent
the instances they contain. The GS, automatically generated by the system,
can be refined interactively via a set of editors that help the designer during
the definition of Join, Transformation and Resolution Functions. Through the

10 http://hsqldb.org/
11 http://www.mysql.com/

 183

Fig. 6. Query Plan and Data Preview.

data preview tool, the designer can explore the content of global classes and at-
tributes. Accordingly to the information obtained from the preview, the designer
can define: how to change the proposed mappings; which is the appropriate Join
Function for each global class; which Transformation and Resolution Function
should be applied to each local and global attribute.

Query Plan Viewer. A relational DBMS gives support to the Query Manager
(QMDB) for the fusion of partial results that are stored in temporary tables.
We have chosen as DBMS for the Query Manager, HyperSQL, so the installa-
tion of the MOMIS system doesn’t need any configuration at all. Through the
Query Plan Viewer (see Figure 6), for each executed global query the designer
can visualize the set of queries that compose the Query plan, and can make a
preview of the data contained in the temporary tables created on the QMDB
(see Figure 6). In this way, the query execution process is completely visible to
the designer.

4 The MOMIS Toolkit

MOMIS is an Open Source Software released by DataRiver under the GNU Gen-
eral Public License (GPLv2), which permits use, modification and incorporation

 184

into Open Source products. We encourage both developers and researchers to
download the version 1.1 of the software (from http://www.datariver.it), and
to contribute to the future developments of the MOMIS system. The developer
documentation is available with the source code. Together with the version 1.1,
DataRiver published on the website a detailed user manual and a set of video
tutorials to learn quickly how to integrate data sources with the MOMIS system.

MOMIS can serve as an open research platform, providing many useful com-
ponents that can be extended by developers and researchers. We invite both
developers and researchers to discuss specific issues, ideas and design with the
DataRiver team12.

5 Future Work

The Roadmap of the Open Source MOMIS system includes improvements about
Provenance, Automatic annotation, Object identification and Collaboration:

1. Provenance (or lineage) describes where data came from and how it was
derived. It provides valuable information that can be exploited for many
purposes, ranging form statistical resumes presented to the end-user, to more
complex applications such as data cleaning (identifying and correcting data
errors) [4];

2. Advanced Automatic Annotation techniques will be included for a faster
integration process: combination of several annotation methods, also prob-
abilistic methods [11]; abbreviations and acronyms expanded by using the
information provided by the schemata and abbreviation dictionaries; com-
pound nouns (composed of more words) automatically interpreted and an-
notated on the basis of their constituents [13, 12];

3. Object Identification techniques (also known as record linkage or dupli-
cate detection) identifies instantiation of the same object in different sources.
The current technique (exact matching) will be extended introducing ad-
vanced methods based on similarity measures [7];

4. Collaboration environment to enable real-time collaboration between in-
tegration designers during each phase of the integration process will be devel-
oped. Teams of integration designers will be able to share domain glossaries,
annotations, integrated schemas, and whole integration projects, reducing
the cost of data integration.

6 Acknowledgment

We would like to thank all DataRiver members and collaborators that took part
in the re-engineering of the MOMIS system: Antonio Sala, Andrea Prandini,
Silvano Pancaldi, Daniele Miselli, Sara Quattrini, Enrico Calanchi, Matteo Di
Gioia, Fabrizio Orlandi.

12 Please contact the DataRiver team if you are interested in contributing to the
MOMIS system at info@datariver.it.

 185

References

1. R. Benassi, S. Bergamaschi, A. Fergnani, and D. Miselli. Extending a lexicon
ontology for intelligent information integration. In R. L. de Mántaras and L. Saitta,
editors, ECAI, pages 278–282. IOS Press, 2004.

2. D. Beneventano, S. Bergamaschi, F. Guerra, and M. Vincini. Synthesizing an
Integrated Ontology. IEEE Internet Computing Journal, pages 42–51, Sep-Oct
2003.

3. D. Beneventano, S. Bergamaschi, M. Vincini, M. Orsini, and R. C. Nana Mbinkeu.
Getting through the thalia benchmark with momis. In Proceedings of the Third
International Workshop on Database Interoperability (InterDB 2007) held in con-
junction with the 33rd International Conference on Very Large Data Bases, VLDB
2007, Vienna, Austria, September 24, 2007.

4. D. Beneventano, A. R. Dannoui, and A. Sala. Data lineage in the MOMIS data
fusion system. In First International Workshop on Managing Data Throughout
its Lifecycle (DaLi’2011), in conjunction with ICDE 2011, April 11-16 Hannover,
2011.

5. S. Bergamaschi, D. Beneventano, F. Guerra, and M. Orsini. Data integration.
In D. W. Embley and B. Thalheim, editors, Handbook of Conceptual Modeling
Springer, Berlin, Germany, pages 443–478, 2011.

6. S. Bergamaschi, S. Castano, M. Vincini, and D. Beneventano. Semantic integration
of heterogeneous information sources. Data Knowl. Eng., 36(3):215–249, 2001.

7. M. D. Gioia, D. Beneventano, and M. Scannapieco. Multi-source object identifi-
cation with constraints. In P. L. Bowen, A. K. Elmagarmid, H. Österle, and K.-U.
Sattler, editors, ICIQ, pages 266–267. HPI/MIT, 2009.

8. A. Y. Halevy, A. Rajaraman, and J. J. Ordille. Data integration: The teenage
years. In U. Dayal, K.-Y. Whang, D. B. Lomet, G. Alonso, G. M. Lohman, M. L.
Kersten, S. K. Cha, and Y.-K. Kim, editors, VLDB, pages 9–16. ACM, 2006.

9. M. Lenzerini. Data Integration: A Theoretical Perspective. In L. Popa, editor,
PODS, pages 233–246. ACM, 2002.

10. G. A. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. WordNet: An
on-line lexical database. International Journal of Lexicography, 3:235–244, 1990.

11. L. Po and S. Sorrentino. Automatic generation of probabilistic relationships for
improving schema matching. Information Systems, Special Issue on Semantic In-
tegration of Data, Multimedia, and Services, 36(2):192–208, 2011.

12. S. Sorrentino, S. Bergamaschi, and M. Gawinecki. NORMS: an automatic tool
to perform schema label normalization. In ICDE 2011, April 11-16, Hannover,
Germany, 2011. Demo paper.

13. S. Sorrentino, S. Bergamaschi, M. Gawinecki, and L. Po. Schema label normaliza-
tion for improving schema matching. DKE Journal, 69(12):1254–1273, 2010.

14. E. T. Ted Friedman, Mark A. Beyer. Magic quadrant for data integration tools.
Gartner RAS Core Research Note G00207435, November 2010.

 186

Emerging Applications for Schema Mappings
(Extended Abstract)

Paolo Papotti

Dipartimento di Informatica ed Automazione
Università degli Studi Roma Tre

papotti@dia.uniroma3.it

1 Introduction

There are many different classes of applications that need to exchange, correlate,
or integrate data. In light of this, the need of a unifying theoretical framework
for all these applications has been advocated by database researchers [4]. In
particular, data exchange and schema mappings yield a principled approach to
improving data management.

Data exchange addresses the common problem of providing unified and trans-
parent view to a collection of data stored in autonomous and heterogeneous data
sources. The unified view is achieved through a target schema, and is realized
through some form of mapping from the source repositories to a target, materi-
alized database [10]. In contrast, in data integration setting the same objective
is achieved through a virtualization mechanism based on querying of the target
(mediated) schema [15]. Mappings, also called schema mappings, are expressions
that specify how an instance of the source repository should be translated into
an instance of the target repository. In order to be useful in practical applica-
tions, they should have an executable implementation – for example, under the
form of SQL queries for relational data, or XQuery scripts for XML. This latter
feature is a key requirement in order to embed the execution of the mappings in
more complex application scenarios, that is, in order to make mapping a plug
and play component of integration systems.

Ten years ago, a first generation of schema-mapping tools [18, 21] started
to support the process of generating complex logical dependencies (i.e., tuple
generating dependencies) based on a user-friendly abstraction of the mapping
provided by the users. Once the dependencies are computed, the tools trans-
form them into executable scripts to generate a target solution in a scalable and
portable way. Given the effectiveness of such systems in the mapping genera-
tion and given the solid theoretical foundations, schema mappings have been
largely studied in the research community and transferred, to some extent, into
commercial products (e.g., [14]). Nevertheless, despite the solid results both in
system and theory fields, the adoption of mapping systems in real-life integra-
tion applications, such as ETL workflows or Enterprise Information Integration
(EII), has been quite slow. This seems to be due to three main factors.

A first reason is the quality of the solutions produced by mapping systems.
To make schema mappings a building-block for a larger class of practical applica-

tions, in the last two years a second generation of tools [23, 17, 16] have emerged
to address the problem of handling functional dependencies and the one of gen-
erating solutions of optimal quality, i.e., solution formalized in data-exchange
theory under the notion of a core universal solution [11]. Such features have
been introduced while preserving a crucial requirement for portability and scal-
ability of mapping systems: the possibility to express transformation exclusively
by means of standard SQL.

A second factor is the recent advancements in the formal characterization of
new applications for mapping tools. In fact, new theoretical works have widened
the settings and the class of problems that can be handled with mapping systems,
thus highlighting important applications that have not been completely exploited
in systems yet [1, 13, 3, 24].

Finally, until recent times there were no schema mapping tools available as
open-source. Re-implementing a mapping system is a non-trivial task and many
researchers have been working on such topics without access to the existing
tools. Lately, some of these tools are starting to be offered as open-source, thus
enabling a larger class of people to work on such technology [22].

This new vitality in the research community opens new challenges that can
lead to significant contributions. In fact, results both in the system aspects of
the problem and in the theoretical studies of mapping properties suggest new
applications, beyond traditional data exchange and data integration tasks. Ex-
amples of data management problems that can benefit of the new results are in
the data fusion field [5] (using FDs in the target), in ETL settings (going beyond
existing results [9] by using composition and mapping reuse), and for the schema
evolution problem (exploiting the new results in the inversion of mappings).

In this paper we first expose the basics about data exchange and schema
mappings. We then show how recent advances can positively impact three data
management problems. The paper concludes with some open problems.

2 Data Exchange and Schema Mappings

Research on schema mappings has provided a lot of building-blocks towards
the goal of a natural, effective and efficient paradigm for the data translation
problem. For the sake of presentation, we start by introducing the notions of
data exchange and we then introduce the basic ideas behind the first generation
of tools for schema mappings generation.

Dependencies and Mapping Scenarios Data exchange systems rely on
embedded dependencies in order to specify mappings. These dependencies are
logical formulas of two forms: tuple-generating dependencies (tgds) or equality-
generating dependencies (egds). There are two classes of constraints. Source-to-
target tgds (s-t tgds), i.e., tgds that use source relations in the premise and target
relations in the conclusion, are used to specify which tuples should be present
in the target based on the tuples that appear in the source. In an operational
interpretation, they state how to “translate” data from the source to the target.
Target schemas are also modeled with constraints: target tgds are used to spec-
ify foreign-key constraints on the target; while target egds are used to encode

 188

functional dependencies, such as keys. We assume the standard definition of a
relational schema and relational instance over constants ∪ labelled nulls [10].
Labeled nulls are used to “invent” values according to existential variables in
tgd conclusions. For example, consider a source database concerning agencies
and their fundings, Agency(name, city), Funds(agency,amount) that needs to
be moved to a target database with two tables, Company(id,name,symbol) and
Grant(amount,company), with a key constraint on Company.name, and a foreign-
key constraint from Grant.company to Company.id. In the data-exchange frame-
work, such dependencies are typically presented with a first-order logic syntax:

Source-to-Target Tgds
m1. ∀n, c, a : Agency(n, c) ∧ Funds(n, a) → ∃I, S: Company(I, n, S) ∧ Grant(a, I)
Target Tgds
t. ∀a, c : Grant(a, c) → ∃N, S: Company(c, N, S)
Target Egds
e. ∀n, n′, i, i′, s : Company(i, n, s) ∧ Company(i′, n′, s) → (i = i′) ∧ (n = n′)

A mapping scenario (also called data exchange scenario or schema mapping) is a
quadruple M = (S,T, Σst, Σt), where S is a source schema, T is a target schema,
Σst is a set of source-to-target tgds, and Σt is a set of target dependencies that
may contain tgds and egds [11].

Given two disjoint schemas, S and T, we denote by the pair 〈S,T〉 the schema
{S1 . . .Sn,T1 . . .Tm}. If I is an instance of S and J is an instance of T, then the
pair 〈I, J〉 is an instance of 〈S,T〉. A target instance J is a solution [11] of M
and a source instance I iff 〈I, J〉 |= Σst ∪ Σt, i.e., I and J together satisfy the
dependencies. Given a mapping scenario M = (S,T, Σst, Σt), a pre-solution for
M and a source instance I is a solution over I for scenario Mst = (S,T, Σst),
obtained from M by removing target constraints. In essence, a pre-solution is
a solution for the s-t tgds only, and it does not necessarily enforce the target
constraints.

A mapping scenario may have multiple solutions on a given source instance:
each tgd only states an inclusion constraint and does not fully determine the
content of the target. Among the possible solutions we restrict our attention
to universal solutions, which only contain information from I and Σst ∪ Σt.
Universal solutions have a crucial property: they have a homomorphism (i.e., a
constant-preserving mapping of values) to all the solutions for a data exchange
problem. It is common to prefer universal solutions of minimal size, that is, core
universal solutions [11]. Under a condition of weakly acyclicity of the target
tgds, an universal solution for a mapping scenario and a source instance can be
computed in polynomial time by resorting to the classical chase procedure [10].
A solution generated by the chase is called a canonical solution, while chasing
only the s-t tgds in our example scenario generates the canonical, universal pre-
solution. After a canonical pre-solution has been generated by chasing the s-t
tgds, to generate an actual universal solution it is necessary to chase the target
dependencies.

In general, it is possible to use chase engines (e.g., [20]) to solve a mapping sce-
nario M given a source instance I. As an alternative, the chase of a set of s-t tgds

189

on I can be naturally implemented using SQL. Given a tgd φ(x) → ∃y(ψ(x, y)),
in order to chase it over I we may see φ(x) as a first-order query Qφ with free
variables x over S. We execute Qφ(I) using SQL in order to find all vectors of
constants that satisfy the premise and we then insert the appropriate tuple into
the target instance to satisfy ψ(x, y). Skolem functions [21] are typically used to
automatically “generate” some fresh nulls for y. Note that, in the presence of
target tgds and egds, the generation of SQL queries to compute the desired solu-
tions for data exchange, may no longer be possible, in general. We shall discuss
later recent research that attacks this problem for various specific cases.

Early Mapping Generation Tools Traditionally, data transformation has
been approached as a manual task, where experts had to understand the design of
the schemas and write scripts to translate data. As this work is time-consuming
and prone to human errors, mapping generation tools have been created to make
the process more abstract from the actual scripts, thus easier to handle for a
larger class of people. This goal has been pursued by introducing a GUI which
allows the users to draw arrows, or correspondences, between the schemas in
order to define the desired transformation. A correspondence maps atomic ele-
ments between a source and a target schema, independently of the underlying
data model or of logical design choices, and can be derived automatically with
schema matching components.

Correspondences are easy to create and understand, but are a “poor” lan-
guage to express the full semantics of data transformations. In fact, they do not
offer a precise semantics and let the user describe ambiguous transformations,
e.g., the same set of arrows can be consistent with different schema mappings. For
this reason, a schema mapping tool should be able to interpret the semantics the
user wants to express with a set of correspondences. The “intelligence” required
to interpret correspondences can be sees as one of the main differences between
commercial tools (such as Mapforce and Stylus Studio) and research mapping
systems [18, 21, 7]. In fact, the ability to produce mappings that express the de-
sired transformation with a minimal user intervention motivated Clio [18], the
first mapping system able to generate schema mappings (expressed as s-t tgds)
from a GUI. A following version of the tool [21] introduced support for complex
nesting in the schemas (such those common in XML scenarios) and manage-
ment of unspecified attributes, i.e., required attributes in the target schema for
which there is no correspondence to specify their value. The last step in a data
exchange scenario is to materialize the target instance, i.e. generate the solu-
tion. An important property of mappings is the possibility to execute them with
different engines (e.g., SQL, XQuery, XSLT or Java), leaving the choice to the
user.

3 Novel Applications

We now briefly discuss examples of novel application for the recent advancements
in mapping systems.

Data-fusion The data-fusion scenario in Figure 1 requires to merge together
data from three different source tables (Figure 1.a.). Based on the correspon-

 190

Fig. 1. Fusing data: source instance (a) and two possible target instances (b)(c).

dences among elements typical of mappings systems, a first-generation system
would generate several s-t tgds and a set of target egds that encode the key
constraints, as follows (in the following universal quantifiers will be omitted):

m1. Student(n, bd) → ∃Y1, Y2 :Person(n, bd, Y1, Y2)
m2. Employee(n, s) → ∃Y1, Y2 :Person(n, Y1, s, Y2)
m3. Driver(n, plate) → ∃Y1, Y2, Z : (Person(n, Y1, Y2, Z) ∧ Car(Z, plate))
e1. Person(n, b, s, c) ∧ Person(n, b′, s′, c′) → (b = b′) ∧ (s = s′) ∧ (c = c′)
e2. Car(i, p) ∧ Car(i′, p) → (i = i′)

However, by using such s-t tgds the best we can achieve is to generate a pre-
solution, as shown in Figure 1.c. This solution can be generated efficiently, but
it violates the required key constraints and suffers from an unwanted entity
fragmentation effect: information about the same entities (e.g., Jim, Mike or
the car plate abc1123) is spread across several tuples. If we take into account
the usual dimensions of data quality [5], it is clear that such an instance must
be considered of low quality in terms of compactness (or minimality). Based on
these requirements, it is natural to desire the generation of a solution as the one
shown in Figure 1.b. Such optimal solution can be materialized by chasing the
dependencies above with a post-processing step to minimize the pre-solution.
Chase engines are capable of performing this task in very general settings, but
in practice there are orders of magnitudes between the execution time needed to
compute the pre-solution and the one needed to achieve the optimal one (e.g.,
seconds vs hours for the same database) [17].

Although it is not always possible, in general, to enforce a set of egds using a
first-order language as SQL, there exists a best-effort algorithm that rewrites the
above mapping into a new set of s-t tgds that directly generate the target tuples
that are produced by chasing the original tgds first and then the egds [16]. As
egds merge and remove tuples from the pre-solution, to correctly simulate their
effect the algorithm put together different s-t tgds and use negation to avoid the
generation of unneeded tuples in the result, for instance by rewriting tgd m1 as:

m′
1. Student(n1, b1) ∧ ¬(Employee(n2, s2) ∧ n1 = n2) ∧ ¬(Employee(n2, s2)

∧Driver(n3, p3) ∧ n1 = n2 ∧ n2 = n3) ∧ ¬(Driver(n3, p3) ∧ n1 = n3)
→ Person(n1, b1, S1, C1)

Moreover, these rewritings are used as a basis for the generation of optimal
solutions by relying on the core-computation algorithm developed for scenarios
without egds [23, 17]. While the above scenario is already supported by second
generation mapping systems, it is interesting to notice that it can be pushed

191

further by considering also the presence of null values in the sources [13]. This
is a realistic scenario, as in practice a source database may contain labeled nulls
as the result of another s-t tgd (e.g., in a chain of schema mappings).

Declarative ETL The most widely used systems in data warehousing envi-
ronments to express data transformations as a composition of operators in a
procedural fashion are known as ETL tools. Operators vary from simple data
mappings between tables to more complex manipulations, such as joins, splits
of data, and merging of data from different sources. Usually, these tools are
used by developers that want to achieve an efficient implementation of a data
exchange task. The popularity, in practice, of ETL systems when compared to
mapping systems is due to their richer semantics, which allow them to express
more operations [9], and to the declarative nature of schema mapping tools that
can become a limit with complex transformations where many intermediate steps
to manipulate data are needed. For this reason, it is important to study scenarios
where flows of mappings, defined using simple intermediate results, are preferable
to a single, monolithic mapping with a large number of complex s-t tgds. Recent
advancements allow the possibility to manipulate flows of mappings by enabling
their composition in sequences over intermediate results [12, 19], the automatic
combination of “parallel” mappings [1], and the reuse of transformations defined
in similar settings as components [24]. Moreover, the new results discussed above
permit to enforce functional dependencies in the target with schema mappings
only [16] thus obtaining optimal solution with a clean semantics and execution
times comparable to the ones obtained with ETL tools [23, 17].

We can give the intuition of how the expression of data exchange scenarios by
mapping tools is preferable to ETL systems in terms of ease of use by comparing
a very simple scenario implemented with the two paradigms. To give an idea of

Fig. 2. A simple ETL graph.

the minimal input required by a mapping system, consider that for the ETL
scenario in Figure 2 only two lines and two labels are required in a schema
mapping GUI to express the same data exchange scenario, as exemplified by the
following s-t tgd:

ma. Students(n1, b1, c1, p1) ∧ Emps(n1, d1, p1, e1) ∧ (p1 = ‘Msc’)
→ Master(N1, b1, d1, r1) ∧ (r1 = ‘M’)

Schema Evolution Although we have presented tools that help the users
in the design of schema mappings, their development and refinement can be a
time-consuming process in complex integration scenarios. For this reason, when
there are changes in the schema, it is desirable for the users to have tools that
facilitate the adaptation and reuse of the existing schema mappings. The most
promising approach to this schema evolution problem is inspired from the model

 192

management framework [4], which suggests to automatically adapt the mappings
through the use of schema mapping operators. The two most important operators
developed to support this process are composition and inversion [6, 12, 19, 13, 3].

For example, assume that we are given the schema mapping ma above. In
order to reuse it when both Students in the source and Master in the target
evolve to a new version, we need to handle their changes by combining ma with
the new mappings mb, from Students to its new version, and mc, from Master to
its new version, respectively. In this case, we first need to invert mb into schema
mapping m−1

b and then compose the chain of mappings in the final mapping
computed by m−1

b ◦ ma ◦ mc.

If we allow the use of more expressive languages, such as SO s-t tgds [12], the
composition of two schema mappings always exists and has been implemented
successfully in mapping systems [8]. On the contrary, in general there are schema
mappings for which inversions that recover all the original data back do not ex-
ist. Problems with the lack of exact inverse in many common cases have been
highlighted and recently researchers have looked to several relaxed notions of
invertibility [13, 3]. The most important feature of these notions is their prag-
matic approach: when an exact inverse does not exist, they recover the original
source data as much as possible. It is interesting to see that such relaxed notions
are still useful for data exchange applications, although they have been tested
only in restricted settings [8].

4 Open Problems

We believe that there are quite a lot of interesting research opportunities in this
area, which we briefly discuss below. A more modular and fluid approach to
schema mapping can certainly alleviate the problem of accessing and combining
data from multiple sources [4]. Unfortunately, it is still an open problem to iden-
tify the unifying schema-mapping language that has good algorithmic properties
and is closed under both composition and the various flavors of inverses.

Lot of work is also needed in the field of schema mapping reuse [24], in order
to being able to avoid the re-definition of the same transformation in similar
scenarios. There are many ways to tackle this problem and contributions are
needed from experts in related problems involving semantic properties of the
schema (i.e., how to automatically identify previously defined mappings that
can be useful with the actual schemas).

Although in data exchange theory optimal solutions has been formalized only
for relational settings, the rewriting algorithms are already able to generate also
for nested scenarios solutions that present less redundancy than the solutions
generated by other mapping systems (following the semantics discussed in [2]).
A formal definition of core solutions for nested scenarios is still missing, but it
is certainly a needed tool in order to enlarge the use of mappings with optimal
solutions in many practical scenarios.

193

References

1. B. Alexe, M. A. Hernández, L. Popa, and W. C. Tan. Mapmerge: Correlating
independent schema mappings. PVLDB, 3(1):81–92, 2010.

2. M. Arenas and L. Libkin. XML Data Exchange: Consistency and Query Answering.
J. of the ACM, 55(2):1–72, 2008.

3. M. Arenas, J. Pérez, J. L. Reutter, and C. Riveros. Inverting schema mappings:
Bridging the gap between theory and practice. PVLDB, 2(1):1018–1029, 2009.

4. P. A. Bernstein and S. Melnik. Model Management 2.0: Manipulating Richer
Mappings. In SIGMOD, pages 1–12, 2007.

5. J. Bleiholder and F. Naumann. Data fusion. ACM Comp. Surv., 41(1):1–41, 2008.
6. A. Bohannon, B. C. Pierce, and J. A. Vaughan. Relational lenses: a language for

updatable views. In PODS, pages 338–347, 2006.
7. A. Bonifati, E. Q. Chang, T. Ho, L. Lakshmanan, R. Pottinger, and Y. Chung.

Schema Mapping and Query Translation in Heterogeneous P2P XML Databases.
VLDB J., 41(1):231–256, 2010.

8. C. Curino, H. J. Moon, and C. Zaniolo. Graceful database schema evolution: the
prism workbench. PVLDB, 1(1):761–772, 2008.

9. S. Dessloch, M. A. Hernandez, R. Wisnesky, A. Radwan, and J. Zhou. Orchid:
Integrating Schema Mapping and ETL. In ICDE, pages 1307–1316, 2008.

10. R. Fagin, P. Kolaitis, R. Miller, and L. Popa. Data Exchange: Semantics and Query
Answering. TCS, 336(1):89–124, 2005.

11. R. Fagin, P. Kolaitis, and L. Popa. Data Exchange: Getting to the Core. ACM
TODS, 30(1):174–210, 2005.

12. R. Fagin, P. Kolaitis, L. Popa, and W. Tan. Composing Schema Mappings: Second-
Order Dependencies to the Rescue. ACM TODS, 30(4):994–1055, 2005.

13. R. Fagin, P. G. Kolaitis, L. Popa, and W. C. Tan. Reverse data exchange: coping
with nulls. In PODS, pages 23–32, 2009.

14. L. M. Haas, M. A. Hernández, H. Ho, L. Popa, and M. Roth. Clio Grows Up: from
Research Prototype to Industrial Tool. In SIGMOD, pages 805–810, 2005.

15. M. Lenzerini. Data integration: a Theoretical Perspective. In PODS, 2002.
16. B. Marnette, G. Mecca, and P. Papotti. Scalable data exchange with functional

dependencies. PVLDB, 3(1), 2010.
17. G. Mecca, P. Papotti, and S. Raunich. Core Schema Mappings. In SIGMOD, pages

655–668, 2009.
18. R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema Mapping as Query Dis-

covery. In VLDB, pages 77–99, 2000.
19. A. Nash, P. A. Bernstein, and S. Melnik. Composition of mappings given by

embedded dependencies. ACM Trans. Database Syst., 32(1):4, 2007.
20. R. Pichler and V. Savenkov. DEMo: Data Exchange Modeling Tool. PVLDB,

2(2):1606–1609, 2009.
21. L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin. Translating

Web Data. In VLDB, pages 598–609, 2002.
22. L. Seligman, P. Mork, A. Halevy, K. Smith, M. J. Carey, K. Chen, C. Wolf, J. Mad-

havan, A. Kannan, and D. Burdick. OpenII: an Open Source Information Integra-
tion Toolkit. In SIGMOD, pages 1057–1060, 2010.

23. B. ten Cate, L. Chiticariu, P. Kolaitis, and W. C. Tan. Laconic Schema Map-
pings: Computing Core Universal Solutions by Means of SQL Queries. PVLDB,
2(1):1006–1017, 2009.

24. R. Wisnesky, M. A. Hernández, and L. Popa. Mapping polymorphism. In ICDT,
pages 196–208, 2010.

 194

Segmentation of Geo-Referenced Queries

 Mamoun Abu Helou

Politecnico di Milano, Dipartimento di Elettronica ed Informazione,

V. Ponzio 34/5, 20133 Milano, Italy

abuhelou@elet.polimi.it

Abstract. The last generation of search engines is confronted with complex

queries, whose expression goes beyond the capability of simple keywords and

requires the systems which understand query sentences, possibly very simple.

Among these queries, huge importance is taken by geo-referenced queries, i.e.

queries whose understanding requires localizing objects of interest; such

queries are dominant in mobile applications, where the user location is the most

important parameter, but are also common to many desktop searches. In this

paper, we focus on geo-referenced queries and show how natural language

analysis can be used to decompose queries into sub-queries and associating

them suitable real-world objects. In this paper we propose a syntactic and

semantic approach, which uses syntactic query segmentation techniques and the

ontological notion of geographic concepts to produce good query

interpretations; an analysis of the method shows its practical viability.

Keywords: Query Segmentation, Query Understanding, Geo-Referenced

Query, Multi-Domain Query.

1 Introduction

Search engines perform poorly on complex queries [3]. When a query involves

multiple domains and their interconnections, i.e., queries over multiple semantic

fields of interest, search engines fail in understanding the query’s meaning, also

because they try to use all the query information in order to locate one page

containing all the results. In this paper, we propose an approach to complex query

understanding which focuses on the sub-problem of query segmentation. Such step is

essential for decomposing a complex query into sub-queries, and then answering each

sub-query independently, as supported on the Search Computing [2]. For example a

query such as “I want a vegetarian restaurant near Eiffel tower and a comfortable

hotel” requires the user to manually extract and combine the answers from various

queries, and this is an intricate and tedious job. The purpose of this paper is to

understand how the above query can be decomposed so as to present each query as a

distinct interaction. Such query decomposition can help to automatically route the

query to a corresponding vertical search engine or a Web service.

However, understanding a natural language query requires the application of

syntactical, semantic and conceptual knowledge to resolve the ambiguity that abounds

in natural language. The output desired from a query understanding process must

include the objects, properties of objects and relationships among the query objects.

2 M. Abu Helou

In this paper, we focus upon geo-referenced queries, e.g. queries which ask about

properties of objects which are placed at specific positions. These queries are very

much used in practice, and are the majority of queries which are asked from mobile

devices.

This paper is structured as follows. Section 2 presents the related work. Section 3

describes the design and implementation. Section 4 presents the experimental results.

Finally, we conclude and present some plans for future development.

2 Related Work

Research on Query Segmentation (QS) is focused on how to decompose a query

into sub-queries; this problem has been tackled in different ways. In [4], authors have

shown that query segmentation has a positive impact on the retrieval performance.

The segmentation process takes a user's query and automatically tries to separate the

query words into segments so that each segment maps to a semantic component.

Ideally, each segment should map to exactly one “concept” [7].

 One of the earliest approaches to Web QS is presented in [6]. They segment

queries by computing so-called “connexity scores”, that measure mutual information

(MI) within a segment and the segment frequency in a query log. However, according

to [7], the MI method cannot capture correlations among more than two words.

Recent work in QS [1] used a supervised learning method. However, this approach, as

all supervised learning methods, requires a significant number of labeled training

samples and well designed features to achieve good performance. This makes it hard

to adapt in real applications. As an alternative, [7] suggests unsupervised method

based on expectation maximization. This approach, as it happens with most

unsupervised learning methods, heavily relies on corpus statistics. In some cases,

highly frequent patterns with incomplete semantic meaning may be produced.

 All These segmentation algorithms take into account the sequential ordering of

words, and do not study non-adjacent terms, therefore these approaches just deal with

keyword-based short queries but hardly adapt to long natural language queries,

including complex queries. Also, they do not try to identify named entities or to

assign class labels.

3 Geo-SeCo Framework

3.1 Framework Overview

The proposed approach consists mainly of two parts: i) concept extraction, which

helps identifying the geo spatial concepts; and ii) relation identification, which helps

discovering relationships among the identified entities. The concepts extracted in the

first part represent the kernel nodes for the sub-queries. The relationship identification

phase combines the syntactical representation of the query with several heuristic rules

to sustain the query context by relating the aforementioned extracted parts.

 196

We ha

framewor

Analysis

popularity

the unstru

and Quer

entities a

discovere

To pre

context, w

Figure 2

(ordered,

some form

 In a p

Figure 2

sentence

parent no

linked by

both NP

which it

node in th

is itself a

the PP i

abbreviat

VP (e.g.

propositio

Eiffel) an

(e.g. near

as an exa

F

ave addressed

rk as illustra

Component (

y as a new wa

uctured organ

ry Interpretati

are identified,

ed.

eserve the orig

we make use

illustrates the

rooted) tree

mal grammar.

parse tree, eac

the ROOT is

words {i, …

ode or a child

y a branch und

and PP. A ch

is linked by

he phrase, a p

leaf. In the ex

s the head o

tions have bee

want a … hot

on phrases re

nd NN (e.g. t

r) used as prop

ample which d

Fig. 1. Overvie

d the problem

ated in Figur

(QAC), where

ay to reinterpr

nization of W

ion Componen

, and also th

ginal informat

of the syntax

 syntax tree o

that represent

.

ch node is eith

s a root node

, hotel,} are t

d node. A par

der it. In the e

hild node is o

a branch of th

preterminal n

xample above

f this phrase.

en used throu

tel), and PP(e

espectively. JJ

tower) used fo

position. Thro

demonstrates G

Segmentati

ew of the Geo

m by defining

re 1 consists

e the key conc

ret concept org

eb page, from

nt (QIC), whe

he relationship

tion conveyed

tree. We use

of the example

ts the syntact

her a root nod

e. NP , VP, a

the leaf node

rent node is o

example, the u

one that has a

he tree. The

node is define

e the IN node w

. The followi

ugh this paper

e.g. near Eiffe

J (e.g. vegeta

for plural and

ow the follow

Geo-SeCo.

ion of Geo-Ref

o-SeCo framew

a framework

of two mai

cepts/“Web o

ganization in t

m the user’s q

ere the possibl

ps among the

d by the query

Stanford pars

e query (Qtree

tic structure o

de, a branch n

and PP are br

s. A node can

one that has a

upper NP is a

at least one no

phrase head

ed to be a nod

which is the p

ing conventio

r: NP (e.g. a

el tower…hote

rian) used fo

d singular noun

ing sections w

ferenced Queri

work

called Geo-S

in componen

bjects”, that

the Web and g

query will be

le object prop

e extracted o

and maintain

ser [5] for this

e). The syntax

of a string acc

node, or a leaf

ranch nodes,

n also be refe

at least one o

parent and joi

ode directly a

is the first pr

de with one ch

proposition ide

onal part of s

vegetarian re

el); for noun,

r adjectives. N

ns respectivel

we will refer to

ies 3

SeCo. The

nts: Query

is gaining

go beyond

extracted;

perties and

bjects are

n the query

s purpose;

x tree is an

cording to

af node. In

while the

erred to as

other node

in node of

above it to

reterminal

hild which

entifier for

speech tag

estaurant),

verb, and

NNP (e.g.

ly. And IN

o Figure 2

 197

4 M. Abu

3.2 Quer

The Q

decompo

objective

consists o

(e.g. train

Step 1

(Qtree) i

Stanford

Step 2

(GC) in t

or one of

are nouns

example

3.3 Quer

QIC t

address,

could be

identifies

following

Step 1

adjective

entity or

1 http://ww
2 http://wo

u Helou

Fig

ry Analysis C

QAC focuses

ses the user q

 in a specific

of one word (

n station). QAC

1: Morphologi

s produced, a

parser.

2: Concept Id

the query, a co

f its synonyms

s, only the no

query the GC

ry Interpretat

tries to extra

or geo spatia

seen as servic

s the relation

g steps.

1: Concept pr

s and nouns a

a more specif

ww.geonames.o

ordnet.princeton

g. 2. The synta

omponent (Q

on the identi

query into con

c domain. Th

(e.g. hotel), or

C employs tw

ical Analysis,

and also runn

dentification, w

oncept is a GC

s or hyperonym

ouns among th

C list is :{ resta

tion Compon

act any possi

al entity name

ce invocation

among the ex

roperties (con

associated wit

fic type for th

org/export/code

n.edu/wordnet

actic tree of th

QAC)

fication of th

ncepts, where

he concept can

r a complex c

wo steps.

 on the user’s

ning a tokeniz

which identifi

C if it is mapp

m synsets usin

he QW are ex

aurant, tower,

nent (QIC)

ible geo spat

e). It also ex

parameters a

xtracted parts

ncept to prop

th the concep

hat entity than

s.html

he example qu

he key concep

e each concep

n either be a

concept consis

s query; the f

zer, part-of-sp

ies the key co

ped to one of t

ng WordNet2.

xamined. Run

 hotel}.

tial informati

xtracts the con

and filtering cr

s based on Qt

perty “cp” re

pts represent e

n the type exp

uery

pts in the qu

pt represents o

simple conce

sting of multi

full syntactic

peech tagger

oncepts “geo

the geonames

. Knowing tha

nning the QAC

ion “geoEntit

ncept propert

riterion. Besid

tree. QIC per

elation) extrac

either a prope

pressed by the

uery. QAC

one search

ept which

iple words

parse tree

using the

concepts”

s1 features,

at the GCs

C over the

ties” (i.e.

ties which

des that, it

rforms the

ction. The

erty of the

e concepts

 198

Segmentation of Geo-Referenced Queries 5

itself (e.g. Eiffel tower, comfortable hotel). For that, the adjectives and entities name

are extracted based on the NP which has a concept. The concept’s consecutive nouns

are considered as entity name, while the adjectives are filtering criteria. Running

step1 over the example query the name property “Eiffel” and the adjectives

“vegetarian and comfortable” were extracted for the concepts “tower, restaurant, and

hotel” respectively.

Step 2: GeoEntity extraction. The geoEntity (GE), i.e. the entity with a permanent

physical location on Earth can be described by geographical coordinates, consisting of

latitude and longitude. Any geo-spatial entity/concept identified in the query should

be associated with at least one component of the address field (street name, zip/postal

code, city, country). The query may also contain the name for a geo concept (name of

the geo-spatial entity), which would be extracted in (step1) e.g. Eiffel tower.

First candidate GEs are collected, we process Qtree for this purpose, and assume

such entities are the NPs which are a child of a PP. And also the GC will be filtered

and checked if any concept with its extracted entities name (in step 1) would express a

GE. Then, the geo validation process is performed to confirm these candidate entities

and check if they are real world geo spatial entities. The validation process is

performed via Google GeoCoder API3, or any similar APIs; the test succeeds if we

are able to retrieve the address components of the candidate entity. Later, the

extracted entities are processed to identify the address components by finding the best

match based on the edit distance between the name of the candidate entity and the

GeoCoder results components. Running step 2 over the example query, “Eiffel

tower” was recognized and its address components were extracted.

Step 3: Relation identification. To achieve the best possible query interpretation,

we retrieve and analyze the potential relations between the identified concepts and

entities. These relations are very important as they add descriptions to the concepts.

For instance, the user might look for a hotel close to a restaurant in a particular city,

which is different than just extracting the hotels and the restaurants in that city. To

resolve these relations the following steps are employed.

1. Concept to concept “cc” relation extraction. Connecting the concepts is handled

in two ways. The First uses the PP in Qtree; if a parent node of a concept node

has a PP child, and such PP has a concept child node, then we bind the parent

concept node with the child one using the internal PP head. The second way

simply use existing keywords (e.g. near, close to, or similar keywords); if the

query has such keywords then the closest concepts node to the keyword node

based on the tree edge counting distance are attached together using the keyword,

else a conjunctive (default) connection will be used by relating the closest

concepts. After this step the following relations among the GC have been

extracted from the example query:{ “restaurant near tower”, “restaurant near

hotel”}.

3 http://code.google.com/apis/maps/documentation/geocoding

 199

6 M. Abu

2. Conc

conn

conc

that h

node

not a

not

conc

resta

3. GeoE

geoE

good

“el c

Qtre

this

cami

Figure

directed g

ellipses a

invocatio

engine [2

attached

Web serv

4 Expe

The Rest

consisting

and remo

4 http://ww

u Helou

cept to geoEnt

necting the co

cept does not h

has the first jo

e of this PP, w

attached to a g

attached to a

cept’s geoEnt

aurant and hot

Entity to geo

Entities is perf

d italian resta

camino”, and t

e and the PP

example) wil

ino”, is located

e 3 shows the

graph, where

are the GEs,

on parameter.

2] will utilize

properties wo

vice.

Fig

eriments

tQueries datas

g of 251 quer

oved; the rest w

ww.cs.utexas.ed

tity “ce” rela

ncept with its

have such con

oin node with

with the extra

geoEntity, any

any geoEntity

tities. Runnin

tel were mapp

oEntity “ee”

formed based

aurant on el c

the city “palo

head (if exist

ll be used to

d in the city “p

e result of ru

the rectangula

and the conc

The graph ed

e as a filterin

ould be recog

g. 3. The resul

set provided b

ies about resta

were manuall

du/users/ml/nlda

tion extractio

s consecutive

nsecutive PP,

h a PP parent

acted address

y two concept

y, then this

ng this step

ped to the tow

” relation ex

on the GeoCo

amino in palo

 alto” were re

t) between the

o connect the

“palo alto”

unning the sy

ar nodes are t

ept’s properti

ges are the re

ng and join c

gnized as a su

Qu

Sub

AN

t of processin

by Mooney's g

aurants. Out o

ly annotated w

ata/restquery.ht

n. This relatio

PP geoEntity

accordingly, w

node and such

from this PP

ts have a relat

concept will

over the exa

wer address co

xtraction. The

oder result. Fo

o alto ?”, wit

ecognized. Mo

e identified g

e two entities

ystem over th

the concepts i

ies which wil

lations among

criteria; each

ub query whic

uery:

 “I want a vegeta

tower and a

b-queries:

vegetarian rest

comfortable

ND

vegetarian rest

Eiffel tow

ng the example

group4 was us

of the 251 que

with the GC, G

tml

on is resolved

y’s using PP

we connect th

h concept is n

P. If any conc

tion and one o

inherit the

ample query,

omponents.

e relation am

or example “s

th GeoCoder

oreover, we p

geoEntities (i.e

s. hence the

he example q

n the user’s q

ll serve as th

g these nodes

concept node

ch will be ma

arian restaurant n

a comfortable ho

taurant (in Paris-

near

hotel (in Paris-Fr

taurant (in Paris-

near

wer in Paris-Fran

e query

sed in the exp

eries 13 were

GE address co

at first by

head. If a

he concept

not a child

ept is still

of them is

connected

both the

mong the

show me a

 the street

process the

e. “in” for

street “el

query as a

query. The

e services

that SeCo

e with its

apped to a

near Eiffel

otel”

-France)

rance)

-France)

nce

periments,

redundant

omponents

 200

(street, ci

as well as

 The ex

extract th

“geoEntit

among af

The co

is defined

(true pos

and false

the numb

using the

Figure 4 r

and the R

result are

The sy

been filte

concepts,

were corr

due to sy

good plac

with verb

process w

american

“sunnyva

syntax tr

italian, w

entity nam

the system

as an extr

the name

relations.

5 http://

ity, administra

s the GE relati

xperiment is

he geo spatia

ties”, the con

forementioned

orrectness of t

d as the ratio b

itive “TP”) to

e negative “FN

bers of correct

e system (TP

reports the res

Recall were r

e available at (

Fig

ystem was abl

ered in (QI st

, have been

rectly extracte

ntax tree, and

ces for ice cr

b phrase whic

was unable to

n restaurant

ale”. 69.1% o

ee affect the

was tagged as

me. Furthermo

m again to wr

ra extraction ,

e “ice cream”

 The overall

/home.dei.polim

ative area, cou

ions and the c

designed to m

al concepts “

ncepts proper

d parts.

the system wa

between the n

o the total num

N” which bee

tly extracted p

and false pos

sults of runnin

recorded for e

(5).

g. 4. Results o

le to extract 2

tep2), for exa

all correctly

ed. The reason

d also the geo

ream on bland

h cause the sy

o recognize “

on fairgroun

of the concep

extraction pr

nouns, which

ore, the syntax

rongly extract

, for instance,

” and the stre

correct extra

mi.it/abuhelou/d

Segmentati

untry), and als

concept proper

measure the c

“concepts”, th

rties, and also

as measured b

numbers of co

mber of manu

en miss extrac

parts (TP) to th

sitive “FP” w

ng the system

each extracted

of running the

297 concepts,

ample, “moun

extracted. 91

n behind the i

validation pro

ding ave in al

ystem to miss

“fairgrounds d

nd dr in su

pts properties

rocess. For in

h caused 37 m

x tree split som

t part of this n

the nouns “ic

eet “balnding

acted relation

data.htm.

ion of Geo-Ref

so the relation

rties (adjectiv

apability. of t

he geo spatia

o the relation

ased on Reca

orrectly extrac

ually tagged p

cted). Precisio

he total numbe

which been ex

over the Rest

d part. The ex

RestQueries d

then 101 out

ntain view” is

.4% of the G

ncorrect and t

ocess. For ex

lameda”, “bla

s such entity.

dr”, in the qu

unyvale”, as

was correctl

nstance, the a

missed adjecti

me NPs into N

name, which

ce, and ave” w

g ave” was m

s were 85%.

ferenced Queri

n among the G

e, name) relat

the proposed

al entities co

ns (cc, ce, ee

ll and Precisio

cted parts by t

parts in the da

on is the ratio

er of the extra

xtra/wrongly e

tQueries. The

xperiment dat

dataset

of these conc

s GE. Thus 1

GE address co

the missed ex

xample, “what

anding ave” w

And the geo

uery “where

a street in

ly extracted,

djective prop

ives as well a

NP and VP wh

also will be c

were extra extr

missed as wel

However, th

ies 7

GC and GE

tions.

system to

omponents

e, and cp)

on. Recall

the system

ataset (TP

o between

acted parts

extracted).

Precision

ta and the

cepts have

00%, 196

omponents

xtraction is

t are some

was tagged

validation

is a good

the city

again the

perties e.g.

s 37 extra

hich cause

considered

racted and

ll as their

he relation

 201

8 M. Abu Helou

extraction was directly affected by the abovementioned extracted parts, the main

factor was the property extraction.

An important consideration is that, the queries in this dataset mainly consist of only

one geo-spatial concept. As a next step creation of a dataset consisting of more

complex queries, having multiple geo-spatial concepts, attributes and relations is

anticipated to test the approach more effectively.

5 Conclusions

This paper presents an approach for understanding natural language queries using

geo-localizations by splitting long queries into sub-queries and understanding the role

of each word in each sentence, specifically by extracting objects with their properties

and identifying the geographic relationship between them. The precision and recall of

the method are sufficiently high to warrant its use for mobile queries, where geo-

references are present in the majority of search queries. Future plans include

improving and extending the method, by addressing not only geo-localized queries,

but also general compound queries; we aim again at combining the syntactic method

for query decomposition to other semantic methods and heuristics, using general-

purpose ontological knowledge. In this way, it will be possible to understand if the

method “scales” to arbitrary query decomposition, or instead its good performance

descends from the extensive use of geo-localizations concepts.

Acknowledgements. This research is part of the Search Computing (SeCo) project,

funded by the European Research Council (ERC), under the 2008 Call for "IDEAS

Advanced Grants", a program dedicated to the support of frontier research.

References

1. S. Bergsma and Q. I. Wang. Learning noun phrase query segmentation. In EMNLP-

CoNLL ’07, pages 819–826, 2007.

2. Ceri, S., Brambilla, M. (Eds.). Search Computing Challenges and Directions. Springer

LNCS, Vol. 5950 (2010).

3. Y. Chen and Y.-Q. Zhang. A query substitution – search result refinement approach for

long query web searches. In WI-IAT, pages 245-251, 2009.

4. J. Guo, G. Xu, H. Li, and X. Cheng. A unified and discriminative model for query

refinement. Proc. ACM SIGIR conference on R&D in IR, pages 379-386, 2008.

5. Klein, D., Manning, C.D.: Fast exact inference with a factored model for natural language

parsing. In: Becker, S., Thrun, S., Obermayer, K. (eds.) Advances in NIPS. P 3-10. MIT

Press (2002).

6. K. M. Risvik, T. Mikolajewski, and P. Boros. Query segmentation for web search. In

WWW, 2003.

7. B. Tan and F. Peng. Unsupervised query segmentation using generative language models

and Wikipedia. In WWW ’08, pages 347–356. ACM, 2008.

 202

 204

205

 206

207

 208

209

 210

211

 212

213

 214

A System to Support Teaching and Learning

Relational Database Query Languages and

Query Processing

A. Albano, C. Valisena

University of Pisa, Department of Informatics,
Largo B. Pontecorvo 3, 56127 Pisa, Italy

Abstract. The importance of relational algebra in a database course is
widely recognized to facilitate teaching and learning of SQL. From our ex-
perience we have also found it very useful for the students to understand
the basics of query processing in terms of execution plans. However cur-
rently there are no specific tools to make the process of learning relational
algebra and execution plans an interesting and stimulating activity. The
features of the JRS (Java Relational System) graphical editors of query
plans are presented. The graphical editors are used to define and execute
queries on a database represented by two kinds of trees: A logical plan
of relational algebra, and a physical plan that describes an algorithm
to execute a query using the physical operators of the relational DBMS
developed in Java as a teaching tool.

1 Introduction

How to use a relational database system is one of the main topics covered in an
undergraduate computer science course, and it is also very common in several
other curricula. A database course usually includes conceptual modeling, rela-
tional data model and relational database design, relational algebra, SQL, how
to build database applications, and the basics of query processing in order to
understand how to make physical design decisions.

There is almost universal agreement that knowledge of relational algebra is
fundamental to teach and learn SQL as a query language. Relational algebra
is based on a small number of operators which take one or two relations as
operands to yield a relation as result. A query is just an expression involving
these operators. To make a relational algebra expression more readable, it is
usually represented as an expression tree of relational algebra operators, called
a logical plan.

More advanced database courses are system-oriented to deal with data struc-
tures to organize tables and indexes, external sorting, physical algebra, trans-
actions and concurrency management, and query optimization techniques to
generate physical plans. A physical plan is an algorithm to execute a query us-
ing different evaluation methods, called physical operators. Often the physical
operators are particular implementations of the operators of relational algebra.

They differ in their basic strategy and have significantly different costs. However,
there are also physical operators for other tasks that do not involve an operator
of relational algebra. The result of the evaluation of a physical plan is in general
a multiset of records, which is the answer to the query. To make a physical plan
more readable, it is usually given as a tree of physical operators.

There are several teaching and learning tools for relational query languages.
The focus below is on those that support logical and physical relational algebra.

– ACME is an e-learning framework that supports the automatic correction of
problems related to the design of ER diagrams, relational database schemas,
normalization, relational algebra and SQL queries. The user defines rela-
tional algebra queries using a textual notation [4].

– RAT, Leap RDBMS and Relational are examples of tools for defining and
executing textual relational algebra queries [3].

– iDFQL [1] and RALT [2] are examples of interactive systems that enable a
logical plan tree to be defined using an interactive graphical interface with a
data flow approach. RALT is the only learning tool for relational algebra with
the interesting feature of data lineage to allow users to track how particular
data are derived.

All the above proposals are interesting tools for teaching and learning relational
algebra but not physical algebra. Tools such as TOAD (Tool for Oracle Applica-
tion Developers), go some way in this direction, in fact TOAD shows the Oracle
physical plan of an SQL query, how the plan changes by rewriting the query,
and a comparison of different query execution alternatives for the same prob-
lem. Nevertheless even TOAD-like tools are not really intended specifically for
physical algebra.

The proposed interactive JRS environment fills this gap by providing a unique
environment with the possibility of practicing with the following different meth-
ods in order to formulate relational database queries, and to compare the query
results just by graphical interaction using a relational DBMS implemented in
Java and designed for educational use which supports a large subset of SQL-92:

– SQL, with the possibility to analyze the query plan produced by the opti-
mizer. The optimizer by default generates left-deep access plans, and uses
a greedy optimization technique. A graphical interface allows the user to
investigate the effect of other alternatives such as:
• changing the access plans structure from left-deep to general;
• changing the optimization level from greedy to limited uniform cost or

uniform cost;
• excluding the use of certain physical operators to generate access plans,

and to exploit the impact of certain operators on the cost of a physical
plan.

– Relational algebra, with the possibility to define and execute a graphical log-
ical query plan step-by-step, and to see how it can be translated into SQL.

– Physical algebra, with the possibility to define and execute a graphical phys-
ical plan step-by-step.

 216

The paper is structured as follows. Section 2, describes the features of two graph-
ical editors for logical and physical plans. In Section 3, we present examples
using the graphical editors, and in Section 4, conclusions and future work are
presented.

2 Editor Window Areas

Once a database has been selected, the two graphical editors for logical and
physical plans are activated with the Logical Plan and Physical Plan buttons
from the main JRS window. They have a similar interface to define the nodes of
a tree, the arcs between nodes, and to operate on a tree. The differences are in
the types of nodes available and how plans are executed.

When activated, a graphical editor displays a window divided into three main
areas (Figure 1):

Fig. 1. The Logical and Physical Plan Editors

– Control Panel: An area that contains the buttons to add or remove a node,
and to save, load or delete a plan.

– Logical/Physical Plan Area: An area to define a tree representation of a
plan.

The nodes of a logical plan are the basic operators of the relational algebra
(π, σ, γ, ×, ⊲⊳, ∪, ∩, −, and ÷) and, in order to have a resulting a set of
records, they require that the relations of the leaves of the tree are defined
with at least one key. Instead, the result of the operators πb and τ is a
multiset of records, which are provided to define a logical tree of common
SQL queries. The graphical editor allows the use of the operators πb or τ as

 217

the root of an expression tree only. When both are used, the root must be
τ .

The nodes of a physical plan are the JRS operators used by the query opti-
mizer to generate access plans.

– Query/Output: An area that contains the result of a plan execution, which
depends on the type of tree. The area is called Query in the case of a logical
plan, and Output in the case of a physical plane. The area shows the result
of evaluating a plan or a subplan rooted in the node selected.

Above the result area there is a blue bar, to resize the area with the mouse,
and the following buttons:

• Hide/Show Nodes, to hide the border of the nodes in order to view the
plan as plain text.

• Execute Plan, to execute the plan rooted in the selected node. This fea-
ture enables to analyze the result of a plan step-by-step from the leaves.
The result is printed in the output window and it is shown also in a
separate window provided by JRS.

• Organize Plan, to redesign the plan tree automatically.

• Show SQL, to see in the Query area the translation of a logical plan
into SQL which is then used to execute it.

Since the graphical editors are integrated with a relational system, the definition
and execution of a plan is simplified by the fact that the graphical interface
performs the following task:

1. Syntax Checking: The definition of a node is checked for syntax errors.

2. Semantics Checking: The definition of a node is checked for semantic errors
including type mismatches. It is not possible to use invalid attribute and
relation names with the menu provided.

3. Query Evaluation: A logical plan is translated into SQL and evaluated using
the JRS Relational Engine, while a physical plan is evaluated using the JRS

Storage Engine.

3 Examples Using the Graphical Plan Editor

Examples are given using the database schema in Figure 2 and the following
query to retrieve the category of products sold singly more than once, and the
total quantity sold:

SELECT Category, SUM(Qty) AS TotalQty
FROM InvoiceLines, Products
WHERE FkProduct = PkProduct AND Qty = 1
GROUP BY FkProduct, Category
HAVING COUNT(*) > 1;

 218

FkInvoiceNo <<PK>>
 <<FK(Invoices)>>
LineNo <<PK>>
FkProduct
 <<FK(Products)>>
Qty
Price

InvoiceLines

PkCustomer <<PK>>
FkCountry
 <<FK(Countries)>>
CustomerName
CustomerType

Customers

PkProduct <<PK>>
ProductID <<PK1>>
ProductName
Category
UnitPrice

Products

PkInvoiceNo <<PK>>
FkCustomer
 <<FK(Customers)>>
Date

Invoices

PkCountry <<PK>>
Nation
Continent

Countries

Fig. 2. The Relational Database Schema

Let us first select the option Show Access Plan, located in the Options menu,
and then execute the query. We then get the query result and the physical query
plan generated by the cost-based JRS query optimizer to execute the query. The
physical query plan is represented by an iterator tree in a separate window (Fig-
ure 3a). The JRS cost-based query optimizer estimates the costs of alternative
query plans and chooses an efficient final plan. This is done using the meta-
data available on the database, such as the size of each relation, the number of
different values for an attribute, and the existence of certain indexes.

a) b)

Fig. 3. The Optimized Physical Query Plan

 219

Clicking on a node of the plan produces a Physical Operator Properties win-
dow with information regarding the operator involved, the estimated number
of records produced by the operator, and the estimated cost of the operation
(Figure 3b).

As usually happens in relational DBMSs, the standard way to evaluate a
query with Group by is to first retrieve the sorted record required by the oper-
ator, and then to execute it in order to produce the final result.

A Logical Plan

Let us define the query using the relational algebra, as shown in Figure 4.

Fig. 4. A Logical Query Plan

Each node of a logical or physical plan has a different contextual menu, which is
dynamically created taking into account the attributes of the operands and the
schema of the database. Each choice of parameters entails an update of the node
label to reflect the choices made. In creating a tree, the node parameters must
be specified from the leaves to the root. A contextual menu becomes active, with
a right click on the node, but only when the node has all the required operands
specified.

By clicking on Hide Nodes the logical plan is shown in the traditional form
of an algebraic expression tree (Figure 5).

 220

Fig. 5. A Logical Query Plan

Double clicking on a node opens a Logical Plan Node Information window with
the following information:

– Operator: The node operation.

– Relation: The relation name of a leaf node.
– Condition: The condition for selection and join operators.
– Result Type: The operator result type is a set denoted {(A1 T1, . . . , An

Tn)}, or a multiset, or a sorted set denoted {{(A1 T1, . . . , An Tn)}}.
– Order: The order of records in the query result.

Any plan node can be selected by clicking. Users can then proceed as follows:

– Clicking on Execute produces the query result in the query result window.
– Clicking on Show SQL opens a query window that displays the SQL query

generated by the Logical Editor, for the subtree of the selected plan node.
Figure 6 shows the query generated when the selected node is the plan root,
which in this case is the same query used to get the physical plan in Figure 3.
The SQL query generated for a logical plan is generally not a single SELECT,
but a SELECT that uses temporary views, because JRS does not allow the
use of a subquery in a FROM clause. Moreover, in order to avoid the use of
views, in the current implementation, the algorithm for generating the SQL
query to execute a logical plan does not exploit rewriting rules.

Another Logical Plan

Let us try a different logical plan on the basis of the following result:

 221

Fig. 6. The SQL Query to Execute the Logical Plan in Figure 4

Proposition 1. Let α(X) be the set of columns in X and R ⊲⊳
Cj

S an equi-join

using the primary key pk of S and the foreign key fk of R. R has the invariant
grouping property

AγF (R ⊲⊳
Cj

S) ≡ πb
A∪F ((A∪α(Cj)−α(S)γF (R)) ⊲⊳

Cj
S)

if the following conditions are true:

1. A → fk, with A the grouping columns in R ⊲⊳
Cj

S.

2. Each aggregate function in F uses only columns from R.

This property of doing the group-by before a join is called invariant grouping
since the operator can be brought forward by modifying the grouping attributes
only, but the transformation may need an additional projection in order to pro-
duce the final result. In general, with a big table R the performance of a join
query with grouping and aggregation is improved by doing the group-by before
the join.

If there are selections on R, the operator γ is done before a join on the
selections on R (Figure 7).

Since the query optimizer does not consider the possibility of doing the group-
by before the join, the Logical Editor generates the following SQL code to execute
the logical plan:

CREATE VIEWLTV1AS
SELECT FkProduct, SUM(Qty) AS TotalQty, COUNT(*) AS NumProd
FROM InvoiceLines
WHERE Qty = 1
GROUP BY FkProduct
HAVING COUNT(*) > 1;

SELECT Category, TotalQty
FROM LTV1, Products
WHERE FkProduct = PkProduct;

In this case, the generated query uses a view as a left operand of the join,
thus forcing the optimizer to generate two separate plans, one for the view and
another for query. However it is interesting to check if the query generated by a
logical plan that brings forward the group-by before a join is more efficient.

 222

Fig. 7. Another Logical Query Plan

A Physical Plan

Let us now design a physical plan that exploits carrying out the group-by before
a join, and uses the operator IndexNestedLoop with an index on the Products
primary key (Figure 8).

Clicking on Hide Nodes displays the physical plan in the traditional form of
an iterators tree (Figure 9).

Double left clicking on a node displays a box with the following information:

– Operator: The node operation.

– Table: The table name of a leaf node.

– Index: The index name, if the operator uses one.

– Attributes: The attributes of the index in use.

– Condition: The condition for select and join operators.

– Result Type: The operator result type, a multiset denoted {{(A1 T1, . . . , An Tn)}}

– Order: The order of records in the query result.

– Cardinality: The estimated number of records of the plan result.

– Cost: The estimated number of pages read from or written to disk to produce
the result.

As it happens with a logical plan, any physical plan node can be clicked on in
order to execute the subtree with the selected node as root node.

 223

Fig. 8. A Physical Query Plan

4 Conclusions and Future Work

We have presented the JRS relational database system with graphical editors
of executable logical and physical plans to support the teaching and learning of
query languages and query processing. The main feature of this system is that,
unlike other e-learning environments, it has been designed to support both the
teacher and student to experiment not only with the SQL language to query
a data base and to analyze the query plans generated by the query optimizer,
but also to experiment (a) with the execution of a logical plan defined with
relational algebra, and (b) with the execution of physical plans defined with the
physical operators of the database system. The features of JRS attract student
interest but avoid them having to spend their time writing syntactically and
semantically correct solutions. Instead the focus is on understanding the concepts
of query languages and query processing, and being motivated to experiment
with different solutions to solve a problem. In addition, the node information
given by the graphical interface is useful for getting the students used to the
properties of each operator of a query plan. Thus they learn to give the correct
answer to the solution in a written examination that tests the student’s ability
concerning query processing.

Several system improvements are under consideration. First of all the graph-
ical interface in order to make the interactions simpler. In addition we aim to
improve the translation of a logical plan into SQL, to add other join operators,
to generalize the relational algebra division operator to express general queries

 224

Fig. 9. The Iterators Tree

involving universal quantification, and to provide enhanced functionality and
new features on the basis of the most-requested improvements by system users.

Acknowledgments. Thanks to the anonymous referees for their constructive
comments.

References

1. Appel A., E. Q. Silva, C. Traina Jr., A. J. M. Traina. iDFQL - A Query-based
Tool to Help the Teaching Process of the Relational Algebra. In World Congress
on Engineering and Technology Education, WCETE, Guararujá, SP, 2004.

2. Mitra P. Relational Algebra Learning Tool. Imperial College, London, 2009.
3. Relational Algebra, <en.wikipedia.org/wiki/Relational algebra>, March 2011.
4. Soler J., I. Boada, F. Prados, J. Poch, R. Fabregat. An Automatic Correction Tool

for Relational Algebra Queries. In M., Gervasi and M. Gavrilova (Eds.) ICCSA
2007, LNCS, vol. 4706, pp. 861–872, Springer, Berlin Heidelberg, 2007.

 225

Relational Disjunctive Patterns Mining for

Discovering Frequent Variants in Process Models

Corrado Loglisci, Michelangelo Ceci, Annalisa Appice, and Donato Malerba

Dipartimento di Informatica, Università degli Studi di Bari
via Orabona, 4 - 70126 Bari - Italy

{loglisci, ceci, appice, malerba}@di.uniba.it

Abstract. The automatic discovery of process models can help to gain
insight into various perspectives (e.g., control flow or data perspective)
of the process executions traced in an event log. Frequent patterns min-
ing offers a means to build human understandable representations of
these process models. This paper describes the application of a multi-
relational method of frequent pattern discovery into process mining.
Multi-relational data mining is demanded for the variety of activities
and actors involved in the process executions traced in an event log
which leads to a relational (or structural) representation of the process
executions. Peculiarity of this work is in the integration of disjunctive
forms into relational patterns discovered from event logs. The introduc-
tion of disjunctive forms enables relational patterns to express frequent
variants of process models. The effectiveness of using relational patterns
with disjunctions to describe process models with variants is assessed on
real logs of process executions.

1 Introduction

Workflow management systems are becoming increasingly important in enter-
prises due to their capabilities of managing activities and actors involved in a
business process as well as recording the logs of process executions.

Despite the amount of event logs produced by enterprises, software vendors
use this information in order to answer to only simple questions under the as-
sumption that the business process is fixed and known, e.g., the calculation of
performance metrics like utilization and flow time. However, in many domains,
business processes are evolving and people may have an oversimplified and incor-
rect view of the actual business processes [10]. In this scenario, process mining
techniques play a key role with the extraction of models (or patterns) from event
logs where they can provide useful insights in the design of new workflows as well
as they permit to collect information exploitable in the workflow optimization.

In the literature, several approaches for mining process models have been
proposed. A Markovian approach is described in [2] to investigate the corre-
spondence between the instances of a software engineering process and a model
of the process. The process model is represented by a Finite State Machine de-
rived from executions of software development processes and, with the help of

distance metrics, it is used to quantitatively measure the discrepancies from new
executions. A graph-based perspective is considered in [12] where a variant of
Petri nets, called Workflow Nets, has been used to mine and model workflow
processes. In these works, a sophisticated algorithm is presented to extract a
process model based on binary relations discovered into the workflow logs. No-
tably, this approach permits to determine which class of workflow models the
algorithm is guaranteed to work with. More recently, some authors [5], as we do
in this work, have successfully applied pattern discovery techniques in order to
identify frequent activities and their relationships. Since high frequency denotes
regularity, frequent patterns can provide arguments for process models based
on the evidence of regularities in the executions. Indeed, frequent patterns are
intended as a means to capture the typical order of execution between activities
(control perspective) and, at the same time, they model the possible associations
among the properties of the process, activities and actors (data perspective).

The common characteristic of studies reported above is that they discover
patterns (or more generally models) that identify the typical order of execution
of activities without considering variants. However, real-world processes tend to
be so complex and less structured that it is difficult to determine patterns to
which several process executions comply with [11]. Moreover, the application
of patterns that does not consider variants can turn out to be impractical in
the workflow management systems which deal with exceptional situations and
structural changes during runtime. On the other hand, considering these changes
when discovering patterns may lead to the generation of numerous variants which
are difficult to maintain even if slightly different one from each other [4, 7].

A deep analysis may reveal that this limitation comes from the fact that tra-
ditional frequent pattern discovery algorithms permit to mine conjunctions of
the activities present in a set of process executions and does consider disjunctions
that can model process variants. This approach poses some limitations to the
patterns expressiveness and, in addition, leaves unexplored two potentialities of
the pattern discovery: i) discovering interesting patterns when activities are not
present in a sufficient number of process executions, and ii) discovering a com-
bination of relationships between activities which are different from the classical
conjunctions, such as disjunctions. These two potentialities are not independent
each other, since the discovery of patterns including other relationships between
activities may lead to discover patterns that otherwise would be discarded. Con-
sidering relationships among activities different from the classical conjunction
would permit not only to consider variants in the process executions, but also
to consider parallel executions of activities.

In this work, we extend our work in [1], where we have investigated the
discovery of frequent patters as a means to extract a human interpretable rep-
resentation of process models. The peculiarity of our previous work is that the
frequent pattern discovery is performed in multi-relational data mining in order
to take into account the intrinsic relational structure of logs: several activities
and/or actors are involved in the same process execution. In particular, the
multi-relational approach permits to solve the following problems. First, objects

 227

collected in a log belong to different data types (executions, activities and ac-
tors) which interact one each other. By resorting to the first-order logic, that is
one of the most common relational representation formalism, properties and in-
teraction of executions, activities and actors are modeled by means of first-order
logic predicates. Then, reasoning techniques developed in the field of inductive
logic programming (ILP) are employed to discover patterns which are relation-
ally defined as conjunctions of atomic formulas built using the data predicates.
Second, activities stored in a log are marked with a timestamp which indicates
the time of occurrence and implicitly defines a total temporal order over events.
Temporal relationships between activities are represented as predicates and these
predicates are used to investigate the temporal autocorrelation in the effect of a
property of an activity/actor. Third, some user defined domain knowledge (e.g.,
the definition of the ordering relation between activities) may be available. This
knowledge is profitably exploited by inferential mechanisms typical of a theorem
prover which are integrated in the relational pattern discovery. However, the
main disadvantage of the algorithm presented in [1] is that it cannot deal with
process variants that, as stated before, are of fundamental importance.

To cope with this further issue, we propose to derive process models through
the discovery of relational patterns with disjunctions. The advantage of inte-
grating disjunctive forms in patterns is two-fold. First, process variants can be
identified and represented with the reference model, thus avoiding the explicit
maintenance of numerous variants. Second, activities in the patterns can be OR-
ed to represent typical OR − split/OR − join in graph-based constructs [12].
The paper is organized as follows. In the next two sections we present related
works and background. In Section 3 we present our algorithm to discover dis-
junctive relational patterns. Experimental results on two real-world databases
are commented in Section 4 and conclusions are drawn.

2 Related Work and Background

Recently, the multi-relational or ILP approaches to build business process mod-
els from event logs are receiving increasing attention. Goedertier et al. [3] have
faced the task of predicting, by means of learned relational classification rules
whether, given the state of a process instance, a particular state transition can
occur. The representation formalism considered in this work is the Event Calcu-
lus, a first-order logic that elegantly captures the time-varying nature of facts.
Learning is based on both positive information (possible transitions) and nega-
tive information (prohibited transitions). When no negative information is actu-
ally available in the logs, it is artificially generated by means of the closed-world
assumption.Similarly, Lamma et al. [6] have considered both compliant (pos-
itive information) and non compliant (negative information) execution traces
and adapt the algorithm ICL to learn constraints among activities expressed as
logical formulas. In practice, the main problems of both methods are the reli-
able provision of negative information and their scalability to huge event logs.

 228

We overcome this issue by learning from positive examples only (as usual in
frequent pattern discovery).

Mining variants of a process is not a novel task. Indeed, significant stud-
ies have already addressed this task in the literature. Li et al. [7] describe an
approach to discover the reference block-structured model which is the best in
covering process variants. The model is obtained by first clustering activities in
order to form blocks of similar activities, and then merging blocks into larger
blocks. The final reference model is thus the model which has minimum distance
from the variants, where the distance is measured by the number of change oper-
ations at the activity level. The brittleness of this work is the difficulty to create
a set of only variants given that, in real event logs, traces of process and vari-
ants are stored together. The determination of a set of workflow models, called
disjunctive workflow schema, is rather the solution proposed by Greco et al [4]
to model the relevant variants. A stepwise procedure permits to refine models
(workflow schema) created at the previous step, so that the final set is composed
of hierarchically organized models. At each step, the executions which support
a schema are partitioned into clusters each of which contains executions with
the same characteristics. Each cluster thus represents a relevant variant and it
is modeled by a refined workflow schema. However, since each variant is mined
with a specialized model, the applicability of this method may be compromised
in the case a huge number of specialized models is produced.

The background of this work is in [1], where we have used SPADA in order to
extract relational frequent patterns from event logs. In SPADA, it is possible to
distinguish between reference objects (ro) and task-relevant objects (tro). The
former are data on which patterns are enumerated and contribute to compute
the support of a pattern, while the latter contribute to define the former and they
can be involved in a pattern. In the logic framework adopted by SPADA, event
logs are converted into a deductive database D. Properties and relationships of
the process executions (reference objects), activities and actors (task-relevant
objects) are represented as ground atoms in the extensional part DE , while
a user defined background knowledge is expressed as a normal logic program
which defines the intensional part DI . An example of ground atoms stored into
the extensional database DE is reported in the followings:
process(e1). process(e2). activity(e1, a1). activity(e1, a2). activity(e2, a3).
activity(e2, a4). is a(a1, workflow). is a(a2, complete). is a(a3, namemaker).
is a(a4, schedule). time(a1, 10). time(a2, 25). time(a3, 22). time(a4, 23).
actor(a1, paul). actor(a2, paul). is a(paul, user). actor(a3, paul).

actor(a4,mary). is a(mary, admin).
These ground atoms describe the process executions e1 and e2 (reference

objects) according to the activities a1, a2, a3, and a4 (task-relevant objects)
and the actors, u1 and u2 (task-relevant objects). Differently, an example of
a normal logic program stored as intensional database DI is the following:
before(A1, A2)← activity(C,A1), activity(C,A2), A1 6= A2, time(A1, T1), time(A2, T2),

T1 < T2, not(activity(C,A), A 6= A1, A 6= A2, time(A,T), T1 < T, T < T2)

This normal logic program defines the temporal relationship before and permits
to entail the temporal ground atoms before(a1, a2) and before(a3, a4).

 229

The set of ground atoms (extensionally or intensionally) stored in D is parti-
tioned with respect to the process executions into a number of non-intersecting
subsets D[e] (units of analysis) each of which includes ground atoms concern-
ing the activities and actors involved in the process execution e. Then, SPADA
is able to discover relational frequent patterns across the units of analysis of
D which are associated to the process executions. The discovery process is in
charge of a levelwise method, that is tailored as a breadth-first search in the lat-
tice of relational patterns spanned by the θ-subsumption generality order (≻θ).
In this context, the relational patterns are formulated as process(P), µ(P) [s],
where P is a variable to represent a process execution, process(P) is the atom
that identifies a process execution P , while µ(P) is a conjunction of atoms which
provides a description of a fragment of the process model underlying the gen-
eration of the process execution P , s is the support of P in D. Each atom in
µ(P) represents one of the property of activity, actor or process execution, or
relationship between activities, process executions and activities, activities and
actors. For example:

process(P), complete(P,A), schedule(P,B), delete(P,C) before(A,B),

before(B,C). [support = 63%]

is a relational pattern which describes a fragment of a process model where the
activities complete, schedule and delete are executed in a sequence. The support
s estimates the probability p(process(P) ∪ µ(P)) on D. This means that s% of
the units of analysis D[e] are covered by process(P) ∪ µ(P). Formally, the unit
of analysis D[e] is covered by process(P) ∪ µ(P) if there exists a substitution
θ = {P ← e} · θ1 such that [process(P) ∪ µ(P)]θ ⊆ D[e].

3 Discovering Process Models with Variants

The motivation behind the usage of disjunctive forms in patterns is that the set
of patterns discovered with traditional approaches, included SPADA, strongly
depends on frequency-based thresholds such as the minimum support threshold.
This means that when the minimum support is high valued, many interesting
patterns are filtered out: conjunctions of atoms, for which the considered statis-
tical measure does not exceed the minimum threshold, are ignored. The intro-
duction of the disjunctive forms would permit to include the atoms which occur
in parallel to or in alternative to other atoms. The effect is that of increasing the
values of the statistical measures associated to the patterns. For example, let
us suppose that the atom complete(A,D) may occur alternatively to the atom
schedule(A,D). Then, the relational pattern:

process(A), complete(A,B), 〈complete(A,D) ∨ schedule(A,D)〉, before(B,D)

might be frequent, although the patterns
process(A), complete(A,B), complete(A,D), before(B,D) and
process(A), complete(A,B), schedule(A,D), before(B,D)

might be both infrequent.
This consideration advocates the starting point of our approach, which is that

of considering infrequent conjunctive patterns. These patterns are re-evaluated

 230

and extended to the disjunctive form by inserting disjunctions which involve
atoms already present in the patterns. Disjunctions are created among atoms
which are semantically related in the application domain. The semantic related-
ness is intended as background knowledge on the predicates used in the atoms
and permits us to numerically quantify the dissimilarity or conceptual distance
between atoms. It guarantees that meaningful disjunctions are created.

The proposed approach follows a two-stepped procedure. First, it extracts
the infrequent conjunctive patterns which can be considered as basis for the
disjunctive patterns construction. In particular, patterns whose support is lower
than the minimum support threshold, but exceeds a new ad-hoc threshold are
selected. The newly defined threshold permits to identify the set of patterns to
be extended to the disjunctive form. Second, by following the main intuition re-
ported in [9], background knowledge is accommodated to exploit the information
on the dissimilarity among the atoms in the disjunctive pattern generation. This
way, disjunctive patterns are computed by iteratively integrating disjunctions
into the patterns by means of a pair-wise joining operation. The final result is a
set of patterns which may comprise both conjunctions and disjunctions of atoms,
whose support is greater than the minimum support threshold.

Working in the relational setting adds additional sources of complexity to the
problem of joining patterns due to the linkedness property [8]. In the relational
representation, atoms of the same pattern are dependent each other due to the
presence of variables (differently from the items in the propositional represen-
tation [9]). In this work, patterns to be joined should differ in only one atom
(but different atoms should be similar) and share the remaining atoms up to a
redenomination of variables.

Before formally defining the problem we solve in this paper, we clarify how the
deductive database we have described in the previous section changes. In partic-
ular, the intensional part DI of the deductive database D includes the definition
of a new kind of domain knowledge that permits to express the dissimilarity
among atoms in the form of Datalog weighted edges of a graph. An example
of the Datalog weighted edge is the following: schedule− (complete − 0.88). It
states that the dissimilarity between the predicates schedule(·,·) and complete(·,·)
is 0.88. More generally, it represents an undirected edge e between two vertices
vi and vj (e.g., schedule, complete) with weight wij (e.g., 0.88) and it is denoted
as e(vi, vj , w). A finite sequence of undirected edges e1, e2, . . . , em which links
the vertices vi and vj is called path and denoted as ρ(vi, vj). The complete list
of such undirected edges represents the background information on the dissim-
ilarity among atoms and allows the algorithm to join patterns by introducing
disjunctions (e.g., 〈schedule(A,W) ∨ complete(A,W)〉). The formal statement
of the problem of discovering relational frequent patterns with disjunctions can
be articulated in two steps.

1. Given: the extensional part DE of the deductive database D and the nor-
mal logic programs stored into the intensional part DI of D, two thresholds
minSup ∈ [0; 1] and nSup ∈ [0; 1], where the former represents a minimum
support value, while the latter represents a maximum support value (nSup <

 231

minSup), Find: the collection IR of the relational infrequent patterns whose
support is between nSup and minSup.
2. Given: the collection IR, the Datalog weighted edges stored in the intensional
part DI of the deductive database D and two thresholds minSup and γ ∈
[0; 1] (γ defines the maximum dissimilarity value among atoms involved into a
disjunction), Find: relational patterns with disjunctions whose support exceeds
minSup and whose dissimilarity of atoms involved in the disjunctions does not
exceed γ.

The computational solution to these problems is implemented in jSPADA.

3.1 Mining Infrequent Conjunctive Relational Patterns

In jSPADA, the search is based on the level-wise method and implements a
two-stepped procedure: i) generation of candidate patterns with k atoms (k-th
level) by considering the frequent patterns with k − 1 atoms (k − 1-th level);
ii) evaluation of the support of patterns with k atoms. So, the patterns whose
support does not exceeds minSup will be not considered for the next level:
the patterns discarded (infrequent) at each level are rather considered for the
generation of disjunctions. The collection IR is thus composed of a subset of
infrequent patterns, more precisely those with support greater than or equal to
nSup (and less than minSup).

We observe that, the set of infrequent patterns IR computed by jSPADA
do not contain all possible infrequent relational patterns. This depends on the
fact that any k-level infrequent pattern “Pk−1 ∧ A” output by jSPADA has
the head Pk−1 that is a relational pattern frequent at the level k − 1, and the
tail A which is an atom such that the conjunction “Pk−1 ∧ A” is infrequent.
This means that infrequent patterns whose head is already infrequent cannot
be discovered by jSPADA. On the other hand computing all possible infrequent
relational patterns is computationally expensive. As a consequence, the set of
patterns with disjunctions discovered from IR is a necessary approximation of
the complete set of relational patterns with disjunctions.

3.2 Extending Relational Patterns with Disjunctions

The generation of disjunctive relational patterns is performed by creating dis-
junctions among similar atoms in accordance to the weighted edges of the back-
ground knowledge: two patterns which present similar atoms are joined to form
only one. The implemented algorithm (see Algorithm 1) is composed of two sub-
procedures: the first one (lines 2-12) creates a graph GD with the patterns of IR
by exploiting the knowledge defined in DI , while the second one (lines 13-32)
joins two patterns (vertices) on the basis of the information (weight) associated
to the connecting edge. In particular, for each pair of patterns which have the
same length (namely, at the same level of the level-wise search method) it checks
whether they differ in only one atom and share the remaining atoms up to a re-
denomination of variables (line 3). Let α and β be the two atoms differentiating
P from Q (α in P, β in Q), a path ρ which links α to β (or vice-versa) is searched

 232

among the weighted edges according to DI : in the case the sum ω of the weights
found in the path is lower than the maximum dissimilarity γ the vertices P and
Q are inserted into GD and linked through an edge with weight ω (lines 4-9).
Note that when there is more than one path between α and β, then the path with
lowest weight is considered. Intuitively, at the end of the first sub-procedure, GD
will contain, as vertices, the patterns which meet the condition at the line 3, and
it will contain, as edges, the weights associated to the path linking the atoms
differentiating the patterns.

Once we have GD, a list LD is populated with the vertices and edges of GD:
an element of LD is a triple 〈P,Q, ω〉 composed of a pair of vertices-patterns (P ,
Q) with their relative weight. Elements in LD are ranked in ascending order with
respect to the values of ω so that the pairs of patterns with lower dissimilarity
will be joined for first. This guarantees that disjunctions with very similar atoms
will be preferred to the others (line 13). For each element of LD whose weight
ω is lower than γ the two patterns P and Q are joined to generate a pattern J
composed by the conjunction of the same atoms in common to the two patterns
P and Q and of the disjunction formed by the two different (but similar) atoms
(lines 14-15). This joining procedure permits to have patterns with the same
length of the original ones and which occur when at least one of the original
patterns occurs. Therefore, if a pattern J is obtained by joining P andQ, it covers
a set of units of analysis equal to the union of those of P and Q: the support
of J is determined as in line 16 and, generally, it is higher than the support of
both P and Q. In the case the support of J exceeds minSup, then it can be
considered statistically interesting and no further processing is necessary (lines
16-17). Otherwise, J is again considered and inserted into GD as follows. The
edges which linked another pattern R of GD to P and Q are modified in order to
keep the links from R to J : the weight of the edges between one pattern R and J
will be set to the average value of the weights of all the edges which linked R to P
and Q (lines 19-27). The modified graph GD contains conjunctive patterns (those
of IR) and patterns with disjunctions (those produced by joining). Thus, GD is re-
evaluated to extend disjunctions previously created or to insert into disjunctive
patterns other disjunctions obtained with other atoms. The algorithm proceeds
iteratively (line 29-30) until no additional disjunction can be performed (namely,
when LD is empty or the weights ω are higher than γ). At each iteration, the
patterns P and Q are removed from GD (line 32).

An explanatory example is illustrated in Figure 1. Let us consider the back-
ground knowledge DI on the dissimilarity among four atoms and the set IR
containing four infrequent conjunctive relational patterns as illustrated in Fig-
ure 1a and γ equal to 0.7. The first sub-procedure of Algorithm 1 analyzes P1,
P2, P3, P4 and discovers that they differ in only one atom, while the other
atoms are in common (process(A), unknown(A,C), before(B,C)). Then, it cre-
ates the graph GD by collocating P1, P2 and P3 in three different vertices and
linking them through edges whose weights are taken from the paths ρ in DI .
P4 is not considered because the dissimilarity between start and resume in the
graph is higher than γ (row (1) in Figure 1b). The second sub-procedure starts

 233

Algorithm 1 Extending Relational Pattern with Disjunctions.
1: input: IR, DI , γ,minSup

output: J // J set of disjunctive patterns
2: for all (P,Q) ∈ IR × IR, Q 6= P do

3: if P.length = Q.length and check atoms(P,Q) then

4: (α, β) := atoms diff(P,Q) //α, β atoms differentiating P and Q
5: if ρ(α, β) 6= ⊘ then

6: ω :=
∑

e(vi,vj ,wij) in ρ(α,β)

wij

7: if ω ≤ γ then

8: addNode(P,GD); addNode(Q,GD);addEdge(P,Q, ω,GD);
9: end if

10: end if

11: end if

12: end for

13: LD ← edges of GD // list of edges of GD ordered in ascending mode w.r.t. ω
14: while LD 6= ⊘ and ∀e(P,Q, ω) ∈ GD ω ≤ γ do

15: J ← join(P,Q); J.support := P.support + Q.support− (P ∩Q).support;
16: if J.support ≥ minSup then

17: J := J∪ {J}
18: else

19: for all R such that ∃ e(P,R, ω1) ∈ GD and ∃ e(Q,R, ω2) ∈ GD do

20: addEdge(R, J, (ω1 + ω2)/2,GD)
21: end for

22: for all R such that ∃ e(P,R, ω1) ∈ GD and ∄ e(Q,R, ω2) ∈ GD do

23: addEdge(R, J, ω1,GD)
24: end for

25: for all R such that ∃ e(Q,R, ω2) ∈ GD and ∄ e(P, R, ω1) ∈ GD do

26: addEdge(R, J, ω2,GD)
27: end for

28: LD ← edges of GD; update LD

29: end if

30: removeNode(P,GD); removeNode(Q,GD)

31: end while

by ordering the weights of the edges: the first disjunction is created by joining P1

and P3 given that the dissimilarity value is lower than γ and the lowest (row (2)
in Figure 1b). Next, the pattern so created and P2 are checked for joining. Both
have the same length and differ in only one atom. Although the first presents a
disjunction and the second presents a “simple” atom, dissimilarity is lower than
γ and a new disjunctive pattern is created (row (3) in Figure 1b).

A final consideration concerns the time complexity of Algorithm 1. Let us
consider the set IR partitioned into disjoint subsets {IRk}k on the basis of the
pattern length k. Let nk be the cardinality of IRk. For each k, the time complexity
of extending relational patterns in IRk with disjunctions is quadratic in nk at
worst (this is due to the pairwise join operation).

4 Experiments

Experiments are performed by processing event log provided by THINK3 Inc1.
This dataset describes 353,490 executions of business processes in a company.
The period under analysis is from April 7th 2005 to January 10th 2007 for a to-
tal of 1,035,119 activities and 103 actors. Activities are classified as tools (131),

1 http://www.think3.com/en/default.aspx

 234

(a) (b)

Fig. 1. An example of relational pattern extension from disjunctive atoms (γ=0.7).

(a) (b)

Fig. 2. Learning times and number of patterns discovered by SPADA and jSPADA by
varying minSup (nSup=0.1%, γ=0.6).

workflow (919,052), namemaker (106,839), delete (2,767), deleteEnt (2,354),
prpDelete (471), prpSmartDelete (53), prpModify (34) and cast (1,430). Actors
are classified as user (103), viewer (3) or administrator (2). In this Section, we
illustrate the results obtained with a random sample of THINK3 data includ-
ing 3580 executions. Process instances play the role of reference objects, while
activities and actors play the role of task-relevant objects.

The goal of the experiments is to compare the conjunctive patterns discov-
ered by SPADA with those disjunctive discovered by jSPADA in terms of the
cardinality of the extracted patterns set and in terms of the learning time by
varying threshold values. In the background knowledge DI , a constant weight is
assigned to each pair of activities. This way, the generation of a disjunctive form
may equally involve each one of the activities. The weight is computed as the
ratio of 1 (maximum dissimilarity value) to the number of distinct activities. In
In THINK3, the weight is set 0.16 for each one of the six activities, while it is
set to 0.33 for each one of the three actors.

 235

Experiments are performed2 by tuning the thresholds minSup, nSup and
γ (see Figure 2.a). As we expected, the number of final patterns (the summa-
tion of Conjunctive relational frequent patterns and Disjunctive relational fre-
quent patterns) decreases as minSup increases. Indeed, by enlarging the range
[nSup;minSup), the number of infrequent conjunctive patterns and the num-
ber of potential disjunctive patterns grow up, while the increase of minSup
leads to discover only those really frequent. Differently, narrowing the range
[nSup;minSup) leads to a larger set of Conjunctive frequent patterns but also
to a smaller set of Conjunctive infrequent patterns which will be used in the
pair-wise joining operation, and finally to a reduced set of disjunctive frequent
patterns, as in the Figure 2.a when minSup=5%.

An interesting consideration is that the order of magnitude of the number
of discovered disjunctive patterns is reasonably small (lower than 30). This per-
mits to reach the objective of discovering process models with variants which
are not difficult to interpret for the end-user. Another consideration can be
found by the analysis of learning times (Figure 2.b) where it is possible to see
that SPADA and jSPADA show comparable learning times. A deeper analysis
reveals that by increasing minSup, the computational cost spent for the only
generation of disjunctive patterns is of at least two orders of magnitude smaller
than that of SPADA. Indeed, the increase of minSup leads to enlarge the range
[nSup;minSup) and this would require longer learning time to process a greater
set IR. Actually, the reason of these time performances is twofold: first, a larger
set IR does not necessarily imply a larger set of disjunctive patterns given that,
if the atoms of two patterns are different, no disjunction can be created; second,
when minSup has low values (e.g., 10%) the number of iterations in Algorithm
1 is smaller since disjunctive patterns support easily exceeds minSup.

A peculiarity of the approach is that it enriches relational patterns discov-
ered by SPADA with additional atoms. For instance, the following pattern is
discovered by jSPADA at minSup=20% (nSup=0.001,γ=0.6 in THINK3):

P1 : process(A), 〈namemaker(A,B) ∨ workflow(A,B)〉, user(B,C),

loggroup(C,ekm j) [support = 21.9%]

P1 states that activities namemaker and workflow occur one in alternative
to the other. This happens in 785 executions out of 3850 executions where the
actor is of kind user and the login mode is ekm j. P1 joins the following two
conjunctive patterns discovered by SPADA at minSup=5% that could represent
two variants of the same model:

P2 : process(A), namemaker(A,B), user(B,C), loggroup(C, ekm j) [support = 8.1%]

P3 : process(A),workflow(A,B), user(B,C), loggroup(C, ekm j) [support = 19.8%]

Therefore, the proposed approach permits to unearth information extracted from
SPADA at lower computational cost since the parameterminSup strongly affects
the learning times of both systems.

2 Additional results are accessible at http://www.di.uniba.it/∼loglisci/jSPADA/.

 236

5 Conclusions

In this paper, we present an approach to discover process models in the form of
frequent relational patterns with disjunctions. Patterns describe activities and
actors involved in the processes. Disjunctions permit to express OR−split/OR−
join constructs such that variants of process models can be identified. Exper-
iments on real event logs empirically prove the effectiveness of the proposed
approach. Discovered patterns permit to express variants and can be easily in-
terpreted by end-users. As future work, we plan to investigate the applicability
of relational frequent pattern mining in order to also mine loops.

Acknowledgment

This work is in partial fulfillment of the research objectives of the project
ATENEO-2010: ”Modelli e Metodi Computazionali per la Scoperta di Conoscenza
in Dati Spazio-Temporali”.

References

1. A. Appice, M. Ceci, A. Turi, and D. Malerba. A parallel, distributed algorithm for
relational frequent pattern discovery from very large data sets. Intelligent Data

Analysis, 15(1):69–88, 2011.
2. J. E. Cook and A. L. Wolf. Software process validation: Quantitatively measuring

the correspondence of a process to a model. ACM Trans. Softw. Eng. Methodol.,
8(2):147–176, 1999.

3. S. Goedertier, D. Martens, B. Baesens, R. Haesen, and J. Vanthienen. A new
approach for discovering business process models from event logs. In Technical

Report. KBI 0716, 2007.
4. G. Greco, A. Guzzo, L. Pontieri, and D. Sacca’. Discovering expressive process

models by clustering log traces. IEEE Transactions on Knowledge and Data En-

gineering, 18:1010–1027, 2006.
5. S.-Y. Hwang, C.-P. Wei, and W.-S. Yang. Discovery of temporal patterns from

process instances. Comput. Ind., 53(3):345–364, 2004.
6. E. Lamma, P. Mello, F. Riguzzi, and S. Storari. Applying inductive logic program-

ming to process mining. In ILP 2007, pages 132–146, 2007.
7. C. Li, M. Reichert, and A. Wombacher. Discovering reference models by mining

process variants using a heuristic approach. In BPM, pages 344–362, 2009.
8. J. W. Lloyd. Foundations of Logic Programming, 2nd Edition. Springer, 1987.
9. J. F. Roddick and P. Fule. Semgram - integrating semantic graphs into association

rule mining. In AusDM, pages 129–137, 2007.
10. W. van der Aalst, V. Rubin, H. Verbeek, B. van Dongen, E. Kindler, and C. Gn-

ther. Process mining: a two-step approach to balance between underfitting and
overfitting. Software and Systems Modeling, 9:87–111, 2010.

11. W. M. P. van der Aalst and A. J. M. M. Weijters. Process mining: a research
agenda. Comput. Ind., 53(3):231–244, 2004.

12. W. M. P. van der Aalst, T. Weijters, and L. Maruster. Workflow mining: Discov-
ering process models from event logs. IEEE TKDE, 16(9):1128–1142, 2004.

 237

 239

 240

 241

 242

 243

42 62 82 :2 322

20
;7

30
22

30
27

%Ncvgpv"Hcevqtu

T
O
U
G

Tgi0"UXF
Ownvkpqokcn"Okz
RNUC
WugtEqoowpkv{&Ownvkpqokcn
WugtEqoowpkv{&Icwuukcp
KvgoEcvgiqtkgu

4 6 8 : 32

20
;6

20
;8

20
;:

30
22

30
24

%Ncvgpv"Hcevqtu

T
O
U
G

Tgi0"UXF
Ownvkpqokcn"Okz
RNUC
WTR
WTR&Dqquvgf
WugtEqoowpkv{&Ownvkpqokcn
WugtEqoowpkv{&Icwuukcp
KvgoEcvgiqtkgu

4 6 8 : 32

20
;4
2

20
;4

7
20
;5

2
20
;5

7
20
;6
2

20
;6
7

20
;7
2

%Ncvgpv"Hcevqtu1Wugt"Eqoowpkvkgu

T
O
U
G

Tgi0"UXF
Jkgctejkecn&Ownvkpqokcn
Jkgtctejkecn&Icwuukcp

 244

 245

Visualizing Information in Data Warehouses Reports

Michele Risi
1
, Maria I. Sessa

1
, Genoveffa Tortora

1
, Maurizio Tucci

1
,

1 University of Salerno, via Ponte don Melillo,

84084 Fisciano, Salerno, Italy

{mrisi, misessa, tortora, mautuc}@unisa.it

Abstract. The display of information extracted from a data warehouse is an

important aspect of human-machine interaction. Visualization tools play a

central role in contexts where information must be represented by preserving

both the accuracy of data, and the complexity of relationships between data.

Much attention has been paid to the problem of effective visualization of data in

individual reports that usually are viewed through different types of standard

graph (Histogram, Pie, etc.) or in a tabular form. However, this kind of

representation provides separate information items, but gives no support to

visualize their relationships, which are the basis for most decision processes.

This paper presents a methodology for information visualization by exploiting a

visual language, called CoDe (Complexity Design), which allows users to

manage the complexity of information to represent. In particular, CoDe

provides an extensible set of graphical patterns, which allows to compose basic

patterns to form complex ones; and allows the designer to specify the semantics

of graphs by creating a logical link with the data they represent. The language

visually represents both the items of information and their interrelationships at

different levels of abstraction, keeping consistency between visually displayed

items and the information contained in reports extracted from a data warehouse

in tabular form by using the OLAP operations.

Keywords: Data Warehouses, Data Mining , Knowledge Representation, User

Interfaces.

1 Introduction

Representation of scientific data or information obtained by scientific techniques of

observation and processing, has been widely investigated and considerable studies

have been aimed at graphic representation of data consistent with each other.

Often the representation of this information has been confined to specialist areas

and each area has developed its own technical communications professionals, not

always accessible to the general public. Less attention has been devoted to the

visualization of complex scientific information or on scientific data variously

interconnected with each other and heterogeneous.

Recently, visualization techniques of scientific information, are getting more

attention, partly as a result of increased interest in the techniques of human-machine

interaction that can access the input and output in an increasingly simple ways for

human use. On the other hand, the enormous development of interaction and

communication, which is an emerging characteristic of our times, requires a greater

ability to acquire information quickly no longer isolated, but variously interrelated

with each other and to build cognitive maps that summarize the semantics in order to

develop decision-making. In particular, a wide set of tools are available to represent

the information extracted from a data warehouse, visualizing tabular reports by means

of standard graph as Histogram, Pie, etc. However, this kind of representation allows

to represent information in separated reports, but no support is given to the

visualization of their relationships. Thus, a cognitive map which summarizes the

semantics of these relations, without losing details, could be a useful support for

decision processes.

We propose an approach to the design of a user interface that allows to visualize

relations between different reports in Excel format, by exploiting a graphic language

named CoDe (Complexity Design) [5]. The representation obtained exploiting the

visual language CoDe can be considered as a sort of high-level cognitive map of the

complex information underlying the representation of the ground data. The choice of

the final visualization shape (in terms of standard graphs) is left to the user interface,

which is in charge of providing the necessary implementation constructs.

In particular, CoDe is composed by an extensible set of graphical patterns as

lexical elements, which provides two families of operators: a first set of operators is

supplied to compose basic visualization patterns to form complex ones; a second set

of operators allow the designer to specify the semantics of graphs by creating a

logical link with the data they represent. In fact, the information extracted from a data

warehouse in tabular form using the OLAP operations, are visually represented by

different graphs that are opportunely aggregated in order to simultaneously display

the quantitative information of data and their interrelationships.

In Section 2, we discuss the related work. In Section 3 we describe the proposed

methodology, whereas in Section 4 we illustrate the syntactic and semantic of the

visual language CoDe. Finally, Section 5 will describe a modeling example and

finally section 6 will conclude the paper with final remarks and future works.

2 Related Work

Several techniques and tools have been proposed in the literature to relate and display

information extracted from a data warehouse, but to the best of our knowledge, no
one allows to define graphically the semantic relationships between the data and
consider visualizations that can involve more than one type of graph. In particular,
these approaches usually provide standard graphical tools and do not allow to
compose, aggregate and change at will the different visualizations.

Ma et al. [1][11] describe the design and the implementation of meteorological

data warehouse by using Microsoft SQL Server. In particular, the proposed systems

create process of meteorological data warehousing based on SQL Server Analysis

Services and use SQL Server Reporting Services to design, execute, and manage

multidimensional data reports. Moreover, the generating data reports are represented

as folding tabular form related to a two-dimensional maps available through the

 247

browser, but the users cannot choice the type of visualization.

Hsu et al. [7] apply a clustering analysis on OLAP reports to automatically

discover the grouping knowledge between different OLAP reports. In particular, the

proposed approach highlights this knowledge by using a dendrogram/icicle plot
representation and histograms. The data interrelationship is computed by using a data
mining approach for finding the hidden rules inside the data. Respect our approach,
the different reports cannot be composed and changed by the users.

Su et al. [12] describe a technical framework to produce a report system based on a

three-layer calculating architecture which implements a metadata mapping, an ETL

module and a data warehouse. In particular, the proposed technique is able to connect

with several different data sources and uses a statistical calculation process to

integrate them. Moreover, it allows to define and extend different report models, that

are in tabular form or represented graphically. As the previous work, no multiple

reports can be considered.

Wojciechowski et al. [14] present a web based data warehouse application

designed and developed for data entry, data management as well as reporting

purposes. The application was build using Oracle Application Express (OAE)

technology. The proposed application implements two ways of reporting, report in a

tubular form and report in a chart format.

In [8] is presented a data warehouse application that is able to generate summary

reports as input data files for a data mining system to predict future student

enrollment. The courseware is designed to build the data warehouse systematically

using an incremental approach, and the aggregation to relate and report as chart the

information data.

Bin et al. [2] discuss a novel and efficient information integration technology

aiming at information isolated island, based on data warehouse theory and other

existing systems. In particular, the approach realizes data analysis on the basis of

integration through physical views and self-definition sampling strategies. The output

is represented in tabular form.

Anfurrutia et al. [1] present a product-line approach to database reporting based on

the predictability and similarity among reports. In particular, the approach exploits a

feature model that provides an abstract and concise syntax for expressing

commonality and variability in a database reporting. The data reports are provided

textually. In fact, the data are extracted and manipulated as XML files, and the page

layout and the style format of data are defined by an XSL formatter.

Other different techniques are based on the reporting functions (e.g. [6][9]).

Reporting functions represent a valid tool in an analytical environment, needed to

exploit the benefit of integrated data usually gathered in a data warehouse. Moreover,

they extend the classical grouping and aggregation functions providing a column-

based ordering, partitioning, and windowing mechanism. In particular, Lehner et al.

[9] discuss the problem of deriving reporting function queries from materialized

reporting function views. Moreover, in [6] they introduce materialized reporting

function views and show how to rewrite queries with reporting functions as well as

aggregation queries to this kind of materialized view. The data provided as output of

the queries are represented as folding tabular or grid forms.

 248

3 The proposed methodology

In this paper we focus on the design of a user interface that allows to compose and

visualize information and data relations contained in reports extracted from a data

warehouse in tabular form by using OLAP operations. The user interface modeling is

performed by exploiting a graphic language named CoDe. In particular, CoDe allows

to visually represents both the items of information and their interrelationships at

different levels of abstraction, keeping consistency between items and the information

contained in reports.

The representation obtained exploiting the visual language CoDe can be considered

as a sort of high-level cognitive map of the complex information underlying the

representation of the ground data. The choice of the final visualization shape (in terms

of standard graphs) is left to the user interface, which is in charge of providing the

necessary implementation constructs. In particular, these constructs allow to integrate

and display different kind of visualization such as Histogram, Pie, etc. by scaling the

quantitative information data between related items and preserving the relationship

and the ratio between data extracted from a data warehouse.

In the following, we illustrate the proposed methodology process that is in charge

to define the data and metadata extraction, to model the cognitive map generating the

user interface, and finally to visualize the report.

3.1 The methodology process

The methodology process allows to extract data information from a data warehouse,

model the cognitive map and display the final report as a single image. In particular,

the process is composed of three subsequent phases: OLAP Operation, CoDe

Modeling and Report Visualization, as shown in Fig. 1, where the rounded rectangles

represent process phases, whilst the rectangles represent the intermediate artifacts

produced at the end of each phase.

Fig. 1. The user interface development process.

249

The first phase, OLAP Operation, is in charge to dynamically generate reports

from a data mart, represented as a multidimensional cube. In particular, these report

can be organized as double-entry table, as represented in Fig. 2.

title_name

C1 … Cn

value1 … valuen

Fig. 2. A double-entry table.

Following [3], we define graph the visualization of the knowledge carried out by a

double-entry table. In particular, a graph, and the associated double-entry table, can
be considered as a knowledge item. In fact, any graph must provide some ways to
recognize the variational concepts involved in the represented information, given by
the patterns in the corresponding double-entry table. In particular, title_name denotes
the visualized information as a single consistent item, and components C1, …, Cn
(represent concepts, objects and/or categories) with their associated values, that
visualize specific information in the graph.

To provide a systematically approach for representing each OLAP report as a
double-entry table, we define a pattern describing the OLAP operations to be
performed. In particular, each consistent item in CoDe is defined applying this pattern
to a specific multidimensional cube to properly extract item data with their
interrelationships. It is worth noting that the OLAP operations pattern is executed
virtually on the data mart by considering only the metadata information. The concrete
execution of OLAP operations to compute data will be successively performed in the
visualization phase.

The construction of the double-entry table from the multidimensional cube is based

on: the set of measuring attributes (i.e. the components) for the report; the structure of

the report that is divided into one horizontal axis and one or more vertical axes (i.e.

the dimensions of the cube); and slicing/dicing/pivoting/rolling/drilling dimensional

operators. These operators are data summarization/aggregation tools that help
simplify multidimensional data analysis of a data warehouse. In particular, OLAP
operators are useful in generating selection or aggregate values based on the
combination of the selected cube dimensions.

The pattern used to compute a double-entry tables starting from the

multidimensional cube is shown in Table 1.

Table 1. Pattern describing the OLAP operations to create the double-entry tables.

Graphical

Pattern

OLAP operations pattern

Consistent item [pivoting][rolling(h) | drilling(h)][dicing(h)] [rolling(v)]*[slicing(v)]*

The label in the brackets represent a single OLAP operation, whilst the label h in

the parenthesis indicates to perform the operation on the horizontal axis and the label

v indicates to apply the operator on zero, one or more vertical axes (the multiplicity is

expressed by the asterisk symbol). A careful reader can note that the same double-

entry table can be computed by permuting the order of the operations in the defined

 250

pattern. As an example, Fig. 3 shows the application of the pattern to compute a

consistent item on the multidimensional cube.

Fig. 3. OLAP operations on a multidimensional cube.

In particular, we start from the initial multidimensional cube as shown in the right

hand part of Fig. 3. The multidimensional cube provides information about the

production of companies located in Italy with respect to the resources employed and

the produced pollution.

The first OLAP operation performed is pivoting which is used to rotate the cube in

order to place the Resources dimension on the horizontal axis (see step (i)). The

remaining dimensions of the cube are considered on the vertical axes. Then, a drilling

operation is performed on the horizontal axis (i.e. Resources), in order to increase the

details of the considered dimension (see steps (ii) and (iii)). Successively, a dicing

operation on the horizontal axis is performed to select a subset of resources and

exclude the other attributes including the PowderWaste attribute; and a rolling

operation on the vertical axes (i.e. Company, Location and Pollution) to aggregate

data and reduce the details (see step (iv)). Finally, a slicing operation on the vertical

axes is performed to reduce the dimensions to Company (see step (v)) and produce the

double-entry table.

The Code Modeling phase takes as input the double-entry tables provided by the

OLAP operation phase and allows the designer to edit the cognitive map exploiting

the notation of the CoDe visual language. The output is a description of the Complex

Design Model that is composed by a CoDe diagram and a lattice diagram describing

the OLAP patterns needed to compute the data used in the model. The visual language

CoDe is described in the next section and further details can be found in [5].

The first two step of the process can be repeated whenever the designer add a

consistent item to the model. Finally, the Report Visualization phase, is in charge to

display the Complex Design Model, by extracting data from the multidimensional

251

cube through the OLAP operator patterns described in the lattice diagram. OLAP

processing could be slow, thus the use of a lattice diagram allows to improve the

performance reducing the total number of OLAP operation performed.

Then, the Report Visualization phase integrates, merges and displays different kind

of graphs by scaling the quantitative information data between related items by

preserving the relationship and the ratio between data extracted from the

multidimensional cube. During this phase, the designer can place the graphs in

specific locations of the drawing area and add some information labels. As an

example, Fig. 4(a) shows the execution results of the OLAP operation pattern whereas

Fig. 4(b) displays the correspondent Bar-Chart graph.

Products Energy (Company)
Diesel Electricity Fuel Methane
762 5715 423 3768

(a) (b)

Fig. 4. An double-entry table computed with an OLAP operation pattern and the final

displayed graph.

4 The visual language CoDe

The formal definition of the graphic language CoDe is based on the idea that a visual
representation of complex knowledge should be considered as a statement of a formal
language in the first order Logic paradigm [5]. The formal definition of the language
specifies both syntactic and semantics rules [12]. Syntactic rules are used to construct
well formed visual representations, while semantic rules provide interpretations based
on the related information. Thus, by an ontological point of view, a graphic
visualization can be considered as made by terms, a sort of knowledge items
represented by means of suitable graph types, and relations between these terms, that
point out relationships and state semantics links to the data they represent. According
with this paradigm, the CoDe language describes the architectural structure of the
visualization at a meta-level, by means of terms and relations, which provide an
abstract representation of the information that must be represented.

On the other hand, the same data and relationships can be represented in several
different ways, depending essentially on an aesthetic choice of different possible
graph types to represent knowledge items, or different styles in rendering the
relationships. However, if the represented knowledge items, and the architectural
relationships are the same, by translating these different visualizations in CoDe
language, the equivalent meaning should be obtained as the same expression in this
graphic meta-language of abstraction. The aim is to focus on the abstraction of
knowledge items, and on the relations between them, provided by the architectural
structure of the visualization, and not on the specific shapes selected for the
corresponding graphs or relationship links. Indeed, although the shape of an
Histogram, Pie, etc., can depend on different aesthetic factors, the meaning carried out
is always the same. Thus, in order to define terms, a starting set of basic elements,
representing items of information, must be considered. As an example, if an item of

 252

knowledge is a distribution of frequencies, it can be suitably represented by a basic
standard like an Histogram. To increase the information carried out by a graph,
additional visual elements can be defined, obtained using composition or
transformation functions applied to the elements in the starting set. These functions
are, in some sense, constructors of graphs that represent more complex information.
Both basic and complex graphs are named terms, and are the elements of the domain
of the language, as shown in Fig. 5. A semantic interpretation of a term is obtained by
stating links to the represented data, according to the intended semantics of the graph
types.

Fig. 5. A term of the CoDe language.

CoDe considers visualizations that can involve more than one graph. Indeed, by
means of suitable functions, graphs can be composed or modified in order to visualize
more complex knowledge. In the implementation process of ground data
visualization, the starting set of terms is composed by standard-graphs (Histogram,
Pie, Area, Bubble, Line, Radar, Bar-Chart, etc.), that can be exploited to visualize a
double-entry table. However, any standard-graph has a fixed structural rule that state,
by proportional magnitude, the semantics correspondence between the value of a
component and its visualization on the plane. Moreover, the final implementation of a
standard-graph depends by other visual parameters as: texture, color, orientation,
shape, labels, etc.

CoDe also introduces some functions to compose graphs in order to represent more
complex information. The visualizations carried out by applying these functions are
themselves terms of the language. In general, a function is graphically visualized in
CoDe as an oriented arrow connecting the involved terms. A label shows the symbol
denoting the function itself. In the sequel we introduce definitions of some functions.

4.1 CoDe functions

The NEST function involves two terms such that one component of the first term is
the title of the second one. The semantics of the NEST_i function is that the i-th
component Ci in the first double-entry table can be described, at a deeper level, by
means of the second table having C_i as title, as shown in Fig. 6.

Fig. 6. The NEST function.

The considered tables can be visualized by the same or by different standard-
graphs. For instance, let us consider as given terms shown in Fig. 7(a) representing
two terms that provide, separately, the frequency distribution of poor people in the
North, Center and South of the Italy, and frequency distribution of poor people in the

253

7 regions of South. Moreover, Fig. 7(c) shows the respective visualizations by means
of standard-graphs Bubble and Histogram. For instance, by applying the NEST_3
function, we can construct a more complex information item which organizes, in a
single structure, information given by the two separated terms. The new term, that
represents this more complex information, is visualized in the Fig. 7(b). Finally, the
Fig. 7(d) shows a visualization of the more complex term, obtained by suitably
overlapping the two standard graphs Bubble and Histogram.

(a) (b)

(c) (d)

Fig. 7. A complex term obtained by using the NEST_3 function.

The aggregation function involves terms that have the same components. They are
considered as a single term, but preserving their distinct identities. In CoDe, a term
obtained by aggregation function is denoted by a dashed blue line including both the
involved terms and the AGGR_name symbol, which denotes the applied function and
a name related to the intended semantics of grouping.

(a) (b)
Fig. 8. The ICON operator.

Finally, another kind of functions that are exploited by the visualization interface
are visualization operators, that involve only one term and do not concern its
structure. Indeed, they only modify parameters of visualization of the involved term,
to improve its aesthetic impact. As an example, the i-th component of a distribution of
frequency values could be visualized by exploiting a metaphoric ICON, or, a
metaphoric COLOR intensity that provides a proportional visualization of the related

 254

value. Moreover, a metaphoric TIME representation can be considered, when a time
component is involved. Since CoDe manages these operators as external functions
concerning facilities of the visualization interface, a different symbol will be used to
provide the related graphical representation, as shown in Fig. 8(a).

As an example of the ICON operator, to visualize the representativeness of
company employees and sales on the different regions of Italy; instead of using names
of Italian regions to denote components, the related geographic shapes can be
considered, as depicted in Fig. 8(b).

4.3 Relations

CoDe defines two kinds of relations: link, which states the existence of a logical
relationship between terms, and set, which asserts the knowledge expressed by the
data represented by a single term. A label can describe the intended meaning of the
relation. The symbol used in CoDe to denote a link relation is a directed pink arrow,
which connects the component terms. A label denotes the intended meaning of the
relation, as shown in Fig. 9.

Fig. 9. The LINK relation.

For the monadic relation set, the symbol is a pink rounded rectangle containing the
asserted term. It is useful to stress the difference between function and relation
concepts. A function is a fixed construction tool, that carries out a new term starting
from the involved terms. A relation is a predicative tool, expressing the existence or
not of a fixed link between terms, then it provides a truth value, true or false, not a
new term. Thus, a term is the abstraction of an objective data belonging to the
complex system that must be visualized, whereas a relation is the abstraction of a
logical relationships on data (in general, true or false). Relation visualized are
generally intended as stating true statement. In order to state a relation between terms
there is no constraint on their structure and the chosen relations depend from the
subjective view of the visualization designer. In other words, the same data can be
used with different relations to emphasize different informative needs. As a
consequence, if the designer makes a wrong choice of the relationships to represent,
the information carried out by the related visualization is useless or confusing.

Finally, let us observe that the CoDe language is a tool for the description of the
architectural structure of visualization at different levels of abstraction. Starting from
a more abstract level, a final visualization can be obtained through several
refinements.

5 A modeling example

A prototype modeler of CoDe language was developed using Eclipse GEF/GMF
[16][17]. Moreover, the Report Visualization exploits the powerful drawing tools
provided by the Adobe Illustrator application [18], by generating textual scripts that

255

Illustrator interprets to draw the cognitive maps. An example of the described
methodology application is the visualization of complex information realized by the
DensityDesign group [15] regarding the multidimensional cube of Fig. 3, that is
shown in Fig. 10. Moreover Fig. 11 shows the underling meta-information graphically
represented in CoDe.

Fig. 10. Visualization of the report.

Fig. 11. A CoDe model representing the productivity of Italian companies.

6 Concluding remarks and future works

Considerable studies have been directed to effective visual representation of single
report in tabular form [3][4]. In many cases, it is not easy to rapidly acquire and
interconnect information, because separated images require different stages of

 256

analysis. In this paper a graph composition methodology is presented, based on the
definition of the graphic language CoDe. It allows to visualize information
relationships in the same image, following the concept in term of visualization
efficiency and completeness given in [3]. The language visually represents both the
items of information and their interrelationships at different levels of abstraction,
keeping consistency between visually displayed items and the information contained
in reports extracted from a data warehouse in tabular form by using the OLAP
operations.

In the future we plan to integrate in the CoDe language the OLAP operators as
visual function for cube analysis. Moreover, we plan to conduct an empirical
evaluation to assess the proposed methodology and the functionalities provided by the
implemented tool and to evaluate the performance of CoDe via a suitable information
visualization metrics (e.g. entropy-based).

References

1. Anfurrutia, F.I., Diaz, O., Trujillo, S.: A product-line approach to database reporting. Latin America
Transactions, IEEE, vol.4, no.2, 2006, pp.70-76.

2. Bin, L.Y., Zhou, D.H.: The Design and Realization of the Universal Report System in the Power
System Based on Physical View. International Conference on Web Information Systems and Mining
(WISM), 2010, vol.1, pp. 404-408.

3. Bertin, J.: Semiology of Graphics: Diagrams, Networks, Maps. University of Wisconsin Press, 1983.
4. Card, S.K., Mackinlay, J., Shneiderman, B.: Readings in Information Visualization: Using Vision to

Think. Academic Press, San Diego CA, 1999.
5. Ciuccarelli, P., Sessa, M. I., Tucci, M.: CoDe: a Graphic Language for complex system visualization.

7th Conference of the Italian Chapter of AIS, 2010.
6. Habich, D., Lehner, W., Just, M.: Materialized Views in the Presence of Reporting Functions. 18th

International Conference on Scientific and Statistical Database Management (SSDBM'06), 2006. pp.
159-168.

7. Hsu, K.C., Ming-Zhong Li: Applying Clustering Analysis on Grouping Similar OLAP Reports.
International Conference on Computer Engineering and Applications, 2010. pp. 417-423.

8. Kulkarni, M., Lu M., Zhang, D.: A case-based data warehousing courseware. IEEE International
Conference on Information Reuse and Integration (IRI), 2010. pp. 245-248.

9. Lehner, W., Hümmer, W., Schlesinger, L.: Processing Reporting Function Views in a Data Warehouse
Environment. International Conference on Data Engineering (ICDE'02), 2002. pp. 176-185.

10. Ma, N., Yuan, M., Bao, Y.,Jin, Z., Zhou, H.: The Design of Meteorological Data Warehouse and
Multidimensional Data Report. International Conference on Information Technology and Computer
Science (ITCS '10), 2010. IEEE Computer Society, pp. 280-283.

11. Ma, N., Zhai, Y., Bao, Y., Zhou, H.: Design of Meteorological Information Display System Based on
Data Warehouse. International Conference on Management and Service Science (MASS), 2010, pp.1-4.

12. Russel, S., Norvig, P.: Artificial Intelligence: a modern approach, third ed., Prentice Hall, Upper Saddle
River, NJ, 2009.

13. Su, H., Su, J.: A Study and Practice of Report System Techniques Based on Three-layer Calculating
Architecture. Second International Workshop on Education Technology and Computer Science
(ETCS), 2010. pp. 654-657.

14. Wojciechowski, T., Sakowicz, B., Makowski, D., Napieralski, A.: Transaction system with reporting
capability in a web-based data warehouse application developed in Oracle Application Express. 10th
International Conference on The Experience of Designing and Application of CAD Systems in
Microelectronics (CADSM 2009), 2009, pp. 273-276.

15. The DensityDesign group. http://www.densitydesign.org
16. The Graphical Editing Framework. http://www.eclipse.org/gef
17. The Graphical Modeling Framework. http://www.eclipse.org/gmf
18. The Adobe Illustrator. http://www.adobe.com/it/products/illustrator

257

 259

 260

 261

 262

 263

 264

 265

SXPath: a Spatial Extension of XPath

Ermelinda Oro1, Massimo Ruffolo1, and Steffen Staab2

1 High Performance Computing and Networking Institute,
Italian National Research Council

Via P. Bucci 41/C, Rende (CS), 87036, Italy
2 Institute for Computer Science, University of Koblenz

Universitätsstraße 1, PO Box 201 602 56016. Koblenz, Germany
email: {oro,ruffolo}@icar.cnr.it

email: staab@uni-koblenz.de

Abstract. We report on a recently introduced extension of XPath,
called SXPath, which is a new framework for querying Web documents
by considering tree structures as well as spatial relationships between laid
out elements. The underlying rationale is that frequently the rendering
of tree structures is very involved and undergoing more frequent updates
than the resulting layout structure. In this paper, we present the syn-
tax and the semantics of the language that are based on a combination
of a spatial algebra with formal descriptions of XPath navigation. Such
language is intuitive and general enough to capture most frequent extrac-
tion patterns. Moreover, we show that the language maintains polyno-
mial time combined complexity. Practical experiments demonstrate the
usability of SXPath. This work is a short version of [11].

1 Introduction

Web designers plan Web pages contents in order to provide visual patterns that
help human readers to make sense of document contents. This aspect is par-
ticularly evident in Deep Web pages [9], where designers always arrange data
records and data items with visual regularity to meet the reading habits of hu-
mans. In the past, manual wrapper construction (e.g. [14]), or wrapper induction
approaches (e.g. [4, 12, 16]) have exploited regularities in the underlying docu-
ment structures, which led to such similar layout, to translate such information
into relational or logical structures. However, surveying a large number of real
(Deep) Web pages, we have observed that the document structure of current
Web pages has become more complicted than ever implying a large conceptual
gap between document structure and layout structure. Thus, it has become very
difficult: (i) for human and applications aiming at manipulating Web contents
(e.g. [5, 7, 14]), to query the Web by language such as XPath 1.0; (ii) for ex-
isting wrapper induction approaches (e.g. [12, 16]) to infer the regularity of the
structure of deep Web pages by only analyzing the tag structure. Hence, the
effectiveness of manual and automated wrapper construction are limited by the
requirement to analyze HTML documents with increasing structural complexity.
In the literature, approaches aimed at manipulating Web pages by leveraging the
visual arrangement of page contents [7, 14], and frameworks for representing and

2 Ermelinda Oro, Massimo Ruffolo, and Steffen Staab

querying multimedia and presentation databases [1, 8] have been proposed. How-
ever such approaches and frameworks provide limited capabilities in navigating
and querying Web documents for information extraction purposes. Therefore,
we propose to extend XPath 1.0 by new spatial navigation primitives, namely:
(i) Spatial Axes, based on topological [13] and rectangular cardinal relations
[10], that allow for selecting document nodes that have a specific spatial relation
w.r.t. the context node. (ii) Spatial Position Functions that exploit some spatial
orderings among document nodes, and allow for selecting nodes that are in a
given spatial position w.r.t. the context node.

This paper is organized as follows. In Sec. 2 we describe SXPath data model,
syntax, semantics and complexity issues. Sec. 3 reports notes on the implemen-
tation and results of experiments aimed at evaluating processing performances,
SXPath usability, and qualitative enhancement in real applications. Sec. 4 con-
cludes the paper. We have several results that, for space reason, we do not include
here. We refer the reader to [11] for more details.

2 The SXPath Language

The SXPath language extends the W3C’s XPath 1.0 [15] with spatial capa-
bilities. Intuitive navigational features and querying capabilities of XPath 1.0
are central to most XML-related technologies. For this reason XPath 1.0 has at-
tracted great attention in the computer science research community. The SXPath
language adopts the path notation of XPath 1.0 augmented by a user-friendly
syntax having a natural semantics that enables spatial querying. In this section,
we first define the SXPath data model and describe its new spatial capabilities.
Then we provide syntax, semantics, and complexity issues of the language.

2.1 Data Model
In this section we present the SXPath data model, namely Spatial DOM (SDOM).
The SDOM considers relations existing among the visual representation of DOM
nodes defined as follows.
Definition 1. Let n be a node in the DOM of a Web page, the minimum bound-
ing rectangle (MBR) of n is the minimum rectangle r that surrounds the contents
of n and has sides parallel to the axes (x and y) of the Cartesian plane. The
function mbr(n) returns the rectangle r assigned to a DOM node by the layout
engine of a Web browser. We call rx and ry the segments that are obtained as
the projection of r on the x-axis and the y-axis respectively. Then, each side
of the rectangle is represented by the segments (r−x , r+

x) and (r−y , r+
y), where r−x

(resp. r−y) denote the infimum on the x-axis (y-axis) and r+
x (resp. r+

y) denote
the supremum on the x-axis (y-axis) of the segments rx and ry.

Considering the function mbr(n) given in Def. 1, a Web page can be modeled
as a DOM enriched by spatial relations existing between MBRs. For representing
such spatial relations we adopt the Rectangle Algebra (RA) qualitative spatial
model [3], which allows for representing all possible relations between rectangles
the sides of which are parallel to the axes of some orthogonal basis in a 2-
dimensional Euclidean space. RA is a straightforward extension of the standard

 267

Lecture Notes in Computer Science: Authors’ Instructions 3

model for temporal reasoning, the Interval Algebra (IA) [2], to the 2-dimensional
case. IA models the relative position between pairs of segments by a set of 13
atomic relations (Rint), namely before (b), meet (m), overlap (o), start (s),
during (d), finish (f), together with theirs inverses {bi, mi, oi, si, di, fi}
and the relation equal (e). Let s and s1 be two segments the IA relation s b s1

represents that the segment s is preceded by the segment s1. Let a and b be two
rectangles, a RA relation between them is written as a ρ b where ρ = (ρx, ρy) is
a pair of IA relations. The RA relation holds iff the IA relations ax ρx bx and
ay ρy by hold for segments that are obtained as projections of rectangle sides
along x (i.e. ax, bx) and y (i.e. ay, by) respectively. The expressiveness of RA
covers the modeling of all qualitative spatial relations between two MBRs.

Definition 2. SDOM is a node labeled sibling tree that provides orders among
nodes, as described in [11], enriched by RA relations. It is described by the fol-
lowing 5-tuple:

SDOM = 〈V,R⇓, R⇒, A, fs〉
where:

– V is the set of labeled DOM nodes. V = Vv∪Vnv, where Vv is the set of nodes
visualized on screen, and Vnv is the set of nodes that are not visualized.

– R⇓ is the firstchild relation. Let n and n′ be two nodes in V , nR⇓n′ holds
iff n′ is the first child of n.

– R⇒ is the nextsibling relation. Let n and n′ be two nodes in V , nR⇒n′

holds iff n′ is the next sibling of n.
– A ⊆ Vv × Vv is the set of arcs that represent spatial relations between pairs

of nodes visualized on screen.
– Let Rrec be the set of RA relations, fs : A → Rrec is the function that assigns

to each element in A a RA relation in Rrec. So, let n and n′ be two nodes
in Vv, we have a = (n, n′) ∈ A holds iff mbr(n) fs(a) mbr(n′).

2.2 Spatial Axes

RA relations, stored in the SDOM, represent all qualitative spatial relations
between MBRs, but they are too fine grained, verbose and not intuitive for
querying. Therefore, for defining SXPath spatial axes we consider the more syn-
thetic and intuitive Rectangular Cardinal Relation (RCR) [10] and Rectangular
Connection Calculus (RCC) [13] models. In particular, RCRs express spatial
axes that represent directional relations between MBRs. RCRs are computed by
analyzing the 9 regions (cardinal tiles) formed by the projections of the sides of
the reference MBR (i.e. r). The atomic RCRs are: belongs to (B), South (S),
SouthWest (SW), West (W), NorthWest (NW), North (N), NorthEast (NE),
East (E), and SouthEast (SE). Using the symbol “:” it is possible to express
conjunction of atomic RCRs. Furthermore, the three relations inspired by the
RCC calculus, namely: contained (CD), container (CR), and equivalent (EQ),
allow for expressing spatial axes that represent topological relations between
MBRs. For instance, r CD r2 means that the rectangle r2 is spatially contained

 268

4 Ermelinda Oro, Massimo Ruffolo, and Steffen Staab

in the rectangle r. Each spatial axes (expressed by a RCR or a topological re-
lation) corresponds to a set of RA relations computed by means the mapping
function μ [11].

Like in XPath 1.0, SXPath axes are interpreted binary relations χ ⊆ V × V .
Let self := {〈u, u〉|u ∈ V } be the reflexive axis, remaining SXPath axes are
partitioned in two sets: Δt and Δs. The set Δt contains traditional XPath 1.0
axes (forward, e.g. child, descendant, and reverse, e.g. parent, ancestor) that
allow for navigating along the tree structure. They are encoded in terms of
their primitive relations (i.e. firstchild, nextsibling and their inverses), as shown
in [6]. The set Δs contains the novel (directional and topological) spatial axes
corresponding to the RCRs and Topological Relations that allow for navigating
along the spatial RA relations. In the following we formally define spatial axes
in terms of their primitive RA relations stored in the SDOM.

Definition 3. SXPath spatial axes are interpreted binary relations χs ⊆ Vv×Vv

of the following form χs = {〈u, w〉|u, w ∈ Vv ∧ mbr(u) ρ mbr(w) ∧ ρ ∈ μ(R)}.
Here, R is the RCR or topological relation that names the spatial axis relation
and μ is the mapping function.

2.3 Syntax and Semantics

In this section we present the syntax of SXPath and give basic ideas which the
language semantics is based on. Like XPath 1.0, the SXPath language allows for
selecting sets of SDOM nodes by means of expressions. SXPath expressions have
the same structure as the ones in XPath. SXPath extends XPath by means of:
(i) A new set of spatial axes that can be used in location steps in the same way
as traditional XPath axes. (ii) New node set functions, named spatial position
functions, that allow for expressing predicates working on positions of nodes on
the plane. These new spatial features enable spatial navigation and querying by
exploiting spatial relations and spatial orders stored in the SDOM.

A SXPath location step has the following syntax χ :: t[p1] . . . [pn] where: (i)
χ can be either a traditional XPath axis or a spatial axis. (ii) t : Λ∪{⋆,text} →
2V is the node test function that returns the set of nodes that have a given
label. Special labels ⋆ and text identifies all nodes (t(⋆) = V) and text nodes
respectively. (iii) Predicates can be based on spatial position functions. SXPath
expressions return a value from one of the following types: node set, number,
string, or boolean. Every expression evaluates relative to a context that extends
the context of traditional XPath by considering spatial positions.

For instance, given the Web page Figure 1, a human reader can interpret the
spatial proximity of images and nearby strings as a corresponding aggregation
of information, namely as the complete record describing the details of a music
band profile and its photo.

 269

Lecture Notes in Computer Science: Authors’ Instructions 5

Fig. 1. A Page of the http://www.lastfm.it/ Web Site

The following XQuery exploits SXPath for extracting details of music bands by
exploiting only the DOM nodes of type img and text, and their spatial relations.

Example 1. XQuery 1.0 and SXPath

for $img in document ("last-fm.htm")

1) /CD::img[N|S::img] return

<music-band>

2)<name> {$img/E::text[posFromW()=1][posFromN()=1]} </name>

<similar-bands>

3){$img/E::*[posFromW()=1][posFromN()=3][posSpatialNesting()=1]/CD::text}

</similar-bands>

</music-band>

The spatial location path 1 returns images that form a vertical sequence. The
spatial location path $img/E::text in pattern 2 and 3 returns nodes that lie
on east (spatial axis E) of the context node represented by the variable $img

(photos of music bands). Among these nodes the predicates select the name of
the bands and its similar bands.

2.4 Complexity Issues

This section summarizes the computational complexity results of the SXPath
query evaluation problem. We have considered two important fragments: (i)
Core SXPath that is the navigational core of SXPath. It is obtained extending
Core XPath [6] (the navigational core of XPath 1.0) by spatial axes introduced
in Sec. 2.2. (ii) Spatial Wadler Fragment (SWF) that is the spatial extension of
the Extended Wadler Fragment (EWF) [6]. It adds to Core XPath positional,
logical and arithmetic features. Tab. 2.4 shows that Core SXpath, Spatial Wadler
Fragment (SWF), and Full SXpath allow polynomial time combined complexity
query evaluation with increasing degree of the polynomial. These results are
compared with the fragment of XPath 1.0 that they extend. We denote by D
the XML document, which has size Θ(|V |), where |V | is the number of nodes

 270

6 Ermelinda Oro, Massimo Ruffolo, and Steffen Staab

of its SDOM representation. It is noteworthy that the SDOM (see Sec. 2.1) has
size O(|V |2). |Q| is the number of nodes of the parse tree for an input query Q.

XPath 1.0 SXPath

Space Core[6] O(|D| ∗ |Q|) Spatial O(|D|2 ∗ |Q|)
Time O(|D| ∗ |Q|) Core O(|D|2 ∗ |Q|)

Space EWF[6] O(|D| ∗ |Q|2) SWF O(|D|2 ∗ |Q|2)
Time O(|D|2 ∗ |Q|2) O(max(|D|3 ∗ |Q|, |D|2 ∗ |Q|2))

Space Full[6] O(|D|2 ∗ |Q|2) Full O(|D|2 ∗ |Q|2)
Time Xpath 1.0 O(|D|4 ∗ |Q|2) SXPath O(|D|4 ∗ |Q|2)

Table 1. Comparison between complexity bound of SXPath and XPath 1.0 for a XML
document D and a query Q.

3 Implementation and Experiments

We have implemented the language in a system that embeds the Mozilla browser3

and computes the SDOM in real time at each variation of visualization param-
eters (i.e. screen resolution, browser window size, font type and dimension). In
this way for each Web page and visualization condition there is a unique cor-
responding SDOM that enables the user to query the Web page by considering
what s/he sees on the screen.

System Efficiency. For evaluating the SXPath system efficiency we have
performed experiments that evidence the practical system behavior for both
increasing document and query sizes. The runtime requirements for the SDOM
construction and query evaluation is polynomial. For evaluating query efficiency
we tested the whole system with fixed document sizes (|D|=1000, |D|=3000,
|D|=6000) and increasing query sizes. Whereas for evaluating data efficiency
of the query evaluator, we have used a fixed SWF query having size |Q|=167.
Then, we have computed the needed query time for increasing documents sizes
from |D|=50 to double the maximum size we found on real-world Web pages,
i.e. |D|=7500 nodes. The obtained curves on log log scale have shown that time
grows linearly with the query size (and the document size respectively) that
indicate polynomial time, as described in [11].

Language Usability. Moreover we have perforned experiments aimed at as-
sessing the usability of our approach and the enhancements provided by SXPath
language over XPath 1.0. For the evaluation we have considered the situation of
an expert user aiming at manually developing Web wrappers for Deep and Social
Web sites. Experiments have involved ten users who where students well trained
in XPath with no experience in SXPath. Each user visualizes and explores Web
pages by using the SXPath system. In the experiments we have used a dataset
of 125 pages obtained by collecting 5 pages per site from 25 Deep Web sites
already exploited for testing wrapper learning approaches [5, 12, 16]. By carried
out experiments we observed that:

1. Modifications in screen resolution and font type do not affect query results,
whereas changes in browser window size and font dimension could affect the

3 https://developer.mozilla.org/en/XULRunner 1.9.2 Release Notes

 271

Lecture Notes in Computer Science: Authors’ Instructions 7

query result. However, this aspect does not impact SXPath usability because
the SXPath system: (i) Embeds the browser and computes the SDOM at each
changing of visualization parameters. So, users can query what they see on
the screen at each moment. (ii) SXPath queries are stored with visualization
parameter settings adopted by the user during the query design process.
Thus, when a query is reused on a Web page the embedded browser is set
with visualization parameters for which the query has been designed.

2. The language was assessed as easy to learn and quite satisfactory to use.
3. The language is suitable for manual wrapper construction, giving the expert

the possibility to look only at the visualized Web page, in comparison to
XPath. In fact, by using 2 attempts on overage users were able to define a
good SXPath query, whereas all the 5 available attempts were not enough
for finding a good pure XPath query for all Web pages in the dataset.

4. Manually writing queries in pure XPath is more “complex” in comparison
to SXPath because XPath requires the navigation of very intricate DOM
structures, whereas SXPath mainly requires to look at the displayed page.

5. Even though the internal tag structure of various Web pages differ strongly
(so different pure XPath queries are needed), all users have been able to use
almost the same SXPath query for Web sites with similar visual arrangement.
This experiment points out that SXPath allows for more general and abstract
queries, that are independent from the internal structure of Web pages, in
comparison to XPath.

Experiments provide a strong evidence for believing that humans aiming
at manually defining Web wrappers and manipulating Web pages, may benefit
from using SXPath navigation instead of pure XPath navigation. Moreover, the
transportability of SXPath queries from one Web site to the next simplify manual
definition of Web wrappers and can also support wrapper induction from sparsely
annotated data, while the lack of such transportability observed for pure XPath
is detrimental for both manual wrapper definition and wrapper induction. Details
and rationales about all performed experiments are given in [11].

4 Conclusion and Future Work

In this paper, we have surveyed recent results about SXPath, the language that
extends XPath to include spatial navigation into the query mechanism. We have
used spatial algebras to define new navigational primitives and mapped them
for query evaluation onto an extension of the XML document object model
(DOM), i.e. the SDOM. Thus, we have given a formal model of the extended
query language and have evaluated theoretical complexity. The theory has been
implemented in a SXPath tool. Empirical evaluation have evidenced practical
applicability of SXPath. The language can still be handled efficiently, yet it is
easier to use and allows for more general queries than pure XPath. The exploita-
tion of spatial relations among data items perceived from the visual rendering
allows for shifting parts of the information extraction problem from low level in-
ternal tag structures to the more abstract levels of visual patterns. In the future

 272

8 Ermelinda Oro, Massimo Ruffolo, and Steffen Staab

research, we aim at making SXPath the query language for any Presentation
Oriented Documents, such as PDF and PPT in addition to HTML. Moreover,
we will investigate to the introduction of powerful construct in SXPath in order
to automatically define Web wrappers based on visual features.

Acknowledgements

Work done by Steffen Staab was partially funded by German National Sci-
ence Foundation (DFG) in the project ’Multipla’. Work done by Ermelinda Oro
and Massimo Ruffolo was partially funded by Regione Calabria in the projects
’Voucher Ricercatori’ and ’EasyPA - ID: 1220000277’.

References

1. S. Adali, M. L. Sapino, and V. S. Subrahmanian. An algebra for creating and
querying multimedia presentations. Multimedia Syst., 8(3):212–230, 2000.

2. J. F. Allen. Maintaining knowledge about temporal intervals. Commun. ACM,
26(11):832–843, 1983.

3. P. Balbiani, J.-F. Condotta, and L. F. d. Cerro. A new tractable subclass of the
rectangle algebra. In IJCAI, pages 442–447, 1999.

4. C.-H. Chang, M. Kayed, M. R. Girgis, and K. F. Shaalan. A survey of web infor-
mation extraction systems. TKDE, 18(10):1411–1428, 2006.

5. G. Gottlob, C. Koch, R. Baumgartner, M. Herzog, and S. Flesca. The lixto data
extraction project: back and forth between theory and practice. In PODS, pages
1–12, 2004.

6. G. Gottlob, C. Koch, and R. Pichler. Efficient algorithms for processing xpath
queries. ACM Trans. Database Syst., 30(2):444–491, 2005.

7. J. Kong, K. Zhang, and X. Zeng. Spatial graph grammars for graphical user
interfaces. ACM Trans. Comput.-Hum. Interact., 13(2):268–307, 2006.

8. T. Lee, L. Sheng, T. Bozkaya, N. H. Balkir, Z. M. Özsoyoglu, and G. Özsoyoglu.
Querying multimedia presentations based on content. TKDE, 11(3):361–385, 1999.

9. J. Madhavan, S. R. Jeffery, S. Cohen, X. . Dong, D. Ko, C. Yu, A. Halevy, and
G. Inc. Web-scale data integration: You can only afford to pay as you go. In CIDR,
2007.

10. I. Navarrete and G. Sciavicco. Spatial reasoning with rectangular cardinal direction
relations. In ECAI, pages 1–9, 2006.

11. E. Oro, M. Ruffolo, and S. Staab. Sxpath - extending xpath towards spatial query-
ing on web documents. PVLDB, 4(2):129–140, 2010.

12. N. K. Papadakis, D. Skoutas, K. Raftopoulos, and T. A. Varvarigou. Stavies: A sys-
tem for information extraction from unknown web data sources through automatic
web wrapper generation using clustering techniques. TKDE, 17(12):1638–1652,
2005.

13. J. Renz. Qualitative spatial reasoning with topological information. Springer, 2002.
14. A. Sahuguet and F. Azavant. Building intelligent web applications using

lightweight wrappers. DKE, 36(3):283–316, 2001.
15. W3C, http://www.w3.org/TR/xpath. XML Path Language (XPath) Version 1.0,

1.0 edition, November 1999.
16. Y. Zhai and B. Liu. Structured data extraction from the web based on partial tree

alignment. TKDE, 18(12):1614–1628, 2006.

 273

The NESTOR Model: Properties and
Applications in the Context of Digital Archives

Nicola Ferro and Gianmaria Silvello

Department of Information Engineering, University of Padua, Italy
{ferro, silvello}@dei.unipd.it

Abstract. We present and describe the NEsted SeTs for Object hi-
eRarchies (NESTOR) Model that allows us to model, manage, access
and exchange hierarchically structured resources. The NESTOR Model
is based on two set data models which can be put in relation with the
tree data structure. We present these models highlighting their properties
and the relationships with the tree.

We present a concrete use case based on archives that are fundamental
and challenging entities in the digital libraries panorama. Within the
archives we show how an archive can be represented through set data
models, and how their properties can be used in this context; in partic-
ular, we focus of the problem of finding the lowest common ancestor.

1 Introduction

In Digital Libraries objects are often organized in hierarchies to help in repre-
senting, managing or browsing them. For instance, the documents in an archive
are organized in a hierarchy divided into fonds, sub-fonds, series, sub-series and
so on. Representing, managing, preserving and sharing efficiently and effectively
the hierarchical structures is a key point for the development and the consolida-
tion of Digital Library technology and services.

In this paper we provide a further analysis of the NEsted SeTs for Object
hieRarchies (NESTOR) model which defines two set data models that we call:
the “Nested Set Model (NS-M)” and the “Inverse Nested Set Model (INS-M)” [7].
These models are defined in the context of the ZFC (Zermelo-Fraenkel with the
axiom of Choice) axiomatic set theory [3], exploiting the advantages of the use
of sets in place of a tree structure. The foundational idea behind these set data
models is that an opportune set organization can maintain all the features of a
tree data structure with the addition of some new relevant functionalities. We
define these functionalities in terms of flexibility of the model, rapid selection
and isolation of easily specified subsets of data and extraction of only those data
necessary to satisfy specific needs.

In this work we focus on the operations that we can perform in these set data
models and we provide a use case in order to clarify the possible applications of
the models as well as of their operations. In particular, we focus on the archives
because they are one of the main organizations of interest for Digital Libraries;

they are a meaningful example of the need to support document management
and access. The fundamental characteristic of archives resides in their internal
hierarchical organization that constitutes a challenge for their representation,
managing and, exchange as well as for their manipulation and querying.

In the presentation of the NESTOR Model, we concentrate on the INS-M and
on how it can be used to model an archive and its resources. Furthermore, we
analyze how we can define the lowest common ancestor in a hierarchy modeled by
means of the INS-M. We highlight the problem of finding of the lowest common
ancestor because it is an intrinsically beautiful and widely studied problem as
well as a frequently performed operation in the archival context.

This paper is organized as follows: Section 2 introduces the background con-
cepts on which this work is based; we introduce the basic set-theoretical concepts
we are going to exploit and a brief definition of the tree data structure. Further-
more, we describe the basic principles of the archival practice and the standards
to model and describe an archive in a digital environment. Section 3 presents
the formal definition of the INS-M and proves the theorems defining how we
can map a tree in the INS-M and vice versa. Moreover, we introduce a propo-
sition showing the correlation between some operations in the tree and in the
INS-M. Section 4 details how it is possible to define the lowest common ancestor
in the INS-M. Section 5 presents a use case based on the archives where the
INS-M properties are exploited; in particular, we explain how the INS-M has
been adopted and exploited in the context of the SIAR (Sistema Informativo
Archivistico Regionale) project. Lastly, in Section 6 we draw some final remarks.

2 Background

2.1 Set Theory: Collections of Subsets

We assume the reader to be confident with the basics of set theory that we
cannot extensively treat here for space reasons [9]. The formal basis of this work
is based on the concept of “Collection of subsets” that we introduce starting
from the well-know concept of power set.

Let E be a set, we denote with P(E) the set containing all and only the
subsets of E, that is, a set A belongs to P(E) if and only if it belongs to E.
P(E) is called the power set of E. We understand that if E is a set, then there
exists a set (collection) P such that if A ⊆ E, then A ∈ P. The power set of a set
E contains all the subsets of E, thus any collection of sets C composed by some
subsets of E is a subcollection of the power set P(E), that is: C(E) ⊆ P(E). Let
us consider a set E and a collection of subsets C(E), we say that {H,K} ∈ C
are incomparable, say H||K, is H � K ∧ K � H.

The following definition points out an important construction that we are
going to exploit extensively in this work which is the collection of proper sub-
sets/supersets.

Definition 1 Let C be a collection of sets and A ∈ C be a set. We define
S+(A) = {B ∈ C : B ⊂ A} to be the collection of proper subsets of A

275

in C. We define S−(A) = {B ∈ C : A ⊂ B} to be the collection of proper
supersets of A in C.

It is worthwhile for the rest of the work to introduce a formal definition of
“family of subsets”.

Definition 2 Let A be a set, I a non-empty set and C a collection of sets of A.
Then a function A : I → C is defined to be a family of subsets of A. We call I
the index set and we say that the collection C is indexed by I.

It is possible to use the extended notation {Ai}i∈I to indicate the family of
subsets A : I → C. The notation Ai ∈ {Ai}i∈I means that ∃ i ∈ I | A(i) = Ai.
In the rest of the work to indicate a family of subsets A : I → C we will use the
shorthand notation {AI}.

A frequently used concept is the one of subfamily: We indicate with {AJ}
the subfamily of {AI} defined as its restriction to J ⊆ I and we say that
{AJ} ⊆ {AI}.

2.2 The Tree Data Structure

The most common and diffuse way to represent a hierarchy is the tree data struc-
ture, which is one of the most important non-linear data structures in computer
science [11]. We define a tree as T (V,E) where V is the set of nodes and E the
set of edges connecting the nodes. V is composed by n nodes V = {v1, . . . , vn}
and E is composed by n−1 edges. If vi, vj ∈ V and if eij ∈ E then eij is the edge
connecting vi to vj , thus vi is the parent of vj . In this context it is convenient
to talk about inbound edges and outbound edges of a node.

Definition 3 Let T = (V,E) be a rooted tree and vi ∈ V be a node of the tree,
then we define its:

Inbound set to be E−(vi) = {vj ∈ V | ej,i ∈ E}.
Outbound set to be E+(vi) = {vj ∈ V | ei,j ∈ E}.
Inbound degree to be |E−(vi)|

1.
Outbound degree to be |E+(vi)|.

We define with Γ+(vi) the set of all the descendants of vi in V (including vi

itself); vice versa Γ−(vi) is the set of all the ancestors of vi in V (including
vi ifself). We shall use the set Γ in the following of this work, so it is worth
underlining a couple of recurrent cases. Let vr ∈ V be the root of a tree T (V,E)
then Γ−(vr) = {vr} and Γ+(vr) = V .

Furthermore, by means of this newly described notation, we can formally
define the important concept of lowest common ancestor. The lowest common
ancestor of nodes vj and vk in a tree is the ancestor of vj and vk that is located
farthest from the root [2].

1 For all nodes vi ∈ V such that vi �= vr where vr is the root, |E−(vi)| = 1.

 276

Definition 4 Let T (V,E) be a tree and vj , vk ∈ V be two vertices. Then we
define vt to be the lowest common ancestor of vj and vk (lca(vj , vk) = vt) if:

vt ∈ Γ−(vj) ∩ Γ−(vk), and (2.1)

∄vw ∈ V,w �= t | (vw ∈ Γ−(vj) ∩ Γ−(vk)) ∧ (vw ∈ Γ+(vt)) (2.2)

The first condition imposes that vt = lca(vj , vk) must be a common ancestor
of vj and vk; the second condition says that cannot exist a vertex that is not vt

which is nearer than vt to both vj and vk.

2.3 Archives

An archive represents the trace of the activities of a physical or juridical person in
the course of their business which is preserved because of their continued value.
Archives have to keep the context in which their records have been created and
the network of relationships between them in order to preserve their informative
content and provide understandable and useful information over time [8].

The context and the relationships between the documents are preserved
thanks to the hierarchical organization of the documents inside the archive.
Indeed, an archive is divided by fonds and then by sub-fonds and then by se-
ries and then by sub-series and so on – see Figure 1a for an example; at every
level we can find documents belonging to a particular division of the archive
or documents describing the nature of the considered level of the archive (e.g.
a fond, a sub-fonds, etc.). The union of all these documents, the relationships
and the context information permits the full informational power of the archival
documents to be maintained. The archival documents are analyzed, organized,
and recorded by means of the archival descriptions [12] that have to reflect the
peculiarities of the archive [4].

2.4 Digital Archives and the NESTOR Model.

In the digital environment archival descriptions are encoded by the use of meta-
data; these need to be able to express and maintain the structure of the descrip-
tions and their relationships [8].

The standard format of metadata for representing the hierarchical structure
of the archive is the Encoded Archival Description (EAD) [13], which reflects the
archival structure and holds relations between entities in an archive. In addition,
EAD has a flexible structure, encourages archivists to use collective and mul-
tilevel description, and has a broad applicability. On the other hand, the EAD
permissive data model may undermine the very interoperability it is intended to
foster and it must meet stringent best practice guidelines to be shareable and
searchable [15]. Furthermore, an archive is described by means of a unique EAD
file and this may be problematic when we need to access and exchange archival
metadata with a variable granularity [5] by means of DL standard technolo-
gies like the Open Archives Initiative Protocol for Metadata Harvesting (OAI-
PMH)2 [16].

2 http://www.openarchives.org/

277

Several other modeling methodologies and metadata formats have been de-
veloped. Indeed, we may consider the “Tree-based Metadata” approach in which
archives are described by a collection of lightweight metadata – e.g. Dublin
Core Application Profiles3 – one for each archival resource, connected one to the
other by means of links to a third-party file – e.g. an external XML file – which
maintains the archival structure [14]; alternative instantiations of this approach
maintain the archival structure by means of an opportunely designed relational
database [15]. Another possibility is to represent the archival structure by means
of a collection of nested sets where each set represents an archival division and
contains the metadata describing the resources belonging to that division [5].
This modeling methodology is based on the NESTOR Model which relies on
two set data models called Nested Set Model (NS-M) and Inverse Nested Set
Model (INS-M) [1]. Both these set data models, formally defined in the context
of axiomatic set theory [10], can be used to model an archive by means of nested
sets [7]. An extensive analysis of the NESTOR Model and its applications in
the context of DL and archives can be found in [1]; in this paper we exploit the
functionalities of the INS-M and thus we focus our presentation on this model.

The most intuitive way of understanding how the INS-M works is to see how
a sample tree is mapped into an organization of nested sets based on the INS-
M. We can say that a tree is mapped into the INS-M transforming each node
into a set, where each parent node becomes a subset of the sets created from
its children. The set created from the tree’s root is the only set with no subsets
and the root set is a proper subset of all the sets in the hierarchy. The leaves are
the sets with no supersets and they are sets containing all the sets created from
the nodes composing tree path from a leaf to the root. We can represent in a
straightforward way the INS-M by means of the “DocBall representation” [17] –
see Figure 1b. It is worthwhile to understand how the DocBall is used because
the graphical tool we are going to present is based on this idea. The DocBall
is composed of a set of circular sectors arranged in concentric rings; each ring
represents a level of the hierarchy with the center representing the root. In a
ring, the circular sectors represent the nodes in the corresponding level. We use
the DocBall to represent the INS-M, thus for us each circular sector corresponds
to a set; for instance, referring to Figure 1b, it is possible to say that section
“Series C” is a direct superset of section “Sub-Fonds B”.

It has been shown [7] that an archive can be modeled by means of the INS-
M and than instantiated in such a way that allows the use of the OAI-PMH
architecture to enable a variable granularity access and exchange of the archival
metadata. Furthermore, in [5] it has been described a methodology to map an
EAD file into the NESTOR Model preserving the full informative power of the
metadata. Mapping an EAD file into the NESTOR Model means that we dispose
of a methodology that maps the EAD structure into the INS-M and a collection
of lightweight metadata containing the content information retained by EAD. In
this way the INS-M preserves the archival structure and the metadata belonging
to its sets preserve the content of archival descriptions [5]. In the same way, this

3 http://www.dublincore.org/

 278

(a)

Fonds

Sub-Fonds
B

Sub-Fonds
A

Series B Series C Series DSeries A

Fonds

S
u

b
-F

o
n

d
s

 A

S
u

b
-F

o
n

d
s

 B

S
e
ri

e
s
 A

Series B

S
e
rie

s
 C

Series D

(b)

Fig. 1. The structure of a sample archive represented by: (a) a tree; (b) a Doc-Ball.

methodology is adopted with the “Tree-based metadata” approach, where the
structure retained by an external XML file or by a relational database is mapped
into the INS-M [1]. Thus, the INS-M can be used as a means to map archival
metadata created by different systems in a common environment [5] as well as
it can be adopted to model and describe an archive from scratch [7,1].

3 The Inverse Set Data Model and the Tree Data
Structure

Now, we can define the Inverse Nested Set Model (INS-M):

Definition 5 Let A be a set and let C be a collection. Then, C is an Inverse
Nested Set Collection if:

∃!B ∈ C | ∀K ∈ C, B ⊆ K, (3.1)

∀H,K, L ∈ C | H ⊆ K ∧ H||L ⇒ L ∩ K = H ∩ L. (3.2)

Thus, we define an Inverse Nested Set Collection (INS-C) as a collection of
subsets where two conditions must hold. The first condition (3.1) states that C
must contain a bottom set, call it B, such that it is the common subset of all
the sets in the collection. The second condition (3.2) states that if we consider
two sets K and H such that H is a subset of K, then it cannot exist a set L
incomparable to H, such that the intersection between H and L is not the same
than the one between K and L.

Let us see a couple of examples regarding the set operations in the INS-M.

Example 1 Let C = {A, B, C} be a INS-C, where A = {a, b}, B = {a, b, c, d}
and C = {a, b, c, d, e}.

In this example B ⊆ C. Then, B ∪ C = {a, b, c, d, e} = C, B ∩ C =
{a, b, c, d} = B and C \ B = {e} /∈ C.

Example 2 Let C = {A, B,C} be a INS-F, where A = {a, b}, B = {a, b, c, d}
and C = {a, b, e}.

279

In this example C||B. Then, B ∪ C = {a, b, c, d, e} /∈ C, B ∩ C = {a, b} =
A ∈ C and B \ C = {c, d} /∈ C.

We show how a tree can be mapped into a INS-C and vice versa. The following
theorem formalizes the intuitive explanation about the mapping of a tree into a
INS-C that we have given before. Basically, every couple of nodes vj and vk is
mapped into a couple of sets J and K. If there exists an edge between vj and
vk, say ej,k then the the set J created from vj is defined as a subset of the set
K created from vk. The mapping between a tree and an INS-C reverses the idea
described for the mapping of a tree into a NS-C; if a node is parent of another
node in a tree, this is mapped into a set which is a subset of the set created from
its child node. In Figure 2 we can see a tree mapped into the INS-M as defined
by the next theorem.

Theorem 1 Let T = (V,E) be a tree and let C be a collection of subsets where
∀vi ∈ V,∃!I = Γ−(vi). Then C is an INS-C.

Proof. In order to prove this theorem let us consider a family of subsets VV :
V → C where the set of nodes V is its index set of the family and ∀vi ∈ V ,
Vvi

= Γ−(vi).
Let us prove condition 3.1 of Definition 5. Let vr ∈ V be the root of T .

VV (vr) = Vvr
= Γ−(vr) = {vr} ⇒ ∀vj ∈ V, Γ−(vr) ⊆ Γ−(vj) ⇒ Vvr

⊆ Vvj
.

Let us prove condition 3.2 of Definition 5. Ab absurdo suppose that ∃Vvk
, Vvh

, Vvl
∈

VV | Vvh
⊆ Vvk

∧ Vvl
||Vvh

⇒ Vvl
∩ Vvk

�= Vvl
∩ Vvh

.
This means that ∃vh, vk, vl ∈ V | Γ−(vh) ⊆ Γ−(vk) ∧ Γ−(vl)||Γ

−(vh) ⇒
Γ−(vl) ∩ Γ−(vk) �= Γ−(vl) ∩ Γ−(vh). ∃vj ∈ V | vj ∈ (Γ−(vl) ∩ Γ−(vk)) ∧ vj /∈
(Γ−(vl) ∩ Γ−(vh)) ⇒ vh ∈ Γ−(vk) ∧ vj ∈ Γ−(vk) ∧ vj ∈ Γ−(vl) ∧ vj /∈ Γ−(vh).
This means that vk and vh must belong to the same branch of T ; we know that
vj ∈ Γ−(vl) ∧ vj ∈ Γ−(vk), thus vk and vl must have vj as a common ancestor
and vj /∈ Γ−(vh). This means that {vj , vk, vl} ∈ Γ+(vh) but Γ−(vl)||Γ

−(vh) ⇒
d−V (vl) > 1 ⇒ T is not a tree.�

Now we can see how an INS-M is mapped into a tree; the following theorem
shows that if we map every couple of sets Aj and Ak in an INS-F into a couple
of nodes vj and vk in a set of nodes V such that there exists an edge ej,k in a
set of edges E if and only if Aj is a direct subset of Ak then the graph defined
by the nodes in V connected by the edges in E is a tree.

Theorem 2 Let C be a INS-C, V be a set of nodes and E be a set of edges
where ∀vj ∈ V,∃!J ∈ C ∧ ∀ej,k ∈ E,∃!J, K ∈ C | J ⊆ K. Then T = (V,E) is a
tree.

Proof. We have to prove that (∃! vr ∈ V | |E−(vr)| = 0) ∧ (∀vj ∈ V, j �=
r, |E−(vj)| = 1). Ab absurdo suppose that ∃vr, vk ∈ V | (|E−(vr)| = 0 ∧
|E−(vk) = 0)| ∨ ∃vj ∈ V | |E−(vj)| > 1.

If ∃vr, vk ∈ V | |E−(vr)| = 0∧|E−(vk)| = 0 ⇒ ∃J, K ∈ C | S−(J)∩S−(K) =
∅ ⇒ ∄B ∈ C | B ⊆ J ∧ B ⊆ K ⇒ C is not an INS-C.

If ∃vj ∈ V | |E−(vj)| > 1 ⇒ ∃J, K, L ∈ C | K ⊆ J ∧ L ⊆ J ∧ K ∩ L = ∅ ⇒
L ∩ K = ∅ �= L ∩ J = L ⇒ C is not an INS-C.�

 280

Vv2

Vv3

Vv4

Vv5

Vv6

Vv7

Vv8

Vv9

Vv10

Vv11

Vv1

VV

v1

v2

v3 v4

v5

v6

v7 v8

v9

v10 v11

T = (V,E)

Fig. 2. A tree mapped into the INS-M.

The following proposition shows that the set-theoretic operations defined in
the INS-M find a correspondent property in the tree.

Proposition 3 Let T = (V,E) be a tree, C be a INS-F mapped from T , J, K, L ∈
C be three sets and vj , vk, vL ∈ V be the three correspondent nodes in T . Then:

J ∪ K = K ⇔ vk ∈ Γ+(vj) (3.3)

J ∩ K = J ⇔ vj ∈ Γ−(vk) (3.4)

J ∩ K = L ⇔ vl ∈ Γ−(vk) ∩ Γ−(vj) (3.5)

Proof. Property 3.3. Let us prove (⇒). Ab absurdo suppose that J ∪K = K ⇒
vk /∈ Γ+(vj). This means that J /∈ S+(K) ⇒ J � K ⇒ J ∪ K �= K.

Let us prove (⇐). Ab absurdo suppose that vk ∈ Γ+(vj) ⇒ J ∪ K �= K.
J ∪ K �= K ⇒ J � K ⇒ Γ−(vj) � Γ−(vk) ⇒ vk /∈ Γ+(vj).

Property 3.4. The proof of this property is symmetric to the proof of Prop-
erty 3.3.

Property 3.5. Let us prove (⇒). Ab absurdo suppose that J ∩ K = L ⇒
vl /∈ Γ−(vk) ∩ Γ−(vj). This implies that L � J ∧ L � K ⇒ L /∈ S+(J) ∧ L /∈
S+(K) ⇒ J ∩ K �= L

Let us prove (⇐). Ab absurdo suppose that vl ∈ Γ−(vk)∩Γ−(vj) ⇒ J∩K �=
L. This means that L � J ∧ L � K ⇒ Γ−(vl) � Γ−(vk) ∧ Γ−(vl) � Γ−(vj) ⇒
vl /∈ Γ−(vk) ∧ vl /∈ Γ−(vj) ⇒ vl /∈ Γ−(vk) ∩ Γ−(vj).�

Property 3.3 shows that if the union of two sets {J, K} ∈ C returns J it means
that vj ∈ V is a descendant of vk ∈ V ; this property is a direct consequence of
the definition of INS-F. Property 3.4 shows that if the intersection of two sets
{J, K} ∈ C returns J , it means that vj ∈ V is an ancestor of vk ∈ V .

Property 3.5 points out an interesting result: if the intersection of two sets
J, K ∈ C returns a third set L ∈ C, then this set corresponds to a common
ancestor vl of the nodes vj and vk.

281

4 The Lowest Common Ancestor in the INS-M

An important operation performed in the tree data structure is to determine
the lowest common ancestor (lca) of two nodes. As a first thing let us define the
lowest common ancestor in an INS-C.

Definition 6 Let C be an INS-C, and J, K, L ∈ C be three sets. L = J ∩ K is
defined to be the lowest common ancestor between J and K, say lcaC(J, K) =
L.

The relationship between the lca in a tree and in an INS-C can be easily
determined by exploiting Theorem 1 which shows how to map a tree into an
INS-C. Indeed, in the INS-M, the children of a node in a tree correspond to the
supersets of the set mapped from that node in the INS-C mapped from the tree.

Proposition 4 Let T = (V,E) be a tree, vj , vk, vl ∈ V be three nodes, C be a
INS-F mapped from T and J, K, L ∈ C be three sets. Then:

vl = lcaV (vj , vk) ⇔ L = lcaC(J, K). (4.1)

Proof. Let us prove (⇒). Ab absurdo suppose that vl = lcaV (vj , vk) ⇒ L �=
J ∩K. This implies that L � J ∨L � K ∨ (L � J ∧L � K) ⇒ L /∈ S+(J)∨L /∈
S+(K) ∨ (L /∈ S+(J) ∧ L /∈ S+(K)) ⇒ vl /∈ Γ−(vj) ∨ vl /∈ Γ−(vk) ∨ (vl /∈
Γ−(vj) ∧ vl /∈ Γ−(vk)) ⇒ vl �= lcaV (vj , vk).

Let us prove (⇐). Ab absurdo suppose that L = J ∩ K ⇒ vl �= lcaV (vj , vk).
This means that (vl /∈ (Γ−(vj)∩Γ−(vk)))∨ (∃vw ∈ V, vw �= vl | (vw ∈ (Γ−(vj)∩
Γ−(vk))) ∧ (vw ∈ Γ+(vl))).

If vl /∈ (Γ−(vj)∩Γ−(vk)) ⇒ L /∈ ((S+(J)∪J)∩ (S+(K)∪K)) ⇒ J ∩K �= L.
If ∃vm ∈ V, vm �= vl | (vm ∈ Γ−(vj) ∩ Γ−(vk)) ∧ (vm ∈ Γ+(vl)) ⇒ vl ∈

Γ−(vm) ⇒ L ⊂ M ⇒ (M ⊆ J∩K)∧(L ⊆ J∩K)∧(M ∈ S−(L) ⇒ J∩K = M .�

This proposition shows that if we map a tree into a correspondent INS-C
also the nodes of the tree are mapped into sets in the collection and thus the
lca between two nodes is mapped into the lca between the correspondent sets.
Furthermore, we can see that the lca between two sets in the INS-M can be
determined by the intersection of the considered sets.

Example 3 Let T = (V,E) be a tree, and let C the INS-C mapped from T . In
order to clearly understand the correspondence between the nodes of the tree and
the sets of the collection, let us consider the family of subsets VV : V → C. If
we consider the nodes v7 and v11 the lcaV (v7, v11) = v5 because the path v7Pv1

intersected with the path v11Pv1 returns two nodes: v1 and v5; v1 is the root and
by definition its depth is 0, instead v5 has depth 1 thus, it is the lowest common
ancestor between v7 and v11.

We consider the sets Vv7
and Vv11

in VV represented in Figure 2; we can see
that Vv1 is a common subset of both Vv7 and Vv11 as well as Vv5 . But Vv1 ⊂ Vv5 .
Furthermore, Vv7 ∩ Vv11 = Vv5 which correspond to the node v5 ∈ V of the tree.

From this example we can see the correspondence between lcaV (v7, v11) in T
and lcaV(Vv7

, Vv11
) in VV .

 282

5 Use Case: Modeling an Archive through the INS-M

The tree data structure is adequate to represent the structure of an archive
because it properly represents the hierarchical relationships between the archival
divisions – see Figure 1a; on the other hand, in a tree it is not straightforward to
represent the documents belonging to each archival division. We can say that the
tree can represent the structural aspects of an archive but it needs to be somehow
extended in order to represent also the content – i.e. the archival resources.

One of the main features of the NESTOR Model is the possibility to express
both the hierarchical structure by means of the nested sets and the content by
means of the elements belonging to the sets. By means of the NESTOR Model,
the archival divisions are represented as nested sets and the hierarchical rela-
tionships are retained by their inclusion order. On the other hand, the archival
resources are represented as elements belonging to the sets – please see Figure
1b. The INS-M allows us to straightforwardly represent an archive; from the
Theorem 1, we know that a tree can be mapped into a INS-F and thus we know
that its expressive power is preserved by the INS-M. In this case we can see
that the INS-M allows us to define a further level of expressiveness respect to
the tree. Furthermore, the INS-M is well-suited for the archival practice; indeed,
the idea of “set” shapes the concept of archival division which is a “container”
comprising distinct elements that have some properties in common.

The use of the INS-M to model the archives enables their resources to be
accessed and shared with a variable granularity in a distributed environment [1].
This is eased by the straightforward integration of the INS-M with the standard
de-facto for metadata exchange in distributed environment which is the OAI-
PMH [7]. A consequence of the possibility of instantiate the representation of the
archives by means of INS-M into OAI-PMH is the further integration of archives
in the digital library systems. For these reasons we chose to adopt the NESTOR
Model a basic brick of the SIAR (Sistema Informativo Archivistico Regionale)
system. [6].

The SIAR is a project supported by the Italian Veneto Region which aim is
to design and develop a Digital Archive System. The main goal of the SIAR is
to develop a system for managing and sharing archive metadata in a distributed
environment. Furthermore, another SIAR objective is to develop an information
system able to create, manage, access, share and provide advanced services on
archival metadata. The design and development of the SIAR system rely on
the NESTOR Model; indeed, the INS-M is adopted to model and represent the
archives and the archival resources. In this work we do not present the system
in details but we focus on the use of the INS-M to perform frequently requested
operations on the archives that in particular regard the manipulation and the
querying of the archival structure and of the archival resources.

In this context we focus on the querying of the archival structure and re-
sources; in particular, we have seen that the relationships between the archival
documents are as important as the documents themselves, thus it is necessary
to easily exploit these relationships to infer information from the documents.
One on the most important operation is to define the correlation between two

283

or more documents in the archive. The archivists have to be able to understand
why two or more documents belong to the same archive and which is the doc-
ument or the archival division that put them in relation. We can see that this
operation can be modeled as a lowest common ancestor problem; indeed, two
or more documents are in relation thanks to a common ancestor that connect
them.

By means of the INS-M in the SIAR system we can infer the context of two
archival documents without navigating the whole archival hierarchy. In fact, by
means of the INS-M when we need to find out the common archival division
which contains two or more archival documents we just need to intersect the
sets containing the selected documents. The intersection of these sets returns
one of their common superset; thanks to Proposition 3 we know it belongs to
the INS-C representing the archive and thanks to Proposition 4 we know it is the
lowest common ancestor. This property gives us a way to calculate the lowest
common ancestor between two elements in a hierarchy – i.e. two documents in
an archive – without taking into account the whole hierarchy but just the sets at
which these elements belong. The lowest common ancestor represents a relevant
case where we exploit the relationships between the tree data structure and the
INS-M and the ratio between the operations in a tree and the operations in
a INS-C mapped from it. Moreover, the formal basis we defined provides us
with the necessary consistency to manipulate and query the archival resources
modeled in the INS-M as well as we would do in the tree data structure. This
fact allows us to be consistent with the other data models and systems adopted
to handle the archives and archival resources.

6 Final Remarks

In this paper we presented the NESTOR Model focusing on the Inverse Nested
Set Model and its properties detailing its formal definition and the relationships
with the tree data structure. In particular, we define the problem of calculating
the lowest common ancestor in the INS-M comparing it with the same problem
in the tree. We presented a concrete use case based on the archive showing
how it is possible to model an archive throughout the INS-M and to apply the
presented properties to query the archival resources. The use case is described
in the context of the SIAR project.

Acknowledgments

The work reported has been envisaged in the context of an agreement between
the Italian Veneto Region and the University of Padua. EuropeanaConnect4

(Contract ECP-2008-DILI-52800) and the PROMISE network of excellence5

(contract n. 258191) projects, as part of the 7th Framework Program of the
European Commission, have partially supported the reported work.

4 http://www.europeanaconnect.eu/
5 http://www.promise-noe.eu/

 284

References

1. A. Agosti, N. Ferro, and G. Silvello. The NESTOR Framework: Manage, Access
and Exchange Hierarchical Data Structures. In Proceedings of the 18th Italian Sym-
posium on Advanced Database Systems, pages 242–253. Società Editrice Esculapio,
Bologna, Italy, 2010.

2. M. A. Bender, M. Farach-colton, G. Pemmasani, S. Skiena, and P. Sumazin. Lowest
Common Ancestors in Trees and Directed Acyclic Graphs. J. Algorithms, 57:75–94,
2005.

3. B. A. Davey and H. A. Priestley. Introduction to Lattices and Order - 2nd Ed.
Cambridge University Press, Cambridge, UK, 2002.

4. L. Duranti. Diplomatics: New Uses for an Old Science. Society of American
Archivists and Association of Canadian Archivists in association with Scarecrow
Press, Lanham, Maryland, USA, 1998.

5. N. Ferro and G. Silvello. A Methodology for Sharing Archival Descriptive Metadata
in a Distributed Environment. In Proc. 12th Eur. Conf. on Research and Advanced
Tech. for Digital Libraries, pages 268–279. LNCS 5173, Springer, Germany, 2008.

6. N. Ferro and G. Silvello. Design and Development of the Data Model of a Dis-
tributed DLS Architecture for Archive Metadata. In 5th IRCDL - Italian Research
Conference on Digital Libraries, pages 12–21. DELOS: an Association for Digital
Libraries, 2009.

7. N. Ferro and G. Silvello. The NESTOR Framework: How to Handle Hierarchical
Data Structures. In Proc. 13th Eur. Conf. on Research and Advanced Tech. for
Digital Libraries, pages 215–226. LNCS 5714, Springer, Germany, 2009.

8. A. J. Gilliland-Swetland. Enduring Paradigm, New Opportunities: The Value of
the Archival Perspective in the Digital Environment. Council on Library and In-
formation Resources, Washington, DC, USA, 2000.

9. P. R. Halmos. Naive Set Theory. D. Van Nostrand Company, Inc., New York, NY,
USA, 1960.

10. Thomas Jech. Set Theory. Springer-Verlag, Berlin, Germany, 2003.
11. D. E. Knuth. The Art of Computer Programming, third edition, volume 1. Addison

Wesley, Reading, MA, USA, 1997.
12. R. Pearce-Moses. Glossary of Archival And Records Terminology. Society of Amer-

ican Archivists, 2005.
13. D. V. Pitti. Encoded Archival Description. An Introduction and Overview. D-Lib

Magazine, 5(11), 1999.
14. C. J. Prom and T. G. Habing. Using the Open Archives Initiative Protocols with

EAD. In Proc. 2nd ACM/IEEE Joint Conf. on Digital Libraries, pages 171–180.
ACM Press, USA, 2002.

15. C. J. Prom, C. A. Rishel, S. W. Schwartz, and K. J. Fox. A Unified Platform for
Archival Description and Access. In Proc. 7th ACM/IEEE Joint Conf. on Digital
Libraries, pages 157–166. ACM Press, USA, 2007.

16. H. Van de Sompel, C. Lagoze, M. Nelson, and S. Warner. The Open Archives
Initiative Protocol for Metadata Harvesting (2nd ed.). Technical report, Open
Archive Initiative, p. 24, 2003.

17. J. Vegas, F. Crestani, and P. de la Fuente. Context Representation for Web Search
Results. Journal of Information Science, 33(1):77–94, 2007.

285

Inconsistency-tolerant Semantics for Description Logic

Ontologies (extended abstract)⋆

Domenico Lembo, Maurizio Lenzerini, Riccardo Rosati,

Marco Ruzzi, and Domenico Fabio Savo

Dipartimento di Informatica e Sistemistica

Sapienza Università di Roma

lastname@dis.uniroma1.it

1 Introduction

It is well-known that inconsistency causes severe problems in classical logic. In par-

ticular, since an inconsistent logical theory has no model, it logically implies every

formula, and, therefore, query answering on an inconsistent knowledge base becomes

meaningless. In this paper, we address the problem of dealing with inconsistencies in

Description Logic (DL) knowledge bases. Our goal is both to study DL semantical

frameworks which are inconsistency-tolerant, and to devise techniques for answering

queries posed to DL knowledge bases under such inconsistency-tolerant semantics.

A DL knowledge base is constituted by two components, called the TBox and the

ABox, respectively. Intuitively, the TBox includes axioms sanctioning general prop-

erties of concepts and relations (such as Dog isa Animal), whereas the ABox con-

tains axioms asserting properties of instances of concepts and relations (such as Bob

is an instance of Dog). The various DLs differ in the language (set of constructs) used

to express such axioms. We are particularly interested in using DLs for the so-called

“ontology-based data access” [8] (ODBA), where a DL TBox acts as an ontology used

to access a set of data sources. Since it is often the case that, in this setting, the size of

the data at the sources largely exceeds the size of the ontology, DLs where query an-

swering is tractable with respect to the size of the ABox have been studied recently. In

this paper, we will consider DLs specifically tailored towards ODBA, in particular DLs

of the DL-Lite family [8], where query answering can be done efficiently with respect

to the size of the ABox.

Depending on the expressive power of the underlying language, the TBox alone

might be inconsistent, or the TBox might be consistent, but the axioms in the ABox

might contradict the axioms in the TBox. Since in ODBA the ontology is usually repre-

sented as a consistent TBox, whereas the data at the sources do not necessarily conform

to the ontology, the latter situation is the one commonly occurring in practice. There-

fore, our study is carried out under the assumption that the TBox is consistent, and

inconsistency may arise between the ABox and the TBox (inconsistencies in the TBox

are considered, e.g., in [5, 9]).

There are many approaches for devising inconsistency-tolerant inference sys-

tems [1], originated in different areas, including Logic, Artificial Intelligence, and

Databases. Our work is especially inspired by the approaches to consistent query an-

swering in databases [3], which are based on the idea of living with inconsistencies (i.e.,

⋆ This paper is an extended abstract of [6].

data that do not satisfy the integrity constraints) in the database, but trying to obtain

only consistent information during query answering. But how can one obtain consis-

tent information from an inconsistent database? The main tool used for this purpose

is the notion of database repair: a repair of a database contradicting a set of integrity

constraints is a database obtained by applying a minimal set of changes which restore

consistency. In general, there are many possible repairs for a database D, and, there-

fore, the approach sanctions that what is consistently true in D is simply what is true

in all possible repairs of D. Thus, inconsistency-tolerant query answering amounts to

compute the tuples that are answers to the query in all possible repairs.

In [7], a semantics for inconsistent knowledge bases expressed in DL-Lite has been

proposed, based on the notion of repair. More specifically, an ABox A′ is a repair of

the knowledge base K = 〈T ,A〉, where T is the TBox and A is the ABox, if A′ is

a maximal subset of A consistent with T . In this paper, we call such semantics the

ABox Repair (AR) semantics, and we show that for the DLs of the DL-Lite family,

inconsistency-tolerant query answering under such a semantics is coNP-complete even

for ground atomic queries, thus showing that inconsistency-tolerant instance checking is

already intractable. For this reason, we propose a variant of the AR-semantics, based on

the idea that inconsistency-tolerant query answering should be done by evaluating the

query over the intersection of all AR-repairs. The new semantics, called the Intersection

ABox Repair (IAR) semantics, is a sound approximation of the AR-semantics, and

it enjoys a desirable property, namely that inconsistency-tolerant query answering is

polynomially tractable.

Then, we highlight some drawbacks of the AR semantics, and propose a variant

called the Closed ABox Repair (CAR) semantics, that essentially considers only repairs

that are “closed” with respect to the knowledge represented by the TBox. We show that,

while inconsistency-tolerant instance checking is tractable under this new semantics in

DL-Lite, query answering is coNP-complete for unions of conjunctive queries. For this

reason, we also study the “intersection-based” version of the CAR-semantics, called

the Intersection Closed ABox Repair (ICAR) semantics, showing that it is a sound

approximation of the CAR-semantics, and that inconsistency-tolerant query answering

under this new semantics is again polynomially tractable.

2 Preliminaries

Description Logics (DLs) are logics that represent the domain of interest in terms of

concepts, denoting sets of objects, value-domains, denoting sets of values, attributes,

denoting binary relations between objects and values, and roles, denoting binary rela-

tions over objects. DL expressions are built starting from an alphabet Γ of symbols

for atomic concepts, atomic value-domains, atomic attributes, atomic roles, and object

and value constants. We denote by ΓO the set of object constants, and by ΓV the set of

value constants. Complex expressions are constructed starting from atomic elements,

and applying suitable constructs. Different DLs allow for different constructs.

A DL knowledge base (KB) is constituted by two main components: a TBox

(i.e.,“Terminological Box”), which contains a set of universally quantified assertions

stating general properties of concepts and roles, thus representing intensional knowl-

edge of the domain, and an ABox (i.e.,“Assertional Box”), which is constituted by as-

sertions on individual objects, thus specifying extensional knowledge. Again, different

DLs allow for different kinds of TBox and/or ABox assertions.

2

287

Formally, if L is a DL, then an L-knowledge base K is a pair 〈T ,A〉, where T
is a TBox expressed in L and A is a ABox. In this paper we assume that the ABox

assertions are atomic, i.e., they involve only atomic concepts, attributes and roles. The

alphabet of K, denoted by ΓK, is the set of symbols from Γ occurring in T and A. The

semantics of a DL knowledge base is given in terms of first-order (FOL) interpretations.

We denote with Mod(K) the set of models of K, i.e., the set of FOL interpretations

that satisfy all the assertions in T and A, where the definition of satisfaction depends

on the kind of expressions and assertions in the specific DL language in which K is

specified. As usual, a KB K is said to be satisfiable if it admits at least one model, i.e.,

if Mod(K) �= ∅, and K is said to entail a First-Order Logic (FOL) sentence φ, denoted

K |= φ, if φI = true for all I ∈ Mod(K). In the following, we are interested in

particular in UCQ entailment, i.e., the problem of establishing whether a DL KB entails

a boolean union of conjunctive queries (UCQ), i.e., a first order sentence of the form

∃y1.conj 1(y1) ∨ · · · ∨ ∃yn.conjn(yn), where y1, . . . ,yn are terms (i.e., constants or

variables), and each conj i(yi) is a conjunction of atoms of the form A(z), P (z, z′) and

U(z, z′) where A is an atomic concept, P is an atomic role and U is an atomic attribute,

and z, z′ are terms.

3 Inconsistency-tolerant semantics

In this section we present our inconsistency-tolerant semantics for DL knowledge bases.

As we said in the introduction, we assume that for a knowledge base K = 〈T ,A〉,
T is satisfiable, whereas A may be inconsistent with T , i.e., the set of models of K
may be empty. The challenge is to provide semantic characterizations for K, which

are inconsistency-tolerant, i.e., they allow K to be interpreted with a non-empty set of

models even in the case where it is unsatisfiable under the classical first-order semantics.

The inconsistency-tolerant semantics we give below are based on the notion of re-

pair. Intuitively, given a DL KB K = 〈T ,A〉, a repair AR for K is an ABox such that

the KB 〈T ,AR〉 is satisfiable under the first-order semantics, and AR “minimally” dif-

fers from A. Notice that in general not a single, but several repairs may exist, depend-

ing on the particular minimality criteria adopted. We consider here different notions

of “minimality”, which give rise to different inconsistency-tolerant semantics. In all

cases, such semantics coincide with the classical first-order semantics when inconsis-

tency does not come into play, i.e., when the KB is satisfiable under standard first-order

semantics.

The first notion of repair that we consider can be phrased as follows: a repair AR of

a KB K = 〈T ,A〉 is a maximal subset of A such that 〈T ,AR〉 is satisfiable under the

first-order semantics, i.e., there does not exist another subset of A that strictly contains

AR and that is consistent with T . Intuitively, each such repair is obtained by throwing

away from A a minimal set of assertions to make it consistent with T . In other words,

adding to AR another assertion of A would make the repair inconsistent with T . The

formal definition is given below.

Definition 1. Let K = 〈T ,A〉 be a DL KB. An ABox Repair (AR) of K is a set A′ of

membership assertions such that: (i) A′ ⊆ A; (ii) Mod(〈T ,A′〉) �= ∅; (iii) there exists

no A′′ such that A′ ⊂ A′′ ⊆ A and Mod(〈T ,A′′〉) �= ∅. The set of AR-repairs for K
is denoted by AR-Rep(K).

Based on the above notion of repair, we now define ABox repair models.

3

288

Definition 2. Let K = 〈T ,A〉 be a DL KB. An interpretation I is an ABox repair

model, or simply an AR-model, of K if there exists A′ ∈ AR-Rep(K) such that I |=
〈T ,A′〉. The set of ABox repair models of K is denoted by AR-Mod(K).

The following notion of consistent entailment is the natural generalization of clas-

sical entailment to the ABox repair semantics.

Definition 3. Let K be a DL KB, and let φ be a first-order sentence. We say that φ is

AR-consistently entailed, or simply AR-entailed, by K, written K |=AR φ, if I |= φ

for every I ∈ AR-Mod(K).

Example 1. Consider the DL-LiteA knowledge base K′ = 〈T ,A′〉, where T contains

the following assertions:

Mechanic ⊑ TeamMember Driver ⊑ TeamMember Driver ⊑ ¬Mechanic

∃drives ⊑ Driver ∃drives− ⊑ Car (funct drives)

Assertions from the first row, from left to right, respectively specify that drivers are

team members, mechanics are team members, and drivers are not mechanics (disjoint-

ness). In the second row, first two assertions say that the role drives is specified between

Driver (domain) and Car (range), and that it is functional, i.e., every driver can drive

at most one car. A′ is an ABox constituted by the set of assertions {Driver(felipe),
Mechanic(felipe),TeamMember(felipe), drives(felipe, ferrari)}. This ABox

states that felipe is a team member and that he is both a driver and a mechanic. No-

tice that this implies that felipe drives ferrari and that ferrari is a car. It is easy

to see that K is unsatisfiable, since felipe violates the disjointness between driver and

mechanic. The set AR-Rep(K′) is constituted by the set of T -consistent ABoxes:

AR-rep1= {Driver(felipe), drives(felipe, ferrari),TeamMember(felipe)};

AR-rep2= {Mechanic(felipe),TeamMember(felipe)}.

The AR-semantics given above in fact coincides with the inconsistency-tolerant se-

mantics for DL KBs presented in [7], and with the loosely-sound semantics studied

in [2] in the context of inconsistent databases. Although this semantics can be consid-

ered to some extent the natural choice for the setting we are considering, since each

ABox repair stays as close as possible to the original ABox, it has the characteristic to

be dependent from the form of the knowledge base. Suppose that K′′ = 〈T ,A′′〉 dif-

fers from the inconsistent knowledge base K′ = 〈T ,A′〉, simply because A′′ includes

assertions that logically follow, using T , from a consistent subset of A (implying that

K′′ is also inconsistent). One could argue that the repairs of K′′ and the repairs of K′

should coincide. Conversely, the next example shows that, in the AR-semantics the two

sets of repairs are generally different.

Example 2. Consider the KB K′′ = 〈T ,A′′〉, where T is the same as in K′ = 〈T ,A′〉
of Example 1, and the ABox A′′ is as follows:

A′′ ={Driver(felipe),Mechanic(felipe),TeamMember(felipe),Car(ferrari),
drives(felipe, ferrari)}.

4

289

Notice that A′′ can be obtained by adding Car(ferrari) to A′. Since Car(ferrari) is

entailed by the KB 〈T , {drives(felipe, ferrari)}〉, i.e., a KB constituted by the TBox

T of K′ and a subset of A′ that is consistent with T , one intuitively would expect that

K′ and K′′ have the same repairs under the AR-semantics. This is however not the case,

since we have that AR-Rep(K′′) is formed by:

AR-rep3= {Driver(felipe), drives(felipe, ferrari),TeamMember(felipe),
Car(ferrari)};

AR-rep4= {Mechanic(felipe),TeamMember(felipe),Car(ferrari)}.

Let us finally consider the ground sentence Car(ferrari). It is easy to see that

Car(ferrari) is AR-entailed by the KB K′′ but it is not AR-entailed by the KB K′.

Depending on the particular scenario, and the specific application at hand, the above

behavior might be considered incorrect. This motivates the definition of a new semantics

that does not present such a characteristic. According to this new semantics, that we

call Closed ABox Repair, the repairs take into account not only the assertions explicitly

included in the ABox, but also those that are implied, through the TBox, by at least one

subset of the ABox that is consistent with the TBox.

To formalize the above idea, we need some preliminary definitions. Given a DL KB

K = 〈T ,A〉, we denote with HB(K) the Herbrand Base of K, i.e. the set of ABox

assertions that can be built over the alphabet of ΓK. Then we define the consistent

logical consequences of K as the set clc(K) = {α | α ∈ HB(K) and there exists S ⊆
A such that Mod(〈T , S〉) �= ∅ and 〈T , S〉 |= α}. With the above notions in place we

can now give the definition of Closed ABox Repair.

Definition 4. Let K = 〈T ,A〉 be a DL KB. A Closed ABox Repair (CAR) for K is

a set A′ of membership assertions such that: (i)A′ ⊆ clc(K), (ii)Mod(〈T ,A′〉) �= ∅,

(iii) there exists no A′′ ⊆ clc(K) such that Mod(〈T ,A′′〉) �= ∅ The set of CAR-repairs

for K is denoted by CAR-Rep(T ,A).

In words, a CAR-repair is a maximal subset of clc(K) consistent with T . The set

of CAR-models of a KB K, denoted CAR-Mod(K), is defined analogously to AR-

models (cf. Definition 2). Also, CAR-entailment, denoted |=CAR, is analogous to AR-

entailment (cf. Definition 3).

Example 3. Consider the two KBs K′ and K′′ presented in the Example 1 and Exam-

ple 2. It is easy to see that both CAR-Rep(K′) and CAR-Rep(K′′) are constituted by the

two sets below:

CAR-rep1={Driver(felipe), drives(felipe, ferrari),TeamMember(felipe),
Car(ferrari)};

CAR-rep2={Mechanic(felipe),TeamMember(felipe),Car(ferrari)}.

It follows that both K′ and K′′ CAR-entail the ground sentence Car(ferrari), differ-

ently from what happen under the AR-semantics, as showed in Example 2.

As we will see in the next section, entailment of a union of conjunctive queries from

a KB K is intractable both under the AR-semantics and the CAR-semantics. Since this

5

 290

can be an obstacle in the practical use of such semantics, we introduce here approxi-

mations of the two semantics, under which we will show in the next section that entail-

ment of unions of conjunctive queries is polynomial. In both cases, the approximation

consists in taking as unique repair the intersection of the AR-repairs and of the CAR-

repairs, respectively. This actually corresponds to follow the WIDTIO (When you are

in doubt throw it out) approach, proposed in belief revision and update [10, 4].

Definition 5. LetK = 〈T ,A〉 be a DL KB. An Intersection ABox Repair (IAR) for K is

the set A′ of membership assertions such that A′ =
⋂

Ai∈AR-Rep(K) Ai}. The (singleton)

set of IAR-repairs for K is denoted by IAR-Rep(K).

Analogously, we give below the definition of Intersection Closed ABox Repair.

Definition 6. Let K = 〈T ,A〉 be a DL KB. An Intersection Closed ABox Re-

pair (ICAR) for K is the set A′ of membership assertions such that A′ =⋂
Ai∈CAR-Rep(K) Ai}. The (singleton) set of ICAR-repairs for K is denoted by

ICAR-Rep(K).

The sets IAR-Mod(K) and ICAR-Mod(K) of IAR-models and ICAR-models, re-

spectively, and the notions of IAR-entailment and ICAR-entailment are defined as

usual (cf. Definition 2 and Definition 3). Consider for example the KB K′ = 〈T ,A′〉
presented in Example 1. Then IAR-Rep(K′) is the singleton formed by the ABox IAR-

rep = AR-rep1 ∩ AR-rep2 = {TeamMember(felipe)}. In turn, referring to Ex-

ample 3, ICAR-Rep(K′) is the singleton formed by the ABox ICAR-rep1 = CAR-

rep1 ∩ CAR-rep2 = {TeamMember(felipe),Car(ferrari)}. It is not difficult to show

that the IAR-semantics is a sound approximation of the AR-semantics, and that the

ICAR-semantics is a sound approximation of the CAR-semantics. It is also easy to

see that the converse is not true in general. For instance, the sentence Driver(felipe)
is entailed by K = 〈T , {drives(felipe, ferrari), drives(felipe,mcLaren)}〉, where

T is the TBox of Example 1, under the AR-semantics, but it is not entailed under the

IAR-semantics. It can also be proved that the IAR-semantics is a sound approximation

of the ICAR-semantics (and not vice versa).

4 Reasoning

In this section we study reasoning in the inconsistency-tolerant semantics introduced in

the previous section. In particular, we analyze the problem of UCQ entailment under

such semantics in the specific DL DL-LiteA [8] for which reasoning under standard FOL

semantics is tractable. We will also consider instance checking, which is a restricted

form of UCQ entailment. In this section we will focus on the data complexity of query

answering, i.e., we will measure the computational complexity only with respect to

the size of the ABox (which is usually much larger than the TBox and the queries). It

follows from the results in [8] that query answering in DL-LiteA is in ACo, which is a

complexity class contained in PTIME, and therefore is tractable in data complexity.

We start by considering the AR-semantics. It is known that UCQ entailment is

intractable under this semantics [7]. Here, we strengthen this result, and show that in-

stance checking under the AR-semantics is already coNP-complete in data complexity

even if the KB is expressed in DL-Litecore . We recall that DL-Litecore is the least ex-

pressive logic in the DL-Lite family, as it only allows for concept expressions of the

form C ::= A|∃R|∃R−, and for TBox assertions of the form C1 ⊑ C2, C1 ⊑ ¬C2.

6

291

Theorem 1. Let K be a DL-Litecore KB and let α be an ABox assertion. Deciding

whether K |=AR α is coNP-complete with respect to data complexity.

Next, we focus on the CAR-semantics, and obtain that UCQ entailment under this

semantics is coNP-complete even if the TBox language is restricted to DL-Litecore .

Theorem 2. Let K be a DL-Litecore KB and let Q be a UCQ. Deciding whether

K |=CAR Q is coNP-complete with respect to data complexity.

Notice that, differently from the AR-semantics, the above intractability result for

the CAR-semantics does not hold already for the instance checking problem: we will

show later in this section that instance checking is indeed tractable under the CAR-

semantics.

We now turn our attention to the IAR-semantics, and define the algorithm

Compute-IAR-Repair (see Figure 1) for computing the IAR-repair of a DL-LiteA KB

K. The algorithm simply computes the set D ⊆ A of ABox assertions which must be

eliminated from the IAR-repair of K.

Algorithm Compute-IAR-Repair(K)
input: DL-LiteA KB K = 〈T ,A〉
output: DL-LiteA ABox A′

begin

let D = ∅;

for each fact α ∈ A do

if 〈T , {α}〉 unsatisfiable

then let D = D ∪ {α};

for each pair of facts α1, α2 ∈ A−D do

if 〈T , {α1, α2}〉 unsatisfiable

then let D = D ∪ {α1, α2};

return A−D
end

Algorithm Compute-ICAR-Repair(K)
input: DL-LiteA KB K = 〈T ,A〉
output: DL-LiteA ABox A′

begin

Compute clc(K);
let D = ∅;

for each pair of facts α1, α2 ∈ clc(K) do

if 〈T , {α1, α2}〉 unsatisfiable

then let D = D ∪ {α1, α2};

return clc(K)−D
end

Fig. 1. The Compute-IAR-Repair and Compute-ICAR-Repair algorithms

The following property, based on the correctness of the previous algorithm, estab-

lishes tractability of UCQ entailment under IAR-semantics.

Theorem 3. Let K be a DL-LiteA KB, and let Q be a UCQ. Deciding whether K |=IAR

Q is in PTIME with respect to data complexity.

We now turn our attention to the ICAR-semantics and present the algorithm

Compute-ICAR-Repair (see Figure 1) for computing the ICAR-repair of a DL-LiteA
KB K. This algorithm is analogous to the previous algorithm Compute-IAR-Repair.

The main differences are: (i) the algorithm Compute-ICAR-Repair returns (and oper-

ates on) a subset of clc(K), while the algorithm Compute-IAR-Repair returns a subset

of the original ABox A; (ii) differently from the algorithm Compute-IAR-Repair, the

algorithm Compute-ICAR-Repair does not need to eliminate ABox assertions α such

that 〈T , {α}〉 is unsatisfiable, since such facts cannot occur in clc(K).

7

 292

Again, through the algorithm Compute-ICAR-Repair it is possible to establish the

tractability of UCQ entailment under ICAR-semantics.

Theorem 4. LetK = 〈T ,A〉 be a DL-LiteA KB and let Q be a UCQ. Deciding whether

K |=ICAR Q is in PTIME with respect to data complexity.

Finally, we consider the instance checking problem under CAR-semantics, and ob-

tain that instance checking under CAR-semantics coincides with instance checking un-

der the ICAR-semantics.

Lemma 1. Let K be a DL-LiteA KB, and let α be an ABox assertion. Then, K |=CAR α

iff K |=ICAR α.

The above property and Theorem 4 allow us to establish tractability of instance check-

ing under the CAR-semantics.

Theorem 5. Let K be a DL-LiteA KB, and let α be an ABox assertion. Deciding

whether K |=CAR α is in PTIME with respect to data complexity.

We remark that the analogous of Lemma 1 does not hold for AR, because AR-

repairs are not deductively closed. This is the reason why instance checking under AR-

semantics is harder, as stated by Theorem 1.

5 Conclusions

Our work can proceed along different directions. One notable problem we aim at ad-

dressing is the design of new algorithms for inconsistency-tolerant query answering

both under the IAR-semantics and the ICAR-semantics, based on the idea of rewriting

the query into a FOL query to be evaluated directly over the inconsistent ABox. We

would also like to study reasoning under inconsistency-tolerant semantics in Descrip-

tion Logics outside the DL-lite family.

References

1. L. E. Bertossi, A. Hunter, and T. Schaub, editors. Inconsistency Tolerance, volume 3300 of

LNCS. Springer, 2005.
2. A. Calı̀, D. Lembo, and R. Rosati. On the decidability and complexity of query answering

over inconsistent and incomplete databases. In Proc. of PODS 2003, pages 260–271, 2003.
3. J. Chomicki. Consistent query answering: Five easy pieces. In Proc. of ICDT 2007, volume

4353 of LNCS, pages 1–17. Springer, 2007.
4. T. Eiter and G. Gottlob. On the complexity of propositional knowledge base revision, updates

and counterfactuals. Artificial Intelligence, 57:227–270, 1992.
5. Z. Huang, F. van Harmelen, and A. ten Teije. Reasoning with inconsistent ontologies. In

Proc. of IJCAI 2005, pages 454–459, 2003.
6. D. Lembo, M. Lenzerini, R. Rosati, M. Ruzzi, and D. F. Savo. Inconsistency-tolerant seman-

tics for description logics. In Proc. of RR 2010, 2010.
7. D. Lembo and M. Ruzzi. Consistent query answering over description logic ontologies. In

Proc. of RR 2007, 2007.
8. A. Poggi, D. Lembo, D. Calvanese, G. De Giacomo, M. Lenzerini, and R. Rosati. Linking

data to ontologies. J. on Data Semantics, X:133–173, 2008.
9. G. Qi and J. Du. Model-based revision operators for terminologies in description logics. In

Proc. of IJCAI 2009, pages 891–897, 2009.
10. M. Winslett. Updating Logical Databases. Cambridge University Press, 1990.

8

293

Optimizing the Distributed Evaluation of Stratified

Datalog Programs via Structural Analysis⋆

Rosamaria Barilaro, Nicola Leone, Francesco Ricca, and Giorgio Terracina

Department of Mathematics, University of Calabria, Italy

{barilaro,leone,ricca,terracina}@mat.unical.it

Abstract. The database community has spent many efforts on the optimization

of distributed queries. However, efficiently reasoning over natively distributed

data through deductive databases is still an open issue. Three main problems must

be faced in this context: (i) rules to be processed may contain many atoms and

may involve complex joins among them; (ii) the original distribution of input data

is a fact and must be considered in the optimization process; (iii) the integration

of the deductive database engines with DBMSs must be tight enough to allow

efficient interactions but general enough to avoid limitations in kind and location

of databases. This paper aims to be a first step toward this direction. In fact, it

provides an optimization strategy based on structural analysis facing these issues.

Preliminary experimental results on real world data are encouraging.

1 Introduction

Recent developments in IT, and in particular the expansion of networking technologies,

have made quite common the availability of software architectures where data sources

are distributed across multiple (physically-different) sites. As a consequence, the num-

ber of applications requiring to efficiently query and reason on natively distributed data

is constantly growing. The basic problem of querying distributed deductive databases

has been already studied in the literature [12, 2]. The proposed techniques for program

evaluation mostly focus on shipping the data for distributing the evaluation of rules

(e.g., according to the copy-and-constraint [12] technique), and heuristically balancing

the load on available machines [5]; however, these approaches usually do not consider

as founding hypothesis that data is natively distributed. Moreover, an important role

for efficiently evaluating a rule is also played by its structure; in particular, the inter-

actions among join variables might (or might not) affect evaluation costs [11]. This

follows from known results regarding conjunctive query evaluation, by considering that

the evaluation of a rule body is similar to the evaluation of a conjunctive query.

Structural methods [4, 9] allow the transformation of a conjunctive query into a

(tree-like) set of sub queries, allowing efficient evaluations, e.g., by the well-known

Yannakakis algorithm [13]. Despite the attention received by structural query optimiza-

tion in the field of databases, the specialization of such techniques for querying natively

⋆ This work has been partially supported by the Calabrian Region under PIA (Pacchetti Integrati

di Agevolazione industria, artigianato e servizi) project DLVSYSTEM approved in BURC n.

20 parte III del 15/05/2009 - DR n. 7373 del 06/05/2009.

distributed data, has not been considered much. Moreover, to the best of our knowl-

edge, their application for distributed evaluation of datalog programs has not been in-

vestigated. In this paper we focus on a scenario, where data natively resides on differ-

ent autonomous sources and it is necessary to deal with reasoning tasks via deductive

database techniques. Three main problems must be faced in this context: (i) rules to

be processed may contain many atoms and may involve complex joins among them;

(ii) the original distribution of input data is a fact and this must be considered in the

optimization process; (iii) the integration of the reasoning engine with DBMSs must be

tight enough to allow efficient interactions but general enough to avoid limitations in

kind and location of databases.

This paper aims to be a first step toward this direction. Specifically, issue (i) is ad-

dressed by an optimization strategy based on structural analysis, and in particular on a

hypertree decomposition method [9] that we extend in order to take into account both

the distribution of the sources and possible negation in rule bodies. The proposed tech-

nique includes strategies for deciding whether to ship rules or data among distributed

sites; this addresses issue (ii). Finally, we adopt DLVDB [10] as core reasoning engine,

which allows to transparently evaluate logic programs directly on commercial DBMSs;

this answers issue (iii).

In order to asses the effectiveness of the proposed approach, we carried out a pre-

liminary experimental activity, on both real world and synthetic benchmarks, for com-

paring the performance of our approach with commercial solutions. Obtained results,

reported in the paper, are encouraging and confirm our intuitions.

We next present our optimization approach for programs composed of one single

rule first, and then we generalize to generic programs.

2 Single rule optimized evaluation

A single logic rule r can be seen as a conjunctive query (possibly with negation), whose

result must be stored in the head predicate h.

The optimized evaluation of r starts from the computation of its structural decom-

position, based on an extension of the algorithm cost-k-decomp, introduced in [9];

then the output of the algorithm is a hypertree which is interpreted as a distributed query

plan. In more detail, cost-k-decomp has been extended as follows.

In order to take into account data distribution within the computation of the de-

composition, each node p of the hypertree HD = 〈N, E〉 is labelled with the database

where the partial data associated with it are supposed to reside. Formally, let Site(p)
denote the site associated with the node p in HD and let net(Site(p), Site(p′)) be the

unitary data transfer cost from Site(p) to Site(p′) (clearly, net(Site(p), Site(p)) =
0). Let λ(p) be the set of atoms referred by p, and χ(p) the variables covered by p.

Site(p) is chosen among the databases where the relations in λ(p) reside by com-

puting: hm = arg minhi∈λ(p) {Σhj∈λ(p)|rel(hj)| × net(Site(hj), Site(hi))}. Then,

Site(p) = Site(hm).
In order to handle the presence of negated atoms in r (which are not handled by

cost-k-decomp), the algorithm for identifying valid hypertrees has been modified

in such a way that each node containing a negated atom must be a leaf node and must

 295

Procedure SolveRule(Hypertree Node p)

begin

if p is a leaf and λ(p) contains only one relation h then

if p has a father p′then project h on χ(p′)
Store the result in a relation hp in Site(p) and Tag the node p as solved

else if p is a leaf and λ(p) contains relations b1, · · · , bk then

Set the working database of DLVDB as Site(p)

Transfer each bi not in Site(p) with the USE clause of DLVDB

Call DLVDB to evaluate the rule hp :− b1, · · · , bk on Site(p)
if p has a father p′ then project hp on χ(p′)
Store hp in Site(p) and Tag the node p as solved

else

for each p′

i ∈ {p′

1 · · · , p′

m} being an unsolved child of p

Launch a process executing SolveRule(p′

i);

Synchronize processes (barrier)

Set the working database of DLVDB as Site(p)
Let b1, · · · bk be the relations in p

Transfer each bi and p′

i not in Site(p) with the USE clause of DLVDB

Call DLVDB to evaluate the rule hp :− b1, · · · , bk, hp′
1
· · · , hp′

l
, not hp′

l+1
, · · · , not hp′

m

where p′

1, · · · , p′

l are child nodes of p corresponding to positive atoms in r

and p′

l+1, · · · , p′

m are child nodes of p corresponding to negated atoms in r

if p has a father p′ then project hp on χ(p′)
Store hp in Site(p) and Tag the node p as solved

end else;

end Procedure;

Fig. 1. Procedure SolveRule for evaluating a rule optimized by hypertree decomposition

not contain other atoms. This is needed to isolate negated atoms in order to specifically

handle them in the overall computation. However, observe that since r is safe these

constraints are not actual limitations for computing valid hypertrees.

In order to take into account both data transfer costs and the impact of negated predi-

cates on the overall computational costs, the cost function adopted in cost-k-decomp

is changed to: ωS
H(HD) = Σp∈N (est(E(p)) + minhi∈λ(p){Σhj∈λ(p)|rel(hj)|×

net(Site(hj), Site(hi))}+Σ(p,p′)∈E(est∗(p, p′)+est(E(p′))×net(Site(p′), Site(p))))
where

est∗(p, p′) =

{

est(E(p)) − est(E(p) ⊲⊳ E(p′)) if p′ is negated in r

est(E(p) ⊲⊳ E(p′)) otherwise

Here, if λ(p) contains only one relation h and p is a leaf in HD, est(E(p)) is exactly

the number of tuples in h; otherwise, it estimates the cardinality of the expression as-

sociated with p, namely E(p) =⊲⊳h∈λ(p) Πχ(p)rel(h). Let R and S be two relations,

est(R ⊲⊳ S) is computed as: est(R ⊲⊳ S) = est(R)×est(S)
ΠA∈attr(R)∩attr(S)max{V (A,R),V (A,S)}

where V (A, R) is the selectivity of attribute A in R. For joins with more relations one

can repeatedly apply this formula to pair of relations according to a given evaluation

order. A more detailed discussion on this estimation can be found in [11].

We are now able to describe how the evaluation of a rule r is carried out in our

approach: (i) Create the hypergraph Hr for r. (ii) Call cost-k-decomp extended

as described above on Hr, and using ωS
H(HD). (iii) Tag each node of the obtained

hypertree HDr as unsolved. (iv) Call the Procedure SolveRule shown in Figure 1 to

compose from HDr a distributed plan for r and execute it.

Intuitively, once the hypertree decomposition is obtained, SolveRule evaluates joins

bottom-up, from the leaves to the root, suitably transferring data if the sites of a child

node and its father are different. Independent sub-trees are executed in parallel pro-

cesses. In this way, the evaluation can benefit from parallelization.

 296

It is worth pointing out that the benefits of parallelization possibly exploited in

SolveRule are currently not considered in the overall cost function ωS
H(HD); in fact, the

choices that can maximize parallelization are orthogonal to those aiming at minimizing

join and data transfer costs. As a consequence, in a first attempt, we decided to privilege

the optimization of join costs, while taking benefit of possible parallelization. Observe

that this choice allows our approach to be safely exploited also when all relations reside

on the same database.

3 Evaluation of the program

Three main kinds of optimization characterize our approach, namely (i) rule unfold-

ing optimization, (ii) inter-components optimization, (iii) intra-component optimiza-

tion. We next describe each of them.

Rule unfolding optimization. [8] In many situations, when evaluating a program, one is

interested in the results of only a subset of the predicates in the program. As a matter

of fact, many evaluators allow for the specification of “filters” (or output predicates)

for the program. As far as stratified programs are concerned, the specification of a filter

basically corresponds to specifying a relevant sub-portion of the program. Observe,

moreover, that a set of filters specified on a program, can be also seen as a set of queries

over the program itself, each of which asking for all the data of the corresponding

predicate. Then, query oriented optimizations can be exploited in this case. Since the

rule optimization strategy presented in the previous section is particularly suited for

rules have long bodies, in presence of filters (or queries) in the program we adopt a

standard unfolding optimization step that has the effect of making rule bodies as long

as possible and, possibly, reduce their number.

Program unfolding proceeds as usual [8], it starts from the predicates specified in

the filter and, following the dependencies, properly substitutes the occurrence of atoms

in the body by their definitions.

As an example, consider the program P1 in Table 1, where the output predicate is

active courses. The unfolding of P1 produces the rule:

active courses(CD) :- esame(A1,C,CD,A2),

affidamenti ing informatica(C,A3,A4),

dati esami(A5,A6,C,A7,A8,A9,A4),dati professori(A3,A10,A11).

Inter-Components optimization. [3]. The Inter-Components optimization, consists of

dividing the input (possibly unfolded) program P into subprograms, according to the

dependencies among the predicates occurring in it, and by identifying which of them

can be evaluated in parallel. In detail, each program P can be associated with a graph,

called the (positive) Dependency Graph of P , which, intuitively, describes how predi-

cates of P (positively) depend on each other. For a program P , the Dependency Graph

of P is a directed graph GP = 〈N, E〉, where N is a set of nodes and E is a set of arcs.

N contains a node for each predicate of P , and E contains an arc e = (p, q) if there

is a rule r in P such that q occurs in the head of r and p occurs in a positive literal of

the body of r. The dependency graph GP induces a subdivision of P into subprograms

(also called modules) allowing for a modular evaluation. For each strongly connected

 297

component (SCC) C of GP , the set of rules defining all the predicates in C is called

module of C. Moreover, a partial ordering among the SCCs is induced by GP , defined

as follows: for any pair of SCCs A, B of GP , we say that B directly depends on A
if there is an arc from a predicate of A to a predicate of B; and, B depends on A if

there is a path in GP from A to B. Intuitively, this partial ordering guarantees that a

component A precedes a component B if the program module corresponding to A has

to be evaluated before the one of B (because the evaluation of A produces data which

are needed for the instantiation of B). In this way, when a rule r is evaluated, the exten-

sion of each body predicate of r is already stored in a database. Moreover, the partial

ordering allows for determining which modules can be evaluated in parallel. Indeed, if

two components A and B, do not depend on each other, then the evaluation of the cor-

responding program modules can be performed simultaneously, because the evaluation

of A does not require the data produced by B and vice versa.

Intra-Component optimization. [3]. The Intra-Component optimization, allows for con-

currently evaluating rules involved by the same component. Observe that rules in P may

be recursive. A rule r occurring in a module of a component C (i.e., defining some pred-

icate in C) is said to be recursive if there is a predicate p ∈ C occurring in the positive

body of r; otherwise, r is said to be an exit rule. Recursive rules are evaluated follow-

ing a semi-naı̈ve schema [11]. Specifically, for the evaluation of a module M , first all

exit rules are processed in parallel by exploiting the data computed during the instan-

tiation of the modules which M depends on (according to the partial ordering induced

by the dependency graph). Only afterward, recursive rules are processed several times

by applying a semi-naı̈ve evaluation technique in which, at each iteration n, the instan-

tiation of all the recursive rules is performed concurrently (synchronization occurs at

the end of each iteration), and by exploiting only the significant information derived

during iteration n − 1. Both exit and recursive rules are evaluated with the optimiza-

tion schema described in Section 2. Observe that while input facts for the program are

already stored in source databases, and, thus, their location is known beforehand, the

location of data generated by each rule is dynamically chosen by the rule optimizer.

Then, an head predicate p, is tagged in GP with the location Site(p) assigned to it the

first time it is evaluated; this information is used by the subsequent rules with p in their

body.

Remark. The reason for considering these last two optimizations comes from two con-

siderations: (i) the distributed context we are facing can benefit of distributed and paral-

lel computations; (ii) most of modern computers are equipped with multiple core CPUs

(at least two, and often 4 cores) and, thus, they provide an easy way to handle concurrent

processes.

4 Experiments

In this section we present preliminary results of the experiments we carried out by

exploiting a prototypical implementation of our approach. In the following, after de-

scribing compared methods and benchmark settings, we address tests on both a real

world scenario and synthetic benchmarks from OpenRuleBench [7].

 298

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

Infomix Infomix_10 Infomix_50

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Program P1

D+S
S

D+O
O

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Infomix Infomix_10 Infomix_50

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Program P2

Timeout (2h)

D+S
S

D+O
O

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

Infomix Infomix_10 Infomix_50

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Program P3

Timeout (2h)

D+S
S

D+O
O

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

test_10 test_50 test_250

A
v
e

ra
g

e
 E

x
e

c
u

ti
o

n
 T

im
e

 (
s
)

Openrulebench - Join1

Timeout (2h)

D+S
S

D+O
O

Fig. 2. Tests results.

Compared Methods and Benchmark Settings. We compared our approach with two well

known DBMSs allowing to manipulate and query distributed data, namely Oracle and

SQLServer. Since we are interested in comparing the behaviour of our approach with

commercial DBMSs, we evaluated the programs with our approach and the correspond-

ing (set of) SQL queries with the DBMSs. SQLServer allows to query distributed data

via linked servers, whereas Oracle provides database links. In our approach DLVDB

has been coupled with both SQLServer and Oracle. The hardwares used for the exper-

iments are rack mount HP ProLiant DL120 G6 equipped with Intel Xeon X3430, 2.4

GHz, with 4 Gb Ram, running Windows 2003 Server Operating System. We set a time

limit of 120 minutes after which the execution of a system has been stopped. For each

benchmark we have averaged the results of three consecutive runs after the first (which

was not considered in order to factor out internal DBMSs optimizations like caching).

In the graphs (see Figure 2), we report the execution times required by DLVDB cou-

pled with SQLServer (D+S), SQLServer (S), DLVDB coupled with Oracle (D+O), and

Oracle (O).

Tests on a real world scenario. We exploited the real-world data integration framework

developed in the INFOMIX project (IST-2001-33570) [6], which integrates data from

a real university context. In particular, considered data sources were made available by

the University of Rome “La Sapienza”. We call this data set Infomix in the following.

Moreover, we considered two further data sets, namely Infomix-x-10 and Infomix-x-

50 storing 10 and 50 copies of the original database, respectively. It holds that Infomix

⊂ Infomix-x-10 ⊂ Infomix-x-50. We then distributed the Infomix data sets over 5 sites

and we compared the execution times of our prototype with the behavior of the two

DBMSs on three programs.

299

P1:

exam record(X1,X2,Z,W,X4,X5,Y) :- dati esami(X1,A1,X2,X5,X4,A2,Y),

affidamenti ing informatica(X2,X3,Y), dati professori(X3,Z,W).

course(X1,X2) :- esame(A1,X1,X2,A2).

active courses(CD):-course(C,CD), exam record(X0,C,X1,X2,X3,X4,X5).

P2:

student(X1,X2,X3,X4,X5,X6,X7) :-

studenteS1(X1,X3,X2,A1,A2,A3,A4,A5,A6,A7,A8,A9,X6,X5,A10,A11,

X4,A12,A13,A14,A15,Y,A16), diploma maturitaS1(Y,X7).

exams(X1,X2) :- dati esami(X1,A1,X2,X5,X4,A2,Y).

hasCommon(X1,X3) :- student(X1,X2,X3,X4,X5,X6,X7), exams(X1,C),

student(Y1,Y2,Y3,Y4,Y5,Y6,X7), exams(Y1,C).

P3:

teaching(X1,Z,W,X3) :- affidamenti ing informatica(X1,X2,X3),

dati professori(X2,Z,W).

exam record(X1,X2,Z,W,X4,X5,Y) :- dati esami(X1,A1,X2,X5,X4,A2,Y),

affidamenti ing informatica(X2,X3,Y), dati professori(X3,Z,W).

course(X1,X2) :- esame(A1,X1,X2,A2).

student(X1,X2,X3,X4,X5,X6,X7) :-

studenteS1(X1,X3,X2,A1,A2,A3,A4,A5,A6,A7,A8,A9,X6,X5,A10,A11,

X4,A12,A13,A14,A15,Y,A16), diploma maturitaS1(Y,X7).

commonProf(M1,CCODE1,M2,CCODE2):- student(M1,A2,A3,A4,A5,A6,A7),

exam record(M1,CCODE1,B3,B4,B5,B6,B7), course(CCODE1,E2),

exam record(M2,CCODE2,C3,C4,C5,C6,C7), course(CCODE2,F3),

student(M2,D2,D3,D4,D5,D6,D7),

teaching(CCODE1,PFN,PLN,G4), teaching(CCODE2,PFN,PLN,H5).

Table 1. Tested programs.

The programs we tested are reported in Table 1.

Program P1 has output predicate active courses, and determines descriptions of

courses for which exists at least one exam. Program P2 has the objective of finding

students having the same degree and at least one common exam; here the output pred-

icate is hasCommon. Program P3 identifies students that had a common professor,

hence the focus is on commonProf. Note that, the rules composing the above three

programs were unfolded w.r.t. output predicates and the corresponding rules rewritten

as SQL queries to be tested on both Oracle and SQLServer.

The results of our experiments are presented in Figure 2. From the analysis of this

figure it is possible to observe that our approach allows to obtain significant scalability

improvements. In fact, while for the smallest data set times vary from few seconds (P1)

to hundreds of seconds (P2 and P3), DBMSs exceed the timeout in both P2 and P3

already for Infomix-x-10. Moreover, when DBMSs do not exceed the timeout, D+S

allows to obtain a gain up to 99% w.r.t. S and D+O up to 80% w.r.t. O.

Tests from OpenRuleBench. In [7] a benchmark for testing rule based systems has been

presented. In this paper, we consider the program and the instances called join1 in

[7], distributing the sources in three sites. Results are shown in Figure 2; in this case,

the scalability of D+S is impressive w.r.t. the other systems, whereas it has been quite

surprising the behaviour of D+O. We further investigated on this and found that: (i) the

time required for data transfers between database links in Oracle is double w.r.t. that

required by linked servers in SQLServer; (ii) while D+O required almost 2 hours for

test 50, O did not finish this test in 5 hours; (iii) we also tried to run both D+O and O on

a single machine but we had to stop them after 3 hours. Thus, we had to conclude that

this test was particularly tough for Oracle, independently of our optimization.

 300

5 Conclusions

In this paper we described an introductory approach to efficiently querying deductive

databases over natively distributed data. The main innovation of the proposed approach

is the adoption of a structural decomposition method for rule optimization, which takes

into account also data transfer costs between different sites. Moreover, easily identifi-

able parallel properties are also exploited to further speed up the evaluation process.

Preliminary results of the experiments are very encouraging: the proposed approach

beats out commercial DBMSs on both real world and synthetic benchmarks.

As far as future directions are concerned, we are aware that there are some points

that can be tackled to further improve the effectiveness of the approach. As an example,

when the hypertree decomposition groups in one node of the hypertree atoms residing

in different databases, we currently choose the reference site for the node on a “local”

basis. Taking into account the overall query plan could further decrease computation

costs; however, considering also this aspect is not trivial if one wants to maintain low

the cost of computing the decomposition.

References

1. K. R. Apt, H. A. Blair, and A. Walker. Towards a Theory of Declarative Knowledge. In

Minker [8], pp. 89–148.

2. M. Balduccini, E. Pontelli, O. Elkhatib, and H. Le. Issues in parallel execution of non-

monotonic reasoning systems. Parallel Computing, 31(6):608–647, 2005.

3. F. Calimeri, S. Perri, and F. Ricca. Experimenting with Parallelism for the Instantiation of

ASP Programs. Journal of Algorithms in Cognition, Informatics and Logics, 63(1–3):34–54,

2008.

4. C. Chekuri and A. Rajaraman. Conjunctive query containment revisited. pp. 56–70. 1998.

5. H. M. Dewan, S. J. Stolfo, M. Hernández, and J.-J. Hwang. Predictive dynamic load balanc-

ing of parallel and distributed rule and query processing. In Proc. of ACM SIGMOD 1994,

pp. 277–288, New York, USA, 1994. ACM.

6. N. Leone et al. The INFOMIX system for advanced integration of incomplete and inconsis-

tent data. In Proc. of SIGMOD’05, pp. 915–917, New York, USA, 2005. ACM.

7. S. Liang, P. Fodor, H. Wan, and M. Kifer. Openrulebench: an analysis of the performance of

rule engines. In Proc. of WWW’09, pp. 601–610, 2009.

8. J. Minker, editor. Foundations of Deductive Databases and Logic Programming. Washington

DC, 1988.

9. F. Scarcello, G. Greco, and N. Leone. Weighted hypertree decompositions and optimal query

plans. JCSS, 73(3):475–506, 2007.

10. G. Terracina, N. Leone, V. Lio, and C. Panetta. Experimenting with recursive queries in

database and logic programming systems. TPLP (TPLP), 8(2):129–165, 2008.

11. J. D. Ullman. Principles of Database and Knowledge Base Systems. Computer Science

Press, 1989.

12. O. Wolfson and A. Ozeri. A new paradigm for parallel and distributed rule-processing. In

SIGMOD Conference 1990, pp. 133–142, New York, USA, 1990.

13. M. Yannakakis. Algorithms for acyclic database schemes. In Proc. of VLDB81, pp. 82–94,

Cannes, France, 1981.

 301

Swgt{kpi"Dwukpguu"Rtqeguugu"cpf"Qpvqnqikgu"kp"c"Nqike"
Rtqitcookpi"Gpxktqpogpv"

*Gzvgpfgf"Cduvtcev+

Okejgng"Okuukmqhh."Ocwtk¦kq"Rtqkgvvk."Hcdtk¦kq"Uokvj

KCUK/EPT."Xkcng"Ocp¦qpk"52."223:7."Tqog."Kvcn{"

3 Kpvtqfwevkqp

Kp" tgegpv" {gctu" vjgtg" jcu" dggp" cp" ceegngtcvkqp" vqyctfu" pgy" hqtou" qh" eqqrgtcvkqp"
dgvyggp" gpvgtrtkugu." uwej" cu" xktvwcn" gpvgtrtkugu." pgvyqtmgf" gpvgtrtkugu." qt" dwukpguu"
gequ{uvgou0"C"pgvyqtmgf"gpvgtrtkug" kpvgitcvgu" vjg" tguqwtegu"cpf"Dwukpguu"Rtqeguugu"
*DRu+"qh"vjg"rctvkekrcvkpi"qticpk¦cvkqpu"cnnqykpi"vjgo"vq"qrgtcvg"cu"c"wpkswg"*xkvwcn+"
qticpk¦cvkqp0" Kp" rctvkewnct." uvctvkpi" htqo" c" ugv" qh" DRu" vjcv" gzkuv" kp" vjg" xctkqwu"
rctvkekrcvkpi"gpvgtrtkugu." vjg"qdlgevkxg" ku" vq"dwknf"c"inqdcn"DR"d{" ugngevkpi" vjg" nqecn"
DRu" vq"dg" kpenwfgf0"Vjku"qrgtcvkqp" ku"pqv"cp"gcu{"qpg."ukpeg" vjg" nqecn"DRu"ctg"qhvgp"
dwknv" d{" wukpi" fkhhgtgpv" vqqnu." ceeqtfkpi" vq" fkhhgtgpv" dwukpguu" nqikeu." cpf" wukpi"
fkhhgtgpv" ncdgnu"cpf" vgtokpqnqi{" vq"fgpqvg"cevkxkvkgu"cpf" tguqwtegu0" Vq"vjku"gpf." vjg"
xctkqwu" rctvkekrcvkpi" gpvgtrtkugu" pggf" vq" citgg" qp" c" eqooqp" xkgy" qh" vjg" dwukpguu"
fqockp."cpf"rtqxkfg"fguetkrvkqpu"qh"vjg"nqecn"DRu"ceeqtfkpi"vq"uwej"citggf"eqooqp"
xkgy0" Owej" yqtm" jcu" dggp" fqpg3 vqyctfu vjg" gpjcpegogpv" qh" DR" ocpcigogpv"
u{uvgou"]3_ d{"ogcpu"qh"ygnn/guvcdnkujgf" vgejpkswgu"htqo" vjg"ctgc"qh" vjg"Ugocpvke"
Ygd"cpf."kp"rctvkewnct."eqorwvcvkqpcn"qpvqnqikgu"]4_0"Cp"gpvgtrtkug"qpvqnqi{"uwrrqtvu"
wpcodkiwqwu" fghkpkvkqpu" qh" vjg" gpvkvkgu" qeewttkpi" kp" vjg" fqockp." cpf" gcugu" vjg"
kpvgtqrgtcdknkv{"dgvyggp"uqhvyctg"crrnkecvkqpu" cpf"vjg" tgwug1gzejcpig"qh"mpqyngfig"
dgvyggp jwocp"cevqtu0

Kp" vjku" htcog." yg" hqewu" qp" vjg" rtqdngo"qh" swgt{kpi" tgrqukvqtkgu" qh" ugocpvkecnn{"
cppqvcvgf"DRu0" Vjg" rtqrqugf" uqnwvkqp" ku" dcugf" qp" c" u{pgtike" wug" qh" cp" qpvqnqikecn"
htcogyqtm"*QRCN"]5_+"ckogf"cv"ecrvwtkpi"vjg"ugocpvkeu"qh"c"dwukpguu"uegpctkq."cpf"c"
dwukpguu"rtqeguu"oqfgnnkpi" htcogyqtm" *DRCN"]6_+" vq" tgrtgugpv" vjg"yqtmhnqy" nqike0
Vjgp." vjg" ugocpvke" cppqvcvkqp" qh" DRu" y0t0v0" qpvqnqikgu" cnnqyu" wu" vq" swgt{" DRu" kp"
vgtou" qh" vjg qpvqnqi{" xqecdwnct{." gcukpi" vjg" tgvtkgxcn" qh" nqecn" DR" *qt" rtqeguu"
htciogpvu+"vq"dg"tgwugf"kp"vjg"eqorqukvkqp"qh"pgy"DRu0"Hkiwtg"3"fgrkevu"c"dktfu/g{g"
xkgy"qh"vjg"swgt{kpi"crrtqcej."ykvj"vjg"nqecn"DR"tgrqukvqtkgu"*NDRTz+."vjg"eqooqp"
ugv" qh" qpvqnqikgu" cpf" xqecdwnctkgu" *Tghgtgpeg" Qpvqnqi{+" wugf" hqt" vjg" ugocpvke"
cppqvcvkqp"* +"qh" vjg"DR"tgrqukvqtkgu."cpf" vjg"swgt{"gpikpg"qrgtcvkpi"qp" vjg"cdqxg"
uvtwevwtgu0"

3 Ugg."g0i0."vjg"UWRGT"*jvvr<11yyy0kr/uwrgt0qti1+."EQKP"*jvvr<11yyy0eqkp/kr0gw1+"cpf"RNWI/
KV"*jvvr<11rnwi/kv0qti1+"kpkvkcvkxgu0

4 Okejgng"Okuukmqhh. Ocwtk¦kq"Rtqkgvvk."Hcdtk¦kq"Uokvj

Hki0"30 Dwukpguu"Rtqeguu"Swgt{kpi"Crrtqcej"

Vjg"rtqrqugf"crrtqcej"rtqxkfgu"c"wpkhqto"cpf"hqtocn"tgrtgugpvcvkqp"htcogyqtm."
uwkvgf" hqt" cwvqocvke" tgcuqpkpi" cpf" gswkrrgf" ykvj" c" rqygthwn" kphgtgpeg" ogejcpkuo"
uwrrqtvgf"d{"vjg"uqnwvkqpu"fgxgnqrgf" kp" vjg"ctgc"qh" Nqike"Rtqitcookpi"]7_0"Cv" vjg"
ucog" vkog" kv" jcu" dggp" eqpegkxgf" vq" dg" wugf" kp" eqplwpevkqp" ykvj" vjg" gzkuvkpi" DR"

/]8_ cpf kp"rctvkewnct"
kvu"ZRFN]9_ nkpgct"hqto"cu"c"oqfgnkpi"pqvcvkqp"cpf"QYN"]:_."hqt"vjg"fghkpkvkqp"qh"
vjg"tghgtgpeg"qpvqnqikgu0

4 Mpqyngfig"Tgrtgugpvcvkqp Htcogyqtm

Kp"vjku"ugevkqp"yg"kpvtqfweg"vjg"mpqyngfig"tgrtgugpvcvkqp"htcogyqtm"yjkej"ku"cv"vjg"
dcuku"qh"vjg"swgt{kpi"crrtqcej"vjcv"yknn"dg"rtqrqugf"kp"Ugevkqp"50"Kp"vjku"htcogyqtm"
yg"ctg"cdng"vq"fghkpg"cp"Gpvgtrtkug"Mpqyngfig"Dcug *GMD+"cu"c"eqnngevkqp"qh"nqikecn"
vjgqtkgu"yjgtg<"k+ vjg tgrtgugpvcvkqp"qh"vjg"yqtmhnqy"itcrj cuuqekcvgf"ykvj"gcej"DR."
vqigvjgt"ykvj kvu dgjcxkqtcn" ugocpvkeu." k0g0." c" hqtocn"fguetkrvkqp"qh" kvu gzgewvkqp." ku"
rtqxkfgf" d{" c"DRCN" urgekhkecvkqp=" kk+ vjg tgrtgugpvcvkqp" qh" vjg fqockp" mpqyngfig
tgictfkpi"vjg"dwukpguu"uegpctkq"ku"rtqxkfgf"vjtqwij"cp"QRCN"qpvqnqi{0"

403 Kpvtqfwekpi"DRCN

DRCN]6_ ku" c" nqike/dcugf" ncpiwcig" vjcv" rtqxkfgu" c" fgenctcvkxg" oqfgnkpi" ogvjqf"
ecrcdng"qh" hwnn{"ecrvwtkpi" vjg"rtqegfwtcn"mpqyngfig" kp"c"dwukpguu"rtqeguu0"Jgpeg" kv"
rtqxkfgu" eqpuvtwevu" vq" oqfgn" cevkxkvkgu." gxgpvu." icvgyc{u" cpf" vjgkt" ugswgpekpi0" Hqt"
dtcpejkpi" hnqyu."DRCN" rtqxkfgu rtgfkecvgu" tgrtgugpvkpi rctcnngn *CPF+." gzenwukxg
*ZQT+." cpf" kpenwukxg *QT+" dtcpejkpi1ogtikpi qh" vjg" eqpvtqn" hnqy0 C DRCN" DR"
Uejgoc" *DRU+ fguetkdgu" c" yqtmhnqy" itcrj" vjtqwij c" ugv" qh" hcevu *itqwpf" cvqou+"
eqpuvtwevgf" htqo" vjg" DRCN" cnrjcdgv0 Kp" Hkiwtg" 4 cp" gzgornct{" DRU" oqfgngf" kp"
DROP"ku"fgrkevgf."vqigvjgt"ykvj"vjg"eqttgurqpfkpi"DRCN"vtcpuncvkqp0"

Kp"qtfgt" vq"rgthqto"ugxgtcn" tgcuqpkpi" vcumu"qxgt"DRCN"DRUu." vjtgg"eqtg" vjgqtkgu"
jcxg" dggp" fghkpgf." pcogn{" vjg" ogvc/oqfgn" vjgqt{"O. vjg" vtceg" vjgqt{"VT" cpf" vjg"
fgrgpfgpe{"eqpuvtckpv"vjgqt{"F0 O"hqtocnk¦gu"c"ugv"qh"uvtwevwtcn"rtqrgtvkgu"qh"c"DRU."
vjcv"cv"vjku"ngxgn"ku"tgictfgf"cu"c"ncdgngf"itcrj."vq"fghkpg"jqy"vjg"eqpuvtwevu"rtqxkfgf"
d{"vjg"DRCN" ncpiwcig"ecp"dg"wugf" vq"dwknf"c"ygnn/hqtogf DRU0 Vyq" ecvgiqtkgu"qh"
rtqrgtvkgu"ujqwnf"dg"xgtkhkgf"d{"c"ygnn/hqtogf"DRU<"k+ nqecn rtqrgtvkgu"tgncvgf"vq"vjg"

303

Swgt{kpi"Dwukpguu"Rtqeguugu"cpf"Qpvqnqikgu"kp"c"Nqike"Rtqitcookpi Gpxktqpogpv 5

gngogpvct{"eqorqpgpvu"qh"vjg"yqtmhnqy"itcrj"*hqt"kpuvcpeg."gxgt{"cevkxkv{"owuv"jcxg"
cv" oquv" qpg" kpiqkpi" cpf" cv" oquv" qpg" qwviqkpi" ugswgpeg" hnqy+." cpf" kk+ inqdcn
rtqrgtvkgu"tgncvgf"vq"vjg"qxgtcnn"uvtwevwtg"qh"vjg"rtqeguu"*hqt"kpuvcpeg."kp"vjku"rcrgt"yg"
cuuwog"vjcv"rtqeguugu"ctg"uvtwevwtgf."k0g0."gcej"dtcpej"rqkpv"ku"ocvejgf"ykvj"c"ogtig"
rqkpv"qh"vjg"ucog"v{rg."cpf"uwej"dtcpej/ogtig"rcktu"ctg"cnuq"rtqrgtn{"pguvgf+0
VT rtqxkfgu"c"hqtocnk¦cvkqp"qh"vjg"vtceg"ugocpvkeu"qh"c"DR"uejgoc."yjgtg"c"vtceg

oqfgnu" cp" gzgewvkqp" *qt" kpuvcpeg." qt" gpcevogpv+" qh" c" DRU" cu" c" ugswgpeg" qh"
qeewttgpegu" qh" cevkxkvkgu" ecnngf" uvgru0"F" ku" kpvtqfwegf" hqt vjg" rwtrqug"qh" ghhkekgpvn{"
xgtkh{kpi"rtqrgtvkgu"tgictfkpi"vjg"rquukdng"gzgewvkqpu"qh"c"DRU0"F"fghkpgu"rtqrgtvkgu"
kp"vjg"hqto"qh"eqpuvtckpvu"uvcvkpi"vjcv"vjg"gzgewvkqp"qh"cp"cevkxkv{"ku"fgrgpfgpv"qp"vjg"
gzgewvkqp"qh"cpqvjgt"cevkxkv{."g0i0."vyq"cevkxkvkgu"jcxg"vq"qeewt"vqigvjgt"*qt"kp"owvwcn"
gzenwukqp+" kp" vjg"rtqeguu" *rquukdn{." kp"c" ikxgp"qtfgt+0"Gzcorngu"qh" uwej"eqpuvtckpvu"
ctg" k+" rtgegfgpeg*c.d.r.u.g+." k0g0. kp" vjg" uwd/rtqeguu" qh"r uvctvkpi"ykvj" u cpf" gpfkpi"
ykvj"g. kh"d ku"gzgewvgf" vjgp"c jcu"dggp"rtgxkqwun{"gzgewvgf=" kk+ tgurqpug*c.d.r.u.g+."
k0g0."kp"vjg"uwd/rtqeguu"qh"r uvctvkpi"ykvj"u cpf"gpfkpi"ykvj"g. kh"c ku"gzgewvgf"vjgp"d
yknn" dg" gzgewvgf0 Kp" c" uvtwevwtgf"DRU." nkmg" vjg" qpgu eqpukfgtgf" kp" vjku" rcrgt." uwej"
eqpuvtckpvu"eqwnf"dg"xgtkhkgf"d{"cp"gzjcwuvkxg"gzrnqtcvkqp"qh"vjg"ugv"qh"eqttgev"vtcegu0"
Jqygxgt." vjku" crrtqcej" yqwnf" dg" kpghhkekgpv." gurgekcnn{" yjgp" wugf" hqt" cpuygtkpi"
eqorngz" swgtkgu" qh" vjg" mkpf" fguetkdgf" kp" Ugevkqp" 50" Vjwu." yg" hqnnqy" c" fkhhgtgpv"
crrtqcej"hqt"fghkpkpi"vjg"eqpuvtckpv"rcvvgtpu"fkuewuugf"kp"];_"d{"ogcpu"qh"nqike"twngu"
vjcv" kphgt" vjg" cdugpeg" qh" c" eqwpvgtgzcorng0" Vjg" ugv" qh" vjgug" twngu" eqpuvkvwvgu" vjg"
vjgqt{"F0" Vjku" crrtqcej" ku" kpfggf" oqtg" ghhkekgpv" dgecwug." kp" qtfgt" vq" eqpuvtwev" c"
eqwpvgtgzcorng."yg" ecp"cxqkf" vq"cevwcnn{"eqpuvtwev"cnn"rquukdng" kpvgtngcxkpiu"qh" vjg"
vtcegu"igpgtcvgf"d{"vjg"gzgewvkqp"qh"rctcnngn"uwd/rtqeguugu"cpf."kp"hcev."yg"qpn{"pggf"
vq"rgthqto"uwkvcdng"vtcxgtucnu"qh"vjg"yqtmhnqy"itcrj0

Hki0"40"DROP"gRtqewtgogpv Rtqeguu"*nghv/ukfg+."rctvkcn"DRCN"vtcpuncvkqp"*tkijv/ukfg+

404 Ugocpvke"Cppqvcvkqp"vjtqwij"c"Dwukpguu"Tghgtgpeg"Qpvqnqi{

Hqt"vjg"fgukip"qh"c"Dwukpguu"Tghgtgpeg"Qpvqnqi{"*DTQ+"vq"dg"wugf"kp"vjg"cnkipogpv"
qh"vjg"vgtokpqnqi{"cpf"eqpegrvwcnk¦cvkqpu"wugf"kp"fkhhgtgpv"DR"uejgocu."yg"eqpukfgt"
cu" vjg" tghgtgpeg" htcogyqtm" vjg" QRCN ogvjqfqnqi{"]5_0"QRCN qticpk¦gu" eqpegrvu"
vjtqwij" c" pwodgt" qh" ogvc/eqpegrvu" ckogf" cv" uwrrqtvkpi" vjg" fqockp" gzrgtv" kp" vjg"

DRCN"DRU"
cevkxkv{*URQ+"
cevkxkv{*RRQ+"
gzeadtcpejarv*I3+"
rctadtcpejarv*I4+"
"

ugs*RRQ.I4+"
gzeadtcpej*I3.URQ.FGERQ+"
gzeaogtig*FGERQ.RC[.I6+"
rctadtcpej*I4.KPX.UIFU+"
rctaogtig*KPX.UIFU.I5+"
"

 304

6 Okejgng"Okuukmqhh. Ocwtk¦kq"Rtqkgvvk."Hcdtk¦kq"Uokvj

eqpegrvwcnk¦cvkqp" rtqeguu." kfgpvkh{kpi" cevkxg" gpvkvkgu" *cevqtu+." rcuukxg gpvkvkgu"
*qdlgevu+."cpf"vtcpuhqtocvkqpu"*rtqeguugu+0"Vjg"ncvvgt"ctg"tgrtgugpvgf"qpn{"kp"vgtou"qh"
vjgkt" kphqtocvkqp" uvtwevwtg" cpf" uvcvke" tgncvkqpujkru." ykvjqwv" oqfgnkpi" dgjcxkqtcn"
kuuwgu."k0g0."ugswgpekpi"qh"cevkxkvkgu."hqt"yjkej"DRCN"ku"fgngicvgf"vq0"QRCN eqpegrvu"
oc{"dg"fghkpgf"kp" vgtou"qh"eqpegrvu"fguetkdgf" kp" cp qpvqnqi{ *qt"ugv"qh"qpvqnqikgu+"
fguetkdkpi"c"urgekhke"fqockp *qt"ugv"qh"fqockpu+0"Vjgp"vjg"DTQ ku"eqorqugf"d{"cp"
QRCN" oqfgn" nkpmgf" vq" c" ugv" qh" fqockp" qpvqnqikgu." vjcv" ecp" dg" cntgcf{" gzkuvkpi"
tguqwtegu qt"ctvkhcevu"fgxgnqrgf"qp"rwtrqug0

Vjg"Ugocpvke"Cppqvcvkqp fghkpgu"c" eqttgurqpfgpeg"dgvyggp"gngogpvu"qh"c"DRU"
cpf" eqpegrvu" qh" c"DTQ." kp" qtfgt" vq" fguetkdg" vjg" ogcpkpi" qh" vjg" hqtogt" vjtqwij" c"
uwkvcdng"eqpegrvwcnk¦cvkqp"qh"vjg"fqockp"qh"kpvgtguv"rtqxkfgf"d{"vjg"ncvvgt"kp"vgtou"qh"
tgncvgf" cevqtu." qdlgevu." cpf rtqeguugu0" ku" urgekhkgf" d{" vjg" tgncvkqp" ." yjkej" ku"
fghkpgf"d{"c"ugv"qh"cuugtvkqpu"qh"vjg"hqto" *Gn.E+. yjgtg"Gn"ku"cp"gngogpv"qh"c"DRU"
cpf"E"ku"cp"QRCN"eqpegrv0

Vgejpkecnn{." vjg" ncpiwcig cfqrvgf" hqt" vjg" fghkpkvkqp"qh" c" DTQ ku" c" htciogpv" qh"
QYN."hcnnkpi ykvjkp"vjg"QYN/TN"rtqhkng0"QYN/TN."ku"cp"QYN"uwdugv"fgukipgf"hqt"
rtcevkecn" korngogpvcvkqpu" wukpi" twng/dcugf" vgejpkswgu0" Kp" vjg"GMD." qpvqnqikgu ctg"
gpeqfgf" wukpi" vjg" vtkrng" pqvcvkqp" d{"ogcpu" qh" vjg" rtgfkecvg" v*u.r.q+." tgrtgugpvkpi" c"
igpgtcnk¦gf"TFH"vtkrng"*ykvj"uwdlgev"u."rtgfkecvg"r."cpf"qdlgev"q+0"Hqt"vjg"ugocpvkeu"qh"
cp" QYN/TN" qpvqnqi{" yg" tghgt" vq" vjg" czkqocvk¦cvkqp" *QYN" 4" TN1TFH" twngu+"
fguetkdgf"kp"]:_0

Hkiwtg" 5" tgrqtvu" cp" gzcorng" qh" ugocpvke" cppqvcvkqp" tgncvgf" vq" vjg" gRtqewtgogpv"
rtqeguu"qh"Hkiwtg"4."yjgtg"c"dcuke"fghkpkvkqp" kp" vgtou"qh" kprwvu."qwvrwvu cpf" tgncvgf"
cevqtu ku"rtqxkfgf" hqt"KuuwkpiRQ *yg cuuwog vjg"wuwcn"rtghkzgu"tfhu cpf"qyn hqt"vjg"
TFHU1QYN" xqecdwnct{." rnwu" qrcn hqt" vjg" kpvtqfwegf" xqecdwnct{" cpf" dtq hqt" vjg"
urgekhke"gzcorng+0

Hki0"50 Ugocpvke"Gptkejogpv"qh"Rtqeguu"Uejgocu"

5 Swgt{kpi"cp Gpvgtrtkug Mpqyngfig"Dcug

Cp GMD ku"hqtocnk¦gf"d{"c"Hktuv"Qtfgt"Nqike"vjgqt{."fghkpgf"d{"rwvvkpi"vqigvjgt"vjg"
vjgqtkgu"kpvtqfwegf"kp"vjg"rtgxkqwu"ugevkqp<

GMD ?"DTQ QYNaTN O" D VT" F
yjgtg<" k+ DTQ QYNaTN tgrtgugpvu" vjg"fqockp"mpqyngfig." k0g0."DTQ ku"cp"
QRCN"Dwukpguu"Tghgtgpeg"Qpvqnqi{."gpeqfgf"cu"c"ugv"qh"vtkrngu"qh"vjg"hqto" v*u.r.q+=
QYNaTN"ku"vjg"QYN"4"TN1TFH"twng"ugv."kpenwfgf"kpvq"vjg"GMD vq"uwrrqtv"tgcuqpkpi"
qxgt"vjg"DTQ= cpf" ku"c"ugocpvke"cppqvcvkqp."kpenwfkpi"c"ugv"qh"cuugtvkqpu"qh"vjg"hqto
*Gn.E+="kk+ O" D tgrtgugpvu"vjg"uvtwevwtcn"mpqyngfig cdqwv"vjg"dwukpguu"rtqeguugu."

k0g0. O ku" vjg" ogvc/oqfgn" vjgqt{" cpf D ku" c" tgrqukvqt{ eqpukuvkpi" qh c" ugv" qh" DR"

305

Swgt{kpi"Dwukpguu"Rtqeguugu"cpf"Qpvqnqikgu"kp"c"Nqike"Rtqitcookpi Gpxktqpogpv 7

uejgocu"fghkpgf"kp"DRCN="kkk+ VT" F ku"c"hqtocnk¦cvkqp"qh"vjg"dgjcxkqtcn"ugocpvkeu
qh" vjg" DR" uejgocu." k0g0. VT" ku" vjg" vtceg" vjgqt{" cpf F ku" vjg" vjgqt{" fghkpkpi" vjg"
fgrgpfgpe{"eqpuvtckpvu0

C"tgngxcpv"rtqrgtv{"qh"vjg"GMD ku"vjcv"kv"jcu"c"uvtckijvhqtyctf"vtcpuncvkqp"vq"c"nqike"
rtqitco"]7_." yjkej" ecp" dg" ghhgevkxgn{" wugf" hqt" tgcuqpkpi" ykvjkp c" Rtqnqi"
gpxktqpogpv0" Vjku" vtcpuncvkqp" cnnqyu" wu" vq" fgcn" ykvjkp" c" wpkhqto" htcogyqtm" ykvj"
ugxgtcn"mkpfu"qh" tgcuqpkpi" vcumu"cpf"eqodkpcvkqpu" vjgtgqh0"Gxgt{" eqorqpgpv" qh" vjg"
GMD fghkpgu"c"ugv"qh"rtgfkecvgu"vjcv"ecp dg"wugf"hqt"swgt{kpi"vjg"mpqyngfig"dcug0 Vjg"
tghgtgpeg"qpvqnqi{"DTQ cpf"vjg"ugocpvke"cppqvcvkqp" cnnqy"wu"vq"gzrtguu"swgtkgu"kp"
vgtou"qh"vjg"qpvqnqi{"xqecdwnct{0 Vjg"rtgfkecvgu"fghkpgf d{"vjg"ogvc/oqfgn"vjgqt{"O
cpf"d{"vjg"DR"uejgocu" kp"D cnnqy"wu" vq"swgt{" vjg"uejgoc" ngxgn"qh" c"DR."xgtkh{kpi"
rtqrgtvkgu" tgictfkpi" vjg" hnqy" gngogpvu" qeewttkpi" kp" kv" *cevkxkvkgu." gxgpvu." icvgyc{u+"
cpf" vjgkt" tgncvkqpujkru" *ugswgpeg" hnqyu+0" Hkpcnn{" VT" cpf F. cnnqy wu vq" gzrtguu"
swgtkgu"cdqwv vjg"dgjcxkqt"qh"c"DR"uejgoc"cv" gzgewvkqp" vkog." k0g0." xgtkh{"rtqrgtvkgu"
tgictfkpi"vjg"gzgewvkqp"ugocpvkeu"qh"c"DR"uejgoc0"

Kp"qtfgt"vq"rtqxkfg"vjg"wugt"ykvj"c"ukorng"cpf"gzrtguukxg"swgt{"ncpiwcig"vjcv"fqgu"
pqv"tgswktg"vq"wpfgtuvcpf"vjg"vgejpkecnkvkgu"qh"vjg"nqike"gpikpg."yg"rtqrqug"SwDRCN."
c"swgt{"ncpiwcig"dcugf"qp"vjg"UGNGEV/HTQO/YJGTG"rctcfkio *ugg"]32_"hqt"oqtg"
fgvcknu+" vjcv" ecp" dg" vtcpuncvgf" vq" nqike" rtqitcou" cpf" gxcnwcvgf" d{" wukpi" vjg" ZUD"
gpikpg"*jvvr<11zud0uqwteghqtig0pgv+0 Oqtg"urgekhkecnn{."SwDRCN"swgtkgu"yjkej"fq"pqv"
kpxqnxg"rtgfkecvgu"fghkpgf"kp"VT."k0g0."swgtkgu"vjcv"fq"pqv"gzrnkekvn{"ocpkrwncvg"vtcegu."
ctg"vtcpuncvgf"vq"nqike"rtqitcou"dgnqpikpi"vq"vjg"htciogpv"qh"Fcvcnqi"ykvj"uvtcvkhkgf"
pgicvkqp0" Hqt" vjku encuu" qh" rtqitcou" vjg" vcdnkpi" ogejcpkuo" qh"ZUD" iwctcpvggu" cp"
ghhkekgpv."uqwpf"cpf"eqorngvg"vqr/fqyp"gxcnwcvkqp0"Cu"cp"gzcorng."dgnqy"yg"tgrqtv"c"
SwDRCN swgt{"cpf"kvu"eqttgurqpfkpi"Fcvcnqi"vtcpuncvkqp0"Yg"rtghkz"xctkcdngu"pcogu"
d{" c" swguvkqp" octm" *g0i0." Az+" cpf" yg" wug" vjg" pqvcvkqp" Az<<Eqpe vq" kpfkecvg" vjg"
ugocpvke" v{rkpi" qh" c" xctkcdng." k0g0." cu" c" ujqtvewv" hqt" *z.{+
v*{.tfhu<uwdEncuuQh.Eqpe+. kp"qtfgt"vq"gcukn{"pcxkicvg"vjg"qpvqnqi{"vczqpqo{0

UGNGEV">Ar.Au.Ag@""
YJGTG"cevkxkv{*Au<<dtq<Tgswguvkpi+"CPF"dgnqpiu*Ad<<dtq<HkpcpekcnVtcpucevkqp.Ar.Au.Ag+"CPF"

rtgegfgpeg*Ac<<dtq<Kpxqkekpi.Ad.Ar.Au.Ag+""

s*R.U.G+</"v*Ea3.tfhu<uwdEncuuQh.dtq<Tgswguvkpi+.v*Ea4.tfhu<uwdEncuuQh.dtq<HkpcpekcnVtcpucevkqp+."
v*Ea5.tfhu<uwdEncuuQh.dtq<Kpxqkekpi+. *U.Ea3+. *D.Ea4+. *C.Ea5+.dgnqpiu*U.R+.dgnqpiu*G.R+."

dgnqpiu*C.R.U.G+.dgnqpiu*D.R.U.G+."yhauwdrtqe*R.U.G+.rtgegfgpeg*C.D.R.U.G+0"

Vjku" swgt{" tgvwtpu" gxgt{" ygnn/hqtogf" rtqeguu htciogpv" *k0g0." uvtwevwtgf" dnqem+" vjcv"
uvctvu"ykvj"c"tgswguvkpi cevkxkv{"cpf"vjcv"eqpvckpu"c"hkpcpekcn"vtcpucevkqp rtgegfgf"*kp"
gxgt{"rquukdng"twp+"d{"cp"kpxqkekpi0"Vjg"UGNGEV uvcvgogpv"fghkpgu"vjg"qwvrwv"qh"vjg"
swgt{" gxcnwcvkqp." yjkej" kp" vjku" ecug" ku c" rtqeguu" htciogpv" kfgpvkhkgf" d{" vjg" vtkrng"
>Ar.Au.Ag@. yjgtg" Ar ku" c" DR" kfgpvkhkgt." Au ku" vjg" uvctvkpi" gngogpv." cpf" Ag ku" vjg"
gpfkpi" gngogpv0" Vjg" swgt{" oc{" kpenwfg" c" HTQO uvcvgogpv" *cdugpv" kp" vjg" cdqxg"
gzcorng+."kpfkecvkpi"vjg"rtqeguu*gu+" htqo"yjkej"fcvc"ku"vq"dg" tgvtkgxgf" *rquukdn{"vjg"
yjqng" tgrqukvqt{+0" Kp" vjg"YJGTG uvcvgogpv"kv"ecp"dg"urgekhkgf"cp"gzrtguukqp"yjkej"
tguvtkevu"vjg"fcvc"tgvwtpgf"d{"vjg"swgt{."dwknv"htqo"vjg"ugv"qh"rtgfkecvgu"fghkpgf"kp"vjg"
GMD." vjg" ?" rtgfkecvg cpf" vjg" qppgevkxgu" CPF." QT." PQV ykvj" vjg" uvcpfctf" nqike"

 306

8 Okejgng"Okuukmqhh. Ocwtk¦kq"Rtqkgvvk."Hcdtk¦kq"Uokvj

ugocpvkeu0"Kh"yg"eqpukfgt"vjg"rtqeguu"htciogpv"qh"Ugevkqp"403."vjg cpuygt"vq"vjg"cdqxg"
swgt{ eqpvckpu"vjg"uwd/rtqeguu"uvctvkpi"ykvj"URQ cpf"gpfkpi"ykvj"RC[0

Vjku"swgt{"ujqyu"vjg"kpvgtrnc{"qh"vjg"fkhhgtgpv"eqorqpgpvu"qh"vjg"GMD< vjg"pqvkqpu"
qh" ygnn/hqtogf" rtqeguu" htciogpv" *yhauwdrtqe+" cpf" eqpvckpogpv" *dgnqpiu+" ctg
hqtocnk¦gf kp vjg"DRCN"ogvc/oqfgn" vjgqt{. rtgegfgpeg" ku" c"fgrgpfgpe{"eqpuvtckpv"
tgictfkpi" vjg" dgjcxkqtcn" ugocpvkeu" qh" vjg"DRU." v ctg" fghkpgf" kp" vgtou" qh" vjg"
ugocpvke"fguetkrvkqp"qh"vjg"fqockp"urgekhkgf"kp"vjg"DTQ0

6 Korngogpvcvkqp

C"rtqvqv{rg"qh"vjg"rtqrqugf"htcogyqtm"jcu"dggp"korngogpvgf"cu"c"Lcxc"crrnkecvkqp."
kpvgthcegf" ykvj" vjg"ZUD" nqike" rtqitcookpi" gpikpg vjtqwij" vjg" Kpvgtrtqnqi" nkdtct{"
*jvvr<11yyy0fgenctcvkxc0eqo1kpvgtrtqnqi+0"Vjg"rqrwncvkqp"qh"cp"GMD ku"dcugf"qp"vyq"
oqfwngu<" k+ ZRFN4DRCN vq" korqtv" c" rtqeguu" tgrqukvqt{" D htqo" ZRFN" hkngu" kk+
QYN4NR. dcugf" qp" vjg" Lgpc4" vqqnmkv" *jvvr<11lgpc0uqwteghqtig0pgv1+. vq" korqtv" vjg"
tghgtgpeg"qpvqnqi{"DTQ cpf" vjg"ugocpvke"cppqvcvkqp" htqo"QYN"fqewogpvu"d{"c"
vtcpuncvkqp"kpvq"c"ugv"qh"itqwpf"hcevu"kp"vjg"vtkrng"pqvcvkqp0 Vjg"GMD ku"vjgp"eqorngvgf"
d{"vjg"Rtqnqi rtqitcou"gpeqfkpi"vjg"ogvc/oqfgn"vjgqt{"O. vjg"vtceg"vjgqt{ VT. vjg"
fgrgpfgpe{" eqpuvtckpvu" F cpf" vjg" QYN" 4" TN1TFH" twng" ugv QYNaTN0" Jcxkpi"
rqrwncvgf vjg"GMD. vjg" tgcuqpkpi vcumu ctg rgthqtogf" d{" swgt{kpi" vjg" mpqyngfig"
dcug" vjtqwij" SwDRCN swgtkgu vjcv" ctg" vtcpuncvgf" kpvq" Fcvcnqi d{" vjg" oqfwng
SwDRCN4NR cpf"gxcnwcvgf"d{"vjg"ZUD"gpikpg0 Hkpcnn{."vjg"eqorwvgf"tguwnvu"ecp"dg"
gzrqtvgf"vjtqwij"vjg"ZrfnYtkvgt oqfwng"cu"c"pgy"ZRFN"hkng."hqt"kvu"xkuwcnk¦cvkqp"kp"c"
DROU"cpf"kvu"hwtvjgt"tgwug0"

Yg" eqpfwevgf" kp"]32_" c" rtgnkokpct{" gxcnwcvkqp" qh" vjg" u{uvgo" rgthqtocpeg" qp" c"
fgumvqr"ocejkpg"*Kpvgn"Eqtg4"G6722"ERW"*4z4042"IJ+."4ID"qh"TCO+."vq"ujqy"vjg"
hgcukdknkv{"qh"vjg"crrtqcej0" Kp"rctvkewnct."vjg"twng/dcugf"korngogpvcvkqp"qh"vjg"QYN"
tgcuqpgt"cpf" vjg"ghhgevkxg" iqcn/qtkgpvgf" gxcnwcvkqp"ogejcpkuo"qh" vjg"Rtqnqi" gpikpg"
ujqyp"iqqf"tgurqpug"vkog"cpf"ukipkhkecpv"uecncdknkv{0 Vjg" tguwnvu"ctg"uwooctk¦gf"kp"
Vcdng"30" Vkokpiu"ctg"gzrtguugf" kp"ugeqpfu" cpf" tgrtgugpv" vjg"cxgtcig" xcnwg"qxgt"32"
twpu0 Yg"igpgtcvgf"ctvkhkekcn"ZRFN"hkngu. fguetkdkpi"vjtgg"DR"tgrqukvqtkgu."V3/V5 qh"
fkhhgtgpv"uk¦g"cpf"uvtwevwtg0"Kp"vjg"hktuv"rctv"qh"Vcdng"3 yg"tgrqtv."hqt"gcej"tgrqukvqt{."
vjg" pwodgt" qh"DRu." vjg" vqvcn" uk¦g." k0g0" vjg" vqvcn" pwodgt" qh" hnqy" gngogpvu." vjg" vqvcn"
pwodgt" qh" icvgyc{u" cpf" vjg" uk¦g" qh" vjg" uocnnguv" cpf" dkiiguv" DR0" Cu" Dwukpguu"
Tghgtgpeg" Qpvqnqi{" yg" etgcvgf" cp" gRtqewtgogpv" qpvqnqi{" *cdqwv" 622 pcogf"
eqpegrvu"fguetkdgf"d{"cdqwv"4722"vtkrngu+."d{"kpenwfkpi rctv"qh"vjg"QYN"vtcpuncvkqp"
qh" vjg"UWOQ"qpvqnqi{" *jvvr<11yyy0qpvqnqi{rqtvcn0qti1vtcpuncvkqpu1 UWOQ0qyn+0" Kp"
rctvkewnct. yg"wugf vjg"Rtqeguu jkgtctej{"kpvtqfwegf"kp"UWOQ"cu"tqqv"hqt"vjg"cevkxkv{"
vczqpqo{"*cdqwv"472"eqpegrvu+ cfqrvgf" hqt" vjg" tcpfqo"cppqvcvkqp"qh" vjg"igpgtcvgf"
DRu0 Hktuv."yg"vguvgf"vjg"ugv"wr"rjcug *okffng"rctv"qh"Vcdng"3+."d{"korqtvkpi"kpvq"vjg"
rncvhqto" gcej" tgrqukvqt{" htqo" cp" ZRFN" hkng. vjg" qpvqnqi{" cpf" vjg" ugocpvke"
cppqvcvkqp" htqo" QYN0 Vjgp. yg" rgthqtogf" vjtgg" swgtkgu" S3/S5 cickpuv" gcej"
tgrqukvqt{0" S3" ku" cpcnqiqwu" vq" vjg" qpg" ujqyp" kp" Ugevkqp" 50" S4" tgvtkgxgu" gxgt{"
qrcn<Qdlgev"vjcv"ku"tgncvgf"vq"c"eqpegrv"wugf"hqt"vjg"cppqvcvkqp"qh"cp"cevkxkv{"n{kpi"qp"

307

Swgt{kpi"Dwukpguu"Rtqeguugu"cpf"Qpvqnqikgu"kp"c"Nqike"Rtqitcookpi Gpxktqpogpv 9

c"rcvj"htqo"cp"cevkxkv{"cppqvcvgf"ykvj"D vq"cp"cevkxkv{"cppqvcvgf"ykvj"E0"S5"tgvtkgxgu"
gxgt{" uwd/rtqeguu" vjcv" ku" gzgewvgf" cu" cp" cnvgtpcvkxg" vq" qpg" yjgtg" cp" cevkxkv{"
cppqvcvgf"ykvj"E"ku"gxgpvwcnn{"gzgewvgf0Yg"tgrqtv"hqt"gcej"twp"*dqvvqo"rctv"qh"Vcdng"
3+"vjg"pwodgt"qh"tguwnvu"qdvckpgf"cpf"vjg"vqvcn"vkog"urgpv"hqt"vjg"gxcnwcvkqp."kpenwfkpi"
vjg"SwDRCN"swgt{"vtcpuncvkqp"*SwDRCN4NR+."vjg"eqoowpkecvkqp"qxgtjgcf"dgvyggp"
Lcxc"cpf"ZUD"cpf"vjg"gzrqtv"qh"vjg"tguwnvu"cu"c"pgy"ZRFN"hkng"*ZrfnYtkvgt+0"

Vcdng"30 Gxcnwcvkqp"Tguwnvu

Vguv"Fcvc"Ugvu"
" Pt0"qh"DRU" Vqv0"Uk¦g"" Pt0"qh"Icvgyc{u" Okp"DRU"Uk¦g" Ocz"DRU"Uk¦g"
V3" 72" 33979" 6336" 394" 52:"
V4" 322" 3::::" 8664" 379" 459"
V5" 422" 4744;" :778" 326" 386"

Ugv"Wr"Rjcug"Gxcnwcvkqp"
" DR"Tgrqukvqt{"Korqtv" DTQ"Korqtv" "Korqtv"
" ZRFN4DRCN"" ZUD"Eqorkng" QYN4NR"" ZUD"Eqorkng" QYN4NR"" ZUD"Eqorkng"
V3" 508" 906" 3" 209" 30:" 304"
V4" 90:" 3304" 3" 209" 407" 309"
V5" 3705" 3:" 3" 209" 505" 407"

Twp"Vkog"Rjcug"Gxcnwcvkqp"
" S3" S4" S5"
" Pt0"qh"Tgu0" Vkog"" Pt0"qh"Tgu0" Vkog" Pt0"qh"Tgu0" Vkog"
V3" 33" 407" 355" 60:" 69" 3204"
V4" 37" 705" 347" 3305" 88" 3609"
V5" ;" :" 32;" 3904" 66" 380;"

7 Tgncvgf"Yqtm"cpf"Eqpenwukqpu"

Kp"vjku"rcrgt"yg"rtgugpvgf"c"htcogyqtm"eqpegkxgf"vq"eqorngogpv"gzkuvkpi"DROU"d{"
rtqxkfkpi"cfxcpegf"swgt{kpi"ugtxkegu0"Vjg"rtqrqugf"uqnwvkqp" ku"dcugf"qp"c"u{pgtike"
wug" qh" qpvqnqikgu vq" ecrvwtg" vjg" ugocpvkeu" qh" c" dwukpguu" uegpctkq." cpf" c" dwukpguu"
rtqeguu" oqfgnnkpi" htcogyqtm." vq" tgrtgugpv" vjg" wpfgtn{kpi" crrnkecvkqp" nqike0" Dqvj"
htcogyqtmu"ctg"ugconguun{"eqppgevgf"vjcpmu"vq"vjgkt"itqwpfkpi"kp"nqike"rtqitcookpi"
cpf" vjgtghqtg" kv" ku" rquukdng" vq" crrn{" ghhgevkxg" tgcuqpkpi" ogvjqfu" vq" swgt{" vjg"
mpqyngfig"dcug"gpeqorcuukpi"vjg"vyq0"

C"hktuv"dqf{"qh" tgncvgf"yqtmu" ku"dcugf"qp" vjg"wug"qh" vgejpkswgu"fgxgnqrgf" kp" vjg"
eqpvgzv" qh" vjg" ugocpvke" ygd" vjcv" jcxg" dggp" gzvgpfgf" vq" dwukpguu" rtqeguu"
ocpcigogpv0"Tgngxcpv"yqtm" kp" vjku" hkgnf" jcu" dggp" fqpg"ykvjkp" vjg"UWRGT" rtqlgev"
*jvvr<11yyy0kr/uwrgt0qti1+." yjgtg" ugxgtcn" hqwpfcvkqpcn" qpvqnqikgu" vq" oqfgn
hwpevkqpcn." qticpk¦cvkqpcn." kphqtocvkqpcn" cpf" dgjcxkqtcn" rgturgevkxgu" jcxg" dggp"
fgxgnqrgf0"Kp"]33_"c"swgt{kpi"htcogyqtm"dcugf"qp"uwej"qpvqnqikgu"ku"rtgugpvgf0"Qvjgt"
crrtqcejgu" dcugf" qp" ogvc/oqfgn" qpvqnqikgu" jcxg" dggp" fkuewuugf." g0i0."]34.35_0"
Wpnkmg" vjg" chqtgogpvkqpgf" yqtmu. yjgtg" vjg" dgjcxkqtcn" curgevu" ctg jkffgp" qt"
cduvtcevgf"cyc{."rtqrgtvkgu"fghkpgf"kp"vgtou"qh"vjg"gzgewvkqp"ugocpvkeu"ecp"dg"wugf"kp"
c"SwDRCN"swgt{0"Jgpeg." vjg"GMD rtqxkfgu" c" jqoqigpgqwu" htcogyqtm" yjgtg" qpg"
ecp" gxcnwcvg" eqorngz" swgtkgu" vjcv" eqodkpg" rtqrgtvkgu" tgncvgf" vq" vjg" qpvqnqikecn"
fuetkrvkqp."vjg"yqtmhnqy"uvtwevwtg."cpf"vjg"dgjcxkqtcn"ugocpvkeu"qh"vjg"oqfgngf"DRu0

 308

: Okejgng"Okuukmqhh. Ocwtk¦kq"Rtqkgvvk."Hcdtk¦kq"Uokvj

Qvjgt"crrtqcejgu"hqt"DR"swgt{kpi ctg"itqwpfgf"kp"itcrj"ocvejkpi."vjtqwij"xkuwcn"
ncpiwcigu"]36.37_" itqwpfgf" kp" itcrj" itcooctu0" Uwej" crrtqcejgu" cnnqy" vjg" wugt" vq"
swgt{" vjg" itcrj" tgrtgugpvcvkqp" qh" c" rtqeguu"yqtmhnqy" kp" cp" kpvwkvkxg" yc{. dwv" vjg{
pggf"vq"dg"eqodkpgf"ykvj"gzvgtpcn"vqqnu"vq"tgcuqp"cdqwv"rtqrgtvkgu"qh"vjg"dgjcxkqtcn"
ugocpvkeu *g0i0."]36_" korngogpvu" vtcpuncvkqpu"vq" hkpkvg" uvcvg"oqfgnu" vq"dg"xgtkhkgf"d{"
wukpi"oqfgn"ejgemkpi"vgejpkswgu+0"Qwt"htcogyqtm"pqv"qpn{"rtqxkfgu"c"ogvjqf"dcugf"
qp"Fcvcnqi" hqt" swgt{kpi" vjg" uvtwevwtg" qh" vjg" yqtmhnqy" itcrj." dwv" fwg" vq" vjg" nqike/
dcugf" tgrtgugpvcvkqp" kv" cnuq" kpvgitcvgu" cffkvkqpcn" tgcuqpkpi" ugtxkegu0" Kp" rctvkewnct." c"
xgt{" tgngxcpv" cfxcpvcig" rtqxkfgf" d{" qwt" crrtqcej" ku" vjg" rquukdknkv{" qh" hqtowncvkpi"
swgtkgu"kpxqnxkpi"vjg"mpqyngfig"tgrtgugpvgf"kp"fqockp"oqfgnu"hqtocnn{"gpeqfgf"d{"
ogcpu" qh" qpvqnqikgu." jgpeg<" k+ fgeqwrnkpi" swgtkgu" htqo" urgekhke" rtqeguugu." kk+
qxgteqokpi"ugocpvke"jgvgtqigpgkvkgu"fgtkxkpi."g0i0." htqo"fkhhgtgpv"vgtokpqnqikgu."kkk+
rqukpi" swgtkgu" cv" fkhhgtgpv" igpgtcnk¦cvkqp" ngxgnu." vcmkpi" cfxcpvcig" qh" vjg" ugocpvke"
tgncvkqpu"fghkpgf"kp"vjg"qpvqnqi{."uwej"cu"uwduworvkqp0

Hwvwtg" yqtmu" ctg" kpvgpfgf" vq" kpetgcug" vjg" gzrtguukxkv{" qh" vjg" crrtqcej." d{"
uwrrqtvkpi"c"nctigt"pwodgt"qh"yqtmhnqy"rcvvgtpu"]3_."cpf"vq"rgthqto"vjg"qrvkok¦cvkqp"
qh" vjg" swgt{" gxcnwcvkqp" rtqeguu." vjcv" ecp" dg" uvtqpin{" kortqxgf" d{" gzrnqkvkpi" swgt{"
tgytkvkpi"vgejpkswgu0

8 Tghgtgpegu

30 vgt" Jqhuvgfg." C0J0O0." xcp" fgt" Ccnuv." Y0O0R0." Cfcou." O0." Twuugnn." P0<" Oqfgtp" Dwukpguu
Rtqeguu"Cwvqocvkqp<"[CYN"cpf"kvu"Uwrrqtv"Gpxktqpogpv0"Urtkpigt."42320

40 Jgrr."O0."gv" cn<"Ugocpvke"dwukpguu"rtqeguu"ocpcigogpv<"C"xkukqp" vqyctfu"wukpi"ugocpvke"
ygd"ugtxkegu"hqt"dwukpguu"rtqeguu"ocpcigogpv0"Rtqe0"KEGDG"42270

50 Fg" Pkeqnc" C0." Okuukmqhh" O0." Pcxkink" T0<" C" uqhvyctg" gpikpggtkpi" crrtqcej" vq" qpvqnqi{"
dwknfkpi0"Kphqtocvkqp"U{uvgou. 56*4+<47://497*422;+0

60 Fg"Pkeqnc."C0."Okuukmqhh."O0."Rtqkgvvk."O0."Uokvj."H0<"Cp"Qrgp"Rncvhqto"hqt"Dwukpguu"Rtqeguu"
Oqfgnkpi"cpf"Xgtkhkecvkqp0 Rtqe0"FGZC"42320"NPEU"8483."rr0"88//;2."Urtkpigt. 42320

70 Nnq{f."L0Y0<"Hqwpfcvkqpu"qh"Nqike"Rtqitcookpi0"Urtkpigt/Xgtnci."Dgtnkp."3;:90"4pf"Gf0
80 QOI<"Dwukpguu"Rtqeguu"Oqfgn"cpf"Pqvcvkqp."jvvr<11yyy0qoi0qti1urge1DROP14020
90 ZRFN"403"Eqorngvg"Urgekhkecvkqp."jvvr<11yyy0yhoe0qti1zrfn0jvon0
:0 QYN"4<"Rtqhkngu."jvvr<11yyy0y50qti1VT1qyn4/rtqhkngu0
;0 Fy{gt."O0D0."Cxtwpkp."I0U0."Eqtdgvv."L0E0<"Rcvvgtpu"kp"rtqrgtv{"urgekhkecvkqpu" hqt"hkpkvg/uvcvg"

xgtkhkecvkqp0"Rtqe0"KEUG);;."rr0"633/642."3;;;0
320Okuukmqhh."O0."Rtqkgvvk."O0. Uokvj."H0<"Swgt{kpi"ugocpvkecnn{"cppqvcvgf"dwukpguu"rtqeguugu."

KCUK/EPT."T0"32/44."42320
330Octmqxke." K0" Cfxcpegf" Swgt{kpi" cpf" Tgcuqpkpi" qp" Dwukpguu" Rtqeguu" Oqfgnu0" Rtqe0" DKU"

422:0"NPDKR"9."rr03:;//422."Urtkpigt."422:0
340Fk"Htcpegueqoctkpq."E0."Vqpgnnc."R0<"Etquuewvvkpi"Eqpegtp"Fqewogpvcvkqp"d{"Xkuwcn"Swgt{"

qh"Dwukpguu"Rtqeguugu0"Dwukpguu"Rtqeguu"Ocpcigogpv"Yqtmujqru"422:0
350Jcnngt."C0"Iccnqwn."Y0."Octoqnqyumk."O0<"Vqyctfu"cp"ZRFN"Eqornkcpv"Rtqeguu"Qpvqnqi{0

UGTXKEGU"K"422:."rr0:5/:8."422:0
360Cycf." C0." Fgemgt." I0." Ygumg." O0<" Ghhkekgpv" eqornkcpeg" ejgemkpi" wukpi" DROP/S" cpf"

vgorqtcn"nqike0"Rtqe0"DRO"422:0"NPEU"7462."rr0"548//5630"Urtkpigt."422:0
370Dggtk."E0."G{cn."C0."Mcogpmqxkej."U0." cpf"Oknq." V0<"Swgt{kpi"dwukpguu"rtqeguugu"ykvj"DR/

SN0"Kphqtocvkqp"U{uvgou0"55."8"*Ugr0"422:+."699/7290

309

Machine Learning approaches for Contact Maps

prediction in CASP9 experiment

Giuseppe Tradigo1, Pierangelo Veltri1, and Gianluca Pollastri2

1 University Magna Græcia of Catanzaro, Catanzaro 88100, Italy,
{gtradigo,veltri}@unicz.it

2 University College Dublin, Ireland,
gianluca.pollastri@ucd.ie

(Extended Abstract)

Abstract. Residue contact maps are bi-dimensional data structures
that encode the three-dimensional structure of a protein by storing the
presence of contacts among protein backbone residues. Contact maps
have a key role in most state-of-the-art protein structure prediction
pipelines, i.e. the prediction of three dimensional space conformation of
aminoacids composing the proteins. We have designed a system (XXStout-
beta) for the prediction of residue contact maps from the sequence of
amino acids composing the protein. The system is based on Recursive
Neural Networks, which are capable of learning an input-output mapping
from sets of examples. Moreover data structures and loading/unloading
algorithms have been designed for efficiently managing contact maps in
primary and secondary memory. XXStout-beta has performed well at the
latest CASP9 world-wide protein structure prediction competition, and
is integrated in the public, high-throughput structure prediction server
Distill3. In this paper we present informally results of XXStout-beta in
CASP9 competition.

1 Contact Map prediction

In Nature, the process of protein folding is observed when a protein is synthe-
sized in the cell. Although many factors may facilitate the folding process, the
shape of a protein, with only limited exceptions is directly determined by its
amino acid sequence, i.e. one can assume that the map between the sequence
and the structure is a function. Finding this function is the so called Protein
Folding Problem (PFP). PFP has been an hot topic for decades among a vast
community of scientists. This has been tackled in various ways, ranging from
physical simulations to knowledge-based methods such as machine learning. In
the latter case one needs to observe a (sufficiently large) number of known pro-
tein structures and try to understand/learn the laws behind the folding process,
or more simply the map between sequences and structure, either in part (e.g. se-
quence to secondary structure) or as a whole. Solving the PFP computationally

3 http://distill.ucd.ie/distill/

is appealing, as experimental determination of the structure is a complex, time-
consuming and expensive process, and as a consequence as of 2011 we only know
the structures of approximately 70,000 proteins, or approximately one every 200
proteins for which we have revealed the sequence.

Every two years the CASP experiment challenges computational folding
methods to predict the (then unknown) structure of several tens of proteins.
Among other categories, CASP assesses the prediction of protein residue contact
maps, i.e. the set of mutual distances between residues in a protein, quantised
into two states (contact, for distances smaller than a threshold, and non-contact
otherwise).

Correct contact maps have been shown to be lead to reasonably good 3D
structures [5, 6], and predicted contact maps have been used for driving protein
folding in the ab initio case (that is, when a protein is folded without relying
on homology to another protein of known structure), for selecting and ranking
folded protein models, for predicting folding times, protein domain boundaries,
secondary structure, etc.

We have designed a novel predictor of protein residue contact maps. The pre-
dictor exploits a diverse, complex set of inputs, including the residue sequence,
evolutionary information in the form of a profile of residue frequencies extracted
from a multiple sequence alignment of homologous proteins (of unknown struc-
ture), predicted secondary structure, solvent accessibility and contact density
and, most importantly, near and remote structural templates (when available)
obtained by various methods. The predictor has two types of outputs: a simple
contact/non-contact binary classification (as per CASP rules); a 4-class distance
map. The latter output is used as a constraint to reconstruct 3-dimensional
protein structures.

2 Neural Networks for Prediction

2.1 Methods

We predict contact and distance maps by 2D-RNNs (two-dimensional Recursive
Neural Networks), which were previously described in [14] and [15]. This is a
family of adaptive models for mapping two-dimensional matrices of variable size
into matrices of the same size.

If oj,k is the entry in the j-th row and k-th column of the output matrix, and
ij,k is the input in the same position, the input-output mapping is modelled as:

oj,k = N (O)
(
ij,k, h

(1)
j,k, h

(2)
j,k, h

(3)
j,k, h

(4)
j,k

)

h
(1)
j,k = N (1)

(
ij,k, h

(1)
j−1,k, .., h

(1)
j−s,k, h

(1)
j,k−1, .., h

(1)
j,k−s

)

h
(2)
j,k = N (2)

(
ij,k, h

(2)
j+1,k, .., h

(2)
j+s,k, h

(2)
j,k−1, .., h

(2)
j,k−s

)

h
(3)
j,k = N (3)

(
ij,k, h

(3)
j+1,k, .., h

(3)
j+s,k, h

(3)
j,k+1, .., h

(3)
j,k+s

)

 311

h
(4)
j,k = N (4)

(
ij,k, h

(4)
j−1,k, .., h

(4)
j−s,k, h

(4)
j,k+1, .., h

(4)
j,k+s

)

j, k = 1, . . . , N

s = 1, . . . , S

where h
(n)
j,k for n = 1, . . . , 4 are planes of hidden vectors transmitting contex-

tual information from each corner of the matrix to the opposite corner. We
parametrise the output update, and the four lateral update functions (respec-
tively N (O) and N (n) for n = 1, . . . , 4) using five two-layered feed-forward neural
networks, as in [15]. Stationarity is assumed for all residue pairs (j, k), that is the
same parameters are used across all j = 1, ..., N and k = 1, ..., N . Each of the 5
neural network contains its own individual parameters, that are not constrained
to the ones of the other networks.

Since we are trying to predict both a 4-class map and a binary map, we
model both classification problems within the same 2D-RNN. Hence the output
oj,k will have two components:

oj,k = (o
(4)
j,k , o

(2)
j,k)

where o
(4)
j,k is a vector of four numbers representing the estimated probabilities

of residues j and k belonging to each of the four distance classes, and o
(2)
j,k is the

same for the two binary (contact vs. non-contact) classes. Both components are
implemented by (independent) softmax units.

As modelled in the input-output mapping equations above, we use 2D-RNNs
with shortcut connections. This means that a memory state depends explicitly
on more that the memory state immediately previous to it along the direction of
contextual propagation, i.e. the memory span is greater than one. This is effec-
tive because gradient-based learning in deep layered architectures suffers from
the well known vanishing gradient problem [18]. Allowing shortcuts of length S
(i.e. the memory state in position i depends directly on the state in position i−S)
creates new paths of roughly 1/S of the length of the ones induced by 1-step
memory dependencies, thus facilitating the transmission of contextual informa-
tion over larger distances. Indeed, shortcut connections can be placed starting
at any of the previous states i − s for any s ∈ 1, .., S. A selective placement of
shortcuts was used to produce near perfect secondary structure predictions in a
bidirectional recurrent neural network when (i, s) represent native contacts [16].
Notice that increasing the number of shortcuts increases the parameters result-
ing in a model that may more easily overfit the data. Extending the shortcut idea
beyond the 2D case or in any direction of contextual propagation is straightfor-
ward. Shortcut directions and patterns are not strictly constrained (so long as
cycles are not introduced in the directed graph representing the network) and
may even be learned.

The choice of input ij,k is an important factor for the algorithm. In the case
of contact map prediction the simplest input is the amino acid symbols at (j, k).
Different input encodings can be constructed to improve the algorithm. In the
Input Design section we describe the input encoding we used in this study.

 312

Training Learning proceeds by gradient descent by minimising the relative
cross entropy between target and output. Since there are two independent output
components (a 4-class and a binary one), the error is in fact the sum of two cross
entropies, which are weighed equally. Careful management of the gradient must
take place, not letting it be too small or too large: the absolute value of each
component of the gradient is kept within the [0.1,1] range, meaning that it is set
to 0.1 if it is smaller than 0.1, and to 1 if it is greater than 1. The learning rate
is set to 0.0375 divided by the the total number of proteins in the dataset. The
weights of the networks are initialised randomly.

Input format Input ij,k associated with the j-th and k-th residue pair contains
primary sequence information, evolutionary information, structural information,
and direct contact information derived from the PDB templates:

ij,k = (i
(E)
j,k , i

(T)
j,k) (1)

where, assuming that e units are devoted to evolutionary sequence information
and structural information in the form of secondary structure[11, 10], solvent
accessibility [11] and contact density [13]:

i
(E)
i,j = (i

(1)(E)

j,k , . . . , i
(e)(E)

j,k) (2)

Template information is placed in the remaining t units:

i
(T)
j,k = (i

(1)(T)

j,k , . . . , i
(t)(T)

j,k) (3)

Hence ij,k contains a total of e+ t components.
In this work e = 58. 20+20 units correspond to the frequencies of residues ob-

served in the two columns j and k of the multiple sequence alignment. Structural
information in the form of secondary structure (three classes), solvent accessi-
bility (two classes), and contact density (four classes) for residue j and k are
placed in the remaining 6,4 and 8 input units respectively.

For the template units we use t = 5, representing weighted contact class

information from the templates and one template quality unit. Assume that d
(p)
j,k

is a 4-component binary vector encoding the contact class of the (j,k)-th residue
pair in the p-th template. Then, if P is the total number of templates for a
protein:

(i
(1)(T)

j,k , . . . , i
(4)(T)

j,k) =

∑P

p=1 wpd
(p)
j,k∑P

p=1 wp

(4)

where wp is the weight attributed to the p-th template. If the sequence identity
between template p and the query is idp and the quality of a template (measured
as X-ray resolution + R-factor/20 or 10 for NMR hits, as in [9]) is qs, then the
weight is defined as:

wp = qpid
3
p (5)

 313

Taking the cube of the identity between template and query allows us to dras-
tically reduce the contribution of low-similarity templates when good templates
are available. For instance a 90% identity template is weighed two orders of
magnitude more than a 20% one. In preliminary tests (not shown) this measure
performed better than a number of alternatives.

The final unit of ij,k, the quality unit, encodes the weighted average coverage
and similarity of a column of the template profile as follows:

i
(5)(T)

j,k =

∑P

p=1 wpcp
∑P

p=1 wp

(6)

where cp is the coverage of the sequence by template p (i.e. the fraction of non-
gaps in the alignment). Encoding template information for the binary maps is
similar.

Ab initio based predictions use only the first part of the input, i
(E)
j,k from

equation 2, including secondary structure, solvent accessibility and contact den-
sity, although these are predicted ab initio. The template based predictions use
the complete ij,k as input.

2.2 Data

We use two datasets to train our predictors. The first set (D1) is obtained from
the January 2007 25% pdb select list [9]. After processing and selection of pro-
teins no longer than 200 residues, D1 contains 2,452 proteins (and 70 million
residue pairs), which we divide into a training set of 1,978 instances, and a test
set of 474. The dataset is further processed to generate maps between Cβ atoms.
We only use this dataset to predict binary Cβ maps with a 8Å threshold, as per
CASP rules. The second set is obtained from the October 2009 25% pdb select
list, containing 4,818 proteins, which become 3,645 (over 100 million residue
pairs) after processing and selection of sequences no longer than 200 residues.
This second set, in which Cα distances are taken into account, is split into 5
approximately equal parts and 5-fold cross validation trainings are run on it in
two settings: prediction of 4-class distance maps without structural homologues
(templates) as inputs, or free-modelling setting (FM); including templates, or
template-based modelling setting (TBM).

For CASP9 contact map predictions we ensemble 15 models from 5 different
trainings (with different structural parameters, such as shortcut lengths) on D1.
The models trained on D2 feed into our 3D predictor Distill [13].

3 Experimental results

The trained systems, set up as web servers, took part to the CASP9 world-
wide competition. Overall results of top participating servers for contact map
prediction are reported in Table 1, during the CASP9 conference held in Asilo-
mar, California in December 2010 and are available at [19]. According to the

 314

Server Group N Targets Z score Metapredictor

MULTICOM-CLUSTER 2 25 1.258

Infobiotics 51 28 1.073

Distill 214 28 0.880

SAM-T08-server 103 28 0.840

ProC S1 375 25 0.740 n.a.

MULTICOM-REFINE 119 26 0.674

PSICON 422 28 0.628 n.a.

SMEG-CCP 391 27 2.391 yes

MULTICOM 490 27 2.388 yes

ProC S3 138 24 1.011 yes

MULTICOM-CONSTRUCT 80 26 0.776 yes

SAM-T06-server 244 25 0.678 yes

Table 1. The top 12 groups partecipating at the IX edition of CASP 2010 in the
contact prediction category, from the official CASP assessment.

official assessment our system was one of the top three standalone predictors,
and the second best that submitted all the proteins that were considered in the
evaluation. The Z score value for Distill with XXStout-beta server has been cal-
culated and evaluated in 0.880. The Z score is a standard performance measure
for protein structure prediction.

References

1. Murzin A. G., Metamorphic Proteins, Science, 230, 1725-26, 2008
2. Fraenkel A. S., Complexity of protein folding, Bulletin of Mathematical Biology,

55(6): 1199-1210, 1993
3. Hart W. E., Istrail S., Robust Proofs of NP-Hardness for Protein Folding: General

Lattices and Energy Potentials, Journal of Computational Biology, 4(1): 1-22, 1997
4. Crescenzi P., Goldman D., Papadimitriou C., Piccolboni A., Yannakakis M., On the

Complexity of Protein Folding, Journal of Computational Biology, 5(3): 423-465,
1998

5. Vendruscolo M., Kussell E., Domany E., Recovery of protein structure from contact
maps, Folding and Design, 2(5): 295-306, 1997

6. Walsh I., Baú D., Martin A.J.M., Mooney C., Vullo A., Pollastri G., Ab initio
and template-based prediction of multi-class distance maps by two-dimensional
recursive neural networks, BMC Structural Biology, 9(1): 5, 2009

7. Zhang Y., Skolnick J., Scoring function for automated assessment of protein struc-
ture template quality, Proteins, 57: 702-710, 2004

8. Berman H., Westbrook J., Feng Z., Gilliland G., Bhat T., Weissig H., Shindyalov I.,
Bourne P., The Protein Data Bank, Nucl Acids Res, 28: 235-242, 2000

9. Griep S., Hobohm U., PDBselect 1992-2009 and PDBfilter-select, Nucleic Acids
Research, 38(1), 2009

10. Pollastri G., McLysaght A., Porter, a new, accurate server for protein secondary
structure prediction, Bioinformatics, 21(8): 1719-1720, 2005

 315

11. Mooney C., Pollastri G., Beyond the Twilight Zone: Automated prediction of struc-
tural properties of proteins by recursive neural networks and remote homology
information, Proteins, 77(1): 181-90, 2009

12. Mooney C., Vullo A., Pollastri G., Protein Structural Motif Prediction in Multidi-
mensional Φ-Ψ Space leads to improved Secondary Structure Prediction, Journal
of Computational Biology, 13(8): 1489-1502, 2006

13. Baú D., Martin A.J.M., Mooney C., Vullo A., Walsh I. Pollastri G., Distill: a suite
of web servers for the prediction of one-, two- and three-dimensional structural
features of proteins, BMC Bioinformatics, 7(1): 402, 2006

14. Pollastri G., Baldi P., Prediction of Contact Maps by Recurrent Neural Network
Architectures and Hidden Context Propagation from All Four Cardinal Corners,
Bioinformatics, 18(Suppl 1): S62-S70, 2002

15. Baldi P., Pollastri G., The Principled Design of Large-Scale Recursive Neural Net-
work Architectures - DAG-RNNs and the Protein Structure Prediction Problem,
Journal of Machine Learning Research, 4(Sep): 575-602, 2003

16. Ceroni A., Frasconi P., Pollastri G., Learning Protein Secondary Structure from
Sequential and Relational Data, Neural Networks, 18(8):1029-39, 2005.

17. Altschul S., Madden T., Schaffer A., Gapped BLAST and PSI-BLAST: a new
generation of protein database search programs, Nucleic Acids Research, 25: 3389-
3402, 1997

18. Bengio Y., Simard P., Frasconi P., Learning Long-Term Dependencies with Gradi-
ent Descent is Difficult, IEEE Transactions on Neural Networks, 5: 157-166, 1994

19. Casp9 website, official contact maps predictors assessment,
http://www.predictioncenter.org/casp9/doc/presentations/CASP9 RR.pdf, 2011

 316

Automatic Discovery and Resolution of Protein
Abbreviations from Full-Text Scientific Papers:

A Light-Weight Approach Towards Data
Extraction from Unstructured Biological Sources

(Extended Abstract)

Paolo Atzeni, Fabio Polticelli, Daniele Toti

Dipartimento di Informatica e Automazione, Università Roma Tre
atzeni@dia.uniroma3.it, toti@dia.uniroma3.it

Dipartimento di Biologia, Università Roma Tre
polticel@uniroma3.it

Abstract. We propose a methodology for discovering and resolving a
wide range of protein name abbreviations from the full-text versions of
scientific articles, as implemented in our PRAISED framework. Three
processing steps lie at the core of our approach: an abbreviation identifi-
cation phase, carried out via largely domain-independent metrics based
on lexical clues and exclusion rules, whose purpose is to identify all pos-
sible abbreviations within a scientific text; an abbreviation resolution
phase, which takes into account a number of syntactical and semantic
criteria and corresponding optimization techniques, in order to match an
abbreviation with its potential explanation; and a dictionary-based pro-
tein name identification, which is meant to eventually sort out those ab-
breviations actually belonging to the biological domain. We have tested
our implementation against the well-known Medstract Gold Standard
Corpus and a relevant subset of real scientific papers extracted from the
PubMed database, obtaining significant results in terms of recall, pre-
cision and overall correctness. In comparison to other methods, our ap-
proach retains its effectiveness without compromising performance, while
addressing the complexity of full-text papers instead of the simpler ab-
stracts more generally used. At the same time, computational overhead
is kept to a minimum and its light-weight approach further enhances
customization and scalability.

1 Introduction

Abbreviations, in the form of acronyms, aliases or simply short versions for
longer names, are commonly scattered all over the scientific publications. As
far as proteins are concerned, no standardized rule or naming convention has
been established so far, and writing guidelines or suggested best-practices are
often ignored and disregarded. The resulting explosion of protein abbreviations
has become a critical issue that can dramatically harm research productivity,

and therefore yearns for as orderly and clean a solution as it can be provided.
Tackling this problem is no easy feat, given the data deluge itself and the inner
complexity of the biological domain, which features hundreds of short names and
acronyms for proteins as well as for molecules, compounds and so forth.

In this paper, we propose a light-weight strategy for identifying and resolving
protein abbreviations as found in the full texts of biological papers, making up
the core components of our framework for the Identification, Disambiguation
and StoragE of Protein-Related Abbreviations (PRAISED).

This strategy consists in a three-phase process where (i) candidate abbrevia-
tions are detected within a full text, via a ranking process based on lexical clues
and exclusion rules (Abbreviation Identification); (ii) abbreviations are matched
with their potential explanation, using syntactical and semantic criteria com-
bined with fitting optimization techniques (Abbreviation Resolution); and (iii),
resulting abbreviation-explanation pairs are sorted out according to our domain
of interest (Protein Name Identification).

We have tested our implementation of the aforementioned methodology within
our PRAISED framework against a variety of input texts, the most relevant of
which being the Medstract Gold Standard Corpus and a manually annotated
subset of biological articles extracted from the PubMed online database. Results
were encouraging, for significantly high levels of recall were achieved, along with
promising levels of precision and extremely short execution time.

The paper is structured as follows. In Section 2, related work is discussed. In
Section 3, we delve deeper into the details of our whole discovery process and
the three phases building it up. In Section 4, experimental results are reported
and commented. And finally, in Section 5, we draw our conclusions.

2 Related Work

Automatically extracting data from unstructured sources has become more and
more significant a research subject over the years, due to the increased diffusion
and availability of information repositories and archives. The ideal purpose of
such an information extraction system is to place a perfectly clear semantic
structure upon the retrieved, often messy, data, which usually goes hand-in-
hand with the creation of a corresponding relational database for storing the
structured information.

In this area, several research groups have proposed a certain number of
methodologies for trying to discover acronyms within a source text, ranging
from general approaches to more specific techniques. These include the use of
regular expressions ([4]), linguistic cues and pattern-based recognitions([6, 7, 3,
5, 8]), as well as machine learning algorithms, natural language processing and
mixed methods ([2, 1]).

Recall is limited, for their scope is usually restricted to abstracts only,where
a narrower variety of abbreviation forms can be detected. Also, performance in
terms of execution time is seldom mentioned or not at all, and the overall results

 318

are not so easily comparable, for often modified corpora are used to test the
resolution algorithms.

3 Protein Abbreviation Discovery Process

In this section we will describe the details of our protein abbreviation discov-
ery methodology, seen as a three-phase process meant to successfully detect
abbreviation-explanation pairs within a paper.

3.1 Phase one: Abbreviation Identification

The first phase of the process lies in identifying abbreviations within a text, and,
as we said before, is mainly based on a series of simple but effective syntactical
and lexical checks: their purpose is to take in a wide range of different terms,
while at the same time keeping a considerable level of precision among the re-
trieved candidates. Overall, this phase involves a tokenization of the input text
and a ranking assignment for each of the considered words: those scoring higher
than a certain threshold will be the resulting candidate abbreviations retrieved.

Exclusion rules A preliminary cleaning of the text is performed in order for
a certain set of skippable words not to be passed to the actual ranking process.
This is done first by applying general-purpose rules, which are meant to remove
stop-words (and, of, or etc.), a list of known, recurring non-acronym words (Fig.,
Table etc.), and those derived from some known patterns to be excluded (like
words containing no letters, or one character-long terms).

Besides, here we also apply a collection of domain-oriented exclusion rules,
so that the subset of words to be later passed to the resolution phase is even
more accurate. We thus tell apart aminoacids (Tyr382, Asp383 etc.), ions (Fe2+

etc.) and nucleobases (GTX, A(G/A)(A/G/T) etc.), which might be wrongly
captured by the subsequent lexical checks for possessing an abbreviation-like
form.

Then, the ranking process takes place, via the consecutive checks described
below.

Length check and decomposition of compound words The first check is
related to the word’s length, in order to establish whether the considered word
has a reasonably short length. If that is the case, rank is increased accordingly,
since there is a very high chance for an abbreviation to be sufficiently short.
Here, we also check for the presence of special suffixes and compound words,
especially delimited by linguistic elements like slashes. If suffixes are found (the
most notable of which being -like), they are removed and the remaining word is
ranked according to the subsequent metrics. If we are dealing with a composite
abbreviation (e.g. LysoPAFAT/LPCAT2), we split it accordingly and the single
words building it up are individually ranked using the subsequent metrics, even-
tually resulting in a ranking that will be the computed average of the individual
ones.

 319

Plain bracket check The second check tests a word for the presence of plain
brackets, either left, right or both. Rank is increased upon successful discovery of
parentheses, proportionally to their number, and the fully or partially bracket-
enclosed words are cleaned of brackets and passed to the final ranking stage.

Multiple lexical checks The final ranking substep consists of a composition
of syntactical metrics based on linguistic elements, for instance: “all uppercase
letters”, “more uppercase letters than lowercase letters” etc. During this last
ranking step, the actual score is assigned according to the distribution of abbre-
viation forms in our domain of interest. Along with each candidate abbreviation,
a set of contiguous words are stored, to be subsequently used in the resolution
phase as the search space for the potential abbreviation origin. The size s of
each set of words is dependent on the candidate abbreviation’s length, resulting
in n+ k, where n is the abbreviation’s length and k is a configurable factor.

3.2 Phase 2: Abbreviation Resolution

The second phase of the process is responsible of trying to match a candidate ab-
breviation with its potential explanation among its contiguous words previously
stored. Let us now review this phase.

Pre-processing: detection of the abbreviation’s building elements Be-
fore proceeding to the application of any resolution pass, a pre-processing step is
performed, where the considered abbreviation is split into its basic subelements,
which roughly correspond to each of its characters. We say “roughly”, for letters
are individually split, while contiguous digits are treated as a single unit. For
instance, the elements resulting from Cyp33 will be C, y, p and 33.

The purpose of the subsequent resolution phase is to match each subelement
with a term among the contiguous words we have stored: the resulting match
ratio mr will therefore be computed as (Em/E) ∗ 100, where Em is the number
of matched elements and E is the total number of elements.

First pass: matching initial characters The actual resolution process begins
with this step, where the various elements of the candidate abbreviation are scan-
ned and we check whether there are terms starting with those elements within
the search space. The seeming simplicity of this step may hide its effectiveness:
most “standard” abbreviations, usually from a huge range of different domains,
fall into the category A Beautiful Concept (ABC), and are therefore correctly
resolved right after this check.

Second pass: checking for trailing “s” Many abbreviations are cited in
the scientific papers as plural nouns, and are consequently explained as such.
Dendritic epidermal T cells (DETCs), toll-like receptors (TLRs), yeast artifi-
cial chromosomes (YACs) are all examples in this regard. The missing trailing

 320

lowercase “s”, which the first pass could not obviously match with any initial
character within the search space, is checked for its presence by the second pass,
and the match ratio is updated accordingly if the last matched word is actually
a plural noun.

Third pass: checking for spelled-out numbers The explanation of an ab-
breviation can also contain spelled-out cardinal or ordinal numbers that might
correspond to actual digits featured as elements of the abbreviation itself, in any
number of positions (usually at the beginning or at the end of the explanation).
Third plant homeodomain (PHD3) is a significant example of these particular
cases. The third resolution pass is meant to check for the correspondence be-
tween digits as abbreviation subelements and their spelled-out version in the
search space.

Fourth pass: combining lowercase letters After the first three passes, there
might still be syntactically unmatched elements of the considered abbreviation.
An interesting subset of abbreviations is structured in a way that a multi-letter
prefix is used instead of a single initial character. This is the case of abbrevia-
tions like glutamate receptor (GluR), lidocaine (Lid) or murine leukemia virus
(MuLV). The fourth pass tries to find unresolved elements of the abbreviation
that are actually lowercase letters, and checks whether they can be combined
with previously resolved elements (usually uppercase letters) to form the prefix
of some word within the search space, generally already matched with another
abbreviation element. Elements resolved in this fashion will consequently be
deemed matched as well, increasing the overall match ratio as a consequence.

Semantic expressions There can be cases where an explanation, or part of
it, does not match any subelements of the corresponding abbreviation, for no
syntactical bond can be traced back among some or all the abbreviation elements
and the explanation terms. This is especially true when the explanation refers
to another abbreviation, or more generally when correlation expressions like as
known as, also called etc. are used to link theoretically uncorrelated words. When
the main passes listed so far have failed to produce a match ratio ≥ 50, semantic
rules are applied in order to detect these correlations between abbreviations
and their origin. If found, the match ratio undergoes an increase proportional
to the proximity of the correlation expression to the abbreviation itself, with a
maximum value of 51 (so that, in the worst case, it might still end up above the
50 threshold).

Proximity correction Correctness of the matched terms can decrease when
dealing with a large search space, usually resulting from very long abbreviations.
In order to adjust the matching precision, a proximity correction is performed
after the last syntactical pass. Basically, it tries to detect resolved elements
“distant” to their next element of the abbreviation, in terms of the position

 321

of their matched word among the search space. If such a “distant” element is
found, it looks for another word whose proximity to the next matched word is
higher, and tries to match this word with the considered element, employing the
criterion used in the first pass. If a match is established, the element’s previously
matched word is replaced with the new-found, nearer one. We have detected an
average 30% increase of correctness for long abbreviations after applying this
proximity correction. Match ratio is unaffected by such a process.

3.3 Phase 3: Protein Name Identification

The third and last phase of the process has the purpose of eventually discrimi-
nating those resolved abbreviations that actually correspond to known protein
names, via a dictionary-based matching step. We use a local copy of the UniProt
database1as our source repository for all the known proteins, and apply an in-
dexing and a subsequent search step in order to match our input with one of
the records within the database. The result is a list of candidate protein names,
each with a certain score: those scoring higher are more likely to be the actual
proteins appearing in our input (a score of 100 means a perfect match). At the
same time, a list featuring candidates having very low scores, or no candidates
at all, is likely to mean that our resolved abbreviation does not refer to a pro-
tein whatsoever. A refinement is performed in the end, by considering the string
similarity between the input words and the candidate protein names, so that the
score of those with a greater proximity to the input is increased or maximized.
Further details of this phase are described below.

Index building and search step We use the open-source Apache Lucene
library2for building an index upon the data stored in our local copy of UniProt,
and then proceed to search within it for relevant matches. For each UniProt
record, we decide to store within our index both the protein name “as-is” and
its potentially expanded form in terms of its spelled-out elements, if any. So, for
example, in the case of p-21 activated kinase I, we store its expanded form p-
twenty one activated kinase first as well. The actual search is performed against
the index thus created, in the shape of two queries: one will look for a match
between the input words and the index fields representing the protein names, and
the other will do the same between the spelled-out versions of the input words
and the spelled-out versions of each protein name. This search mechanism will
assign a score >0 to those protein names somehow matching the input words;
we apply here a threshold so that only the most relevant matches are returned
as candidate protein names.

Distance-based refinement For determined input texts, an unsatisfactory
situation might however occur. This is due to the fact that Lucene tends to

1 http://www.uniprot.org/
2 http://lucene.apache.org

 322

assign the same score value to any protein name candidate that includes the
same number of input words. Therefore, any protein names matching exactly the
considered input words may not necessarily appear as first in the candidate list,
ordered by decreasing score, as provided by Lucene. In order to make up for such
a behavior, we opted to use the notion of string similarity for adjusting the scores
of those candidates that indeed represented the most accurate matches with
the protein abbreviation explanations. Specifically, we make use of LingPipe’s
implementation of the weighted edit distance and Jaccard distance3, thanks to
which we check how much the input words and the candidate list returned by
Lucene are similar. This strategy allows us to almost fully compensate Lucene’s
imprecisions and obtain very accurate candidate lists, where the desired protein
name is not in the first position in less than 3% of the cases.

4 Experimental Results

In this section we will report the results achieved during the tests we performed
so far for our whole abbreviation discovery process.

We first tested our system against the widely used and publicly available
Medstract Gold Standard Corpus4, made up of a number of MEDLINE ab-
stracts containing numerous abbreviation-explanation pairs. Here, we obtained
significant results of 93.6% recall and 90% precision (f-measure: 91.7). The high
level of recall is due to the presence of a limited variety of abbreviation forms.

We then proceeded to test our process against biological full-text articles,
by using a manually annotated subset of unadulterated PubMed papers (∼100
papers) as the input source of our discovery process. The results we obtained
displayed 80.1% recall and 60.3% precision (f-measure: 68.8)). The lower pre-
cision level is easily explained: we came by a score of biomedical non-protein
abbreviations, correctly resolved by our process, which contained several terms
appearing in as many known protein names from our repository (e.g. most chem-
ical compounds, like Nitric oxide). Thus, several of these explanations generated
non-empty candidate lists of protein names. Refining the protein name identifi-
cation in this regard is one of our top priorities for improving the correctness of
our whole process.

In terms of performance, the execution time for our whole process is consid-
erably low. On a i7 Quad-Core machine with a medium load from other tasks,
we managed to process an average of 80000 words per minute from the scientific
texts used, resulting in a very quick (sometimes almost instantaneous) elabora-
tion of most individual papers.

Scalability and customization have been also taken into great consideration:
changing the combination of identification metrics or introducing new ones,
modifying the resolution process by adding/removing passes and criteria, or
fine-tuning the ranking assignment and threshold settings for other potential
application domains, can all be performed in no time and with minimal effort.

3 http://alias-i.com/lingpipe/
4 http://medstract.org/gold-standards.html

 323

5 Conclusions

In this paper we have proposed a methodology for the automatic identification
and resolution of protein abbreviations extracted from full-text biological papers.

The implementation of this methodology in our PRAISED framework has
achieved promising results in terms of precision and recall, especially within the
Medstract Gold Standard Corpus; the respective values decreased when facing
the far more complex full-text papers, but this is a somewhat expected outcome,
given the highly unstructured domain we approached and the challenging task
we took upon ourselves.

There is of course room for improvement. Based on the empirical evidence
we obtained while digging into the disordered context of scattered and non-
homogeneous abbreviations as seen in the scientific publications, as well as from
the results of the testing stage of our discovery strategy, we have identified what
we believe to be the available areas of improvement.

While our identification checks and exclusion rules proved dramatically effec-
tive, for our resolution phase semantic criteria can be extended and enhanced,
in order to resolve more intricately correlated abbreviations. Furthermore, the
accuracy of our protein name matching phase will have to be strengthened, by
extending our post-processing step in order to increase its precision when deal-
ing with non-protein abbreviation explanations. Refining our approach in this
regard will allow us to resolve even more particular cases and further improve
our resolution potential.

References

1. J. T. Chang, H. Schtze and R. B. Altman. Creating an Online Dictionary of Abbre-
viations from MEDLINE. In Journal of American Medical Informatics Association
(JAMIA), 9(6), pages 612-620, 2002.

2. D. Nadeau and P. D. Turney. A Supervised Learning Approach to Acronym Iden-
tification. In 18th Conference of the Canadian Society for Computational Studies
of Intelligence, Canadian AI, 2005.

3. Y. Park and R. J. Byrd. Hybrid Text Mining for Finding Abbreviations and Their
Definitions. In Proceedings of the 2001 Conference on Empirical Methods in Natural
Language Processing, 2001.

4. J. Pustejovsky, J. Castao, B. Cochran, M. Kotecki, M. Morrell and A. Rumshisky.
Automatic Extraction of Acronym-meaning Pairs from MEDLINE Databases. In
MEDINFO, 2001.

5. A. Schwartz and M. Hearst. A simple algorithm for identifying abbreviation defini-
tions in biomedical texts. In Proceedings of the Pacific Symposium on Biocomputing
(PSB), 2003.

6. K. Taghva and J. Gilbreth. Recognizing acronyms and their definitions. In Inter-
national journal on Document Analysis and Recognition, pages 191-198, 1999.

7. S. Yeates. Automatic extraction of acronyms from text. In Third New Zealand
Computer Science Research Students’ Conference, pages 117-124, 1999.

8. H. Yu, G. Hripcsak and C. Friedman. Mapping abbreviations to full forms in
biomedical articles. In J. Am. Med. Inform. Assoc., 9, pages 262-272, 2002.

 324

User-Centered Design for Citizens’ Empowerment

through the Portal of the Italian Ministry of Health

(Extended Abstract)⋆

Tiziana Catarci, Maddalena D’Addario, Paolo Felli, Laura Franceschetti,

Domenico Lembo, Massimo Mecella, Tatiana Pipan,

Alessandro Russo, Annarita Vestri, and Paolo Villari

SAPIENZA Università di Roma

firstname.lastname@uniroma1.it

Current Web portals of ministries of Health, in Europe and all over the world,

are evolving from simple information sites, mostly oriented to offer institutional and

administrative information, to really interactive e-health systems, providing citizens

and operators with various services related to health promotion and prevention, as

well as facilitating the access to services of the National Health Systems (NHSs)

(cf. http://www.dh.gov.uk and http://www.nhs.uk in UK, and http:

//www.bmg.bund.de in Germany).

In this paper we report on a study concerning the redesign of the Web portal of the

Italian Ministry of Health (http://www.salute.gov.it), jointly conducted by

the ministry and Sapienza Università di Roma, from February 2010 to January 2011.

Sapienza participated in the project with a multidisciplinary team involving computer

scientists and engineers, sociologists and experts in communication, doctors and experts

in public health, in order to fully identify and understand citizens’ needs in terms of

health information, on one hand, and to apply the most innovative methodologies and

techniques for user-centered design and interfaces, on the other. The main products

realized within this investigation have been:

– guidelines for online communication on protection and promotion of the health and

access to the Italian NHS [2], targeted mainly to Italian local (i.e., at the regional

and municipal level) health administrations; such guidelines are focused on com-

munication issues (“how to talk to citizens?”) and on Web design suggestions;

– a mock-up for the future Web portal of the Italian Ministry of Health, together with

its design specifications [5].

This work is part of the process of renewing the relationship between health organi-

zations and citizens, in order to improve the condition of empowered citizens, repeatedly

⋆ This extended abstract refers to the paper with same authors and title appeared in Proc. 1st

International Workshop on Engineering Interactive Computing Systems For Medicine And

Health Care (EICS4Med) at ACM SIGCHI Symposium on Engineering Interactive Comput-

ing Systems, Pisa, Italy, June 13, 2011. The authors would like to thank the team of the Ital-

ian Ministry of Health for the fruitful and active collaboration during the project, in partic-

ular Daniela Rodorigo, Massimo Aquili, Claudia Biffoli, Claudia Spicola, Daniela Cricenti,

Cristina Giordani. Moreover, they would like to thank all the Sapienza people collaborating

in the project, namely Sara Ausiello, Andrea De Angelis, Priscilla Carcione, Eliana Ferroni,

Emanuele Leoncini, Lucia Marinelli, Orazio Giancola and Domenico Lovecchio.

emphasized by the World Health Organization (WHO)1. The empowered citizen is able

to understand and choose, to define her own life-style and to take an active role in man-

aging her well-being, and is thus able to interact responsibly with those to whom she

refers, e.g., the NHS. Empowerment means “giving power” to citizen. A citizen who

has control over her state of health is a citizen able to participate in her own diagnostic,

therapeutic, and rehabilitative processes. Even if a citizen is not yet a patient, provided

health information could play a double role: on the one hand, it could prevent the onset

of specific diseases, and, on the other hand, play an educational role that makes the

citizen more aware of her rights and duties towards the NHS.

The aim of this experience paper is to present both the particular methodology

adopted to produce the guidelines and the mock-up, and the main technical innovations

of the portal, in terms of interactivity and user interface.

The Methodology Adopted in the Project. To devise the mock-up and the guidelines,

we adopted a User-Centered Design (UCD) approach, which, as standardized in the ISO

13407, identifies four principal activities: (i) understand and specify the context of use,

(ii) understand and specify the user and business requirements, (iii) design the product,

in particular by creating a prototype, and (iv) evaluate the design. In this project, we

focused on (i) – (iii), whereas activity (iv) is currently on progress. In the initial activ-

ities, the main challenge has been to understand the context and the requirements of a

portal which potentially could be visited and used by millions of citizens. In particular,

we had the need to obtain useful insights on the following questions:

– which are the health needs of the Italian population, i.e., what is the epidemiological

situation of the main diseases and risk factors for diseases in Italy?

– who searches the Internet/Web for health information, which forms she adopts to

surf the Web, and which kind of health information is actually looked for?

– what are other information needs in terms of protection and promotion of health

that could be satisfied through online communication?

– what works on Internet/Web, i.e., which types of Internet/Web health interventions

are actually efficacious and effective for improving health?

To this aim, we carried out our analysis in three main stages: (i) design and administra-

tion of an online questionnaire aimed at identifying the needs of the citizens using (also)

Internet/Web to access health information and health services; (ii) systematic study of

the literature concerning health needs and what has been discussed and demonstrated

about the effectiveness of Internet-based interventions on public health; (iii) systematic

analysis of a significative number of websites of local health administrations, in order

to derive best practices and identify the critical points to be addressed.

Then, on the basis of the outcomes, a mock-up of the portal has been devised. The

rest of the paper provides some insights on the various activities. For the full details

(including all the collected data) the reader is referred to [2].

1 cf. the Alma Ata Declaration (1978), the Ottawa Charter (1986), the Jakarta Declaration

(1998), the Bangkok Charter (2005).

 326

The On-line Questionnaire. In order to collect data concerning the online informa-

tion needs of users of the Italian NHS, we have run a survey in the period ranging from

April 14 to September 21, 2010, through the definition and the online administration of

a questionnaire. The questionnaire has been advertised on various sites, including the

current portal of the Ministry of Health, the sites of some local health organizations,

and Facebook. We collected 2381 responses, 2324 of which have been analyzed, after

checking the quality. According to those who filled out the questionnaire, the health

campaigns that should be promoted through the web sites of the Ministry of Health

and other NHS organizations, as first option, should concern blood donation (20%),

organ donation/transplantation (16%), workplace safety (13%), and responsible use of

medicines (12%). About half of the respondents consider important to find on insti-

tutional sites information on attitudes and actions necessary to maintain good health

(49%), and indications concerning the levels of quality of health services provided by

the local health organizations and hospitals (50%). For the 78% of respondents, the

data on levels of quality should be published on the portal of the Ministry of Health.

The questionnaire, the collected results, and their analysis can be found in [2].

The Review of the Literature. To understand the Internet health information needs

of the population, also to validate the online questionnaire, a systematic review of the

literature was performed. 52 cross-sectional surveys, mainly from the USA and Europe,

were considered. The analysis of the main surveys realized in USA, Europe and Italy

[6,4,1] allowed us to identify the main determinants of Internet use for health purposes,

the health information most frequently searched on the Web, and other useful data.

The evaluation of the effectiveness of health interventions delivered through Inter-

net is a difficult task. The field has suffered from a lack of clarity and consistency. The

absence of professional leadership and of accepting governing approaches, terminol-

ogy, professional standards, and methodologies has caused the field of the evaluation

of these intervention to be diffused and unstructured. The methodological quality of the

studies evaluating the effectiveness of Internet health intervention is not high, and the

possibility of some conflict of interest cannot be ruled out in some situations. Despite

these limitations, considering the most comprehensive reviews on the topic [10,8,7], it

is possible to draw different conclusions: (i) the most effective Internet health inter-

ventions are the tailored interventions, with adaptation to the user, personalization and

feedback; (ii) the sizes of these interventions could be categorized as small to medium

for population-based interventions; (iii) however, the potential impact of these inter-

ventions on population health is high, and the cost-effectiveness ratio potentially highly

favorable compared to other health interventions; (iv) however, common sense advices

to implement hybrid models, which could combine applications or tailored interven-

tions, user navigation, collaborative filtering, as well as human-to-human interactions,

considering the high popularity of the latter ones among the Internet users.

The results of the review of the literature allow us to draw a set of recommendations

for the construction of a national evidence-based health website. In summary, it should:

1. contain information concerning the physiopathology of the human body, the most

frequent diseases, risk behaviors, and health interventions of proven effectiveness,

in order to improve the health literacy of citizens (cf. Salute A–Z in Figure 1);

327

2. include tailored interventions, with adaptation, personalization and feedback,

aimed to promote healthy behaviors for disease prevention and compliance to sec-

ondary prevention programs of proven effectiveness (cf. the availability of applica-

tions on the portal, as showed later on in the portal description);

3. give accurate information on the organizational structure of the national NHS, in

order to facilitate the access to the health care organizations and, at the same time,

to promote the appropriate use of them (cf. Esplora SSN in Figure 1);

4. contain information about the performance of the different health care organizations

(hospitals, etc.) and, possibly, of physicians;

5. include systems and tools able to endorse the participation of citizens, as well as

the human-to-human interactions (cf. the use of Web 2.0 tools in the portal, as

discussed in the portal description).

An Analysis of Italian Health Websites. An analysis of Italian health organizations’

websites has been carried out in order to obtain useful indications for an effective online

communication strategy. We have identified a set of indices and organized them in 4

dimensions, that explain the concept of “quality of online health information supply”:

1. institutional identity and networking attitude: the possibility to easily identify the

site with a specific authority, and also its attitude towards the development of the-

matic and operative networks with other public health administrations or profes-

sional associations or patients’ associations working in the health service;

2. administrative transparency, based on the availability of online information regard-

ing the organizational structure of the NHS, tasks and performance, and the avail-

ability of citizen protection mechanisms/tools;

3. availability and quality of the online services, concerning not only the quality of

the website content and the use of Internet healthcare interventions, but also the

quality (interactivity) of electronic forms and of facilities for on line booking of

such services;

4. accessibility and ICT quality, referring to the different solutions for presenting and

organizing the website content, regarding both accessibility for Internet users and

technological criteria.

The analysis has considered the websites of all the Regional Governments (19 re-

gions and 2 autonomous provinces) and the websites of a sample of 84 Local Health

Authorities (out of 195 in total). Our analysis has evidenced a scenario revealing dif-

ferent online health communication strategies, with a strong local identity and with

weak coordination by and towards the central institutional level (Ministry). In order to

improve on line health communication, we suggest the following strategies:

– to recognize the centrality of citizens/patients, both in the phase of identifying and

structuring the content of websites, and during the editing of the website and the

organization of health services via the Internet;

– to strengthen the orientation and coordination role that the Ministry of Health

should play in respect of other healthcare administrations as regards information

and communication activities;

 328

– to view online health information as the result of cooperative networking between

the Ministry of Health and the other healthcare administrations (at national and

local level);

– to build a network of health public administrations and professional associations

and patients’ associations working in the health services, aimed at exchanging in-

formation and strengthening mutual legitimacy, in order to reduce the fragmenta-

tion of information and to promote wider communication.

The Portal. Figure 1 shows the homepage of the proposed mock-up. The four main

pillars of the proposal are (i) a navigation interface, on the top of the page, based on

”buttons” instead of the classical links, (ii) a large number of interactive applications,

either accessible on the portal or downloadable on mobile devices, (iii) the possibility

to customize the home page through the MyPage application and (iv) advanced search

functionalities and page-to-page correlations based on taxonomies. In terms of contents,

the (mock-up of the) portal respects the suggestions previously described.

The navigation menu based on buttons has the twofold aim of being aesthetically

more catchy than the classical one, and ready for visualization on touch devices (e.g.,

iPads, touchpads, etc.), which represent the future of Web surfing. In order to enforce

the citizen-oriented vocation of promoting good life habits, a lot of applications will

be made available, e.g., for dietary calculation, alcohol abuse control, pregnancy check

schedule, etc.; such applications, which enhance the level of interactivity of the portal

and therefore attract users, can be mobile apps to be downloaded on devices, or Web

applications accessible through the portal.

The possibility of customizing the page of the portal is an absolute novelty wrt exist-

ing public administrations/agencies, not only in Italy but, at the best of our knowledge,

all over Europe. This has been obtained by including a MyPage application, which al-

lows each registered user to personalize the information she wants to access.

The portal provides four main “channels”, i.e., sections specifically tailored to par-

ticular categories of information and possible interested users: citizens (corresponding

to La nostra salute), health and administrative operators (Attività e professioni), users

interested in institutional and organizational information (Ministro e Ministero), and

users interested in News e Media. Each section, which is managed by a specific editorial

board, has its own space in the home page, even if, in compliance with the user-centered

approach previously described, the section dedicated to citizens is predominant.

Moreover, in order to satisfies suggestions coming from the review of the literature,

a specific information system, collecting quality and performance data of healthcare

organizations, will be developed and made accessible through the portal. It is also worth

remarking that Web 2.0 tools are used throughout the portal (e.g., tag clouds, wiki and

blogs, correlations with Facebook, Twitter, etc.), in order to promote user interaction.

To provide users with powerful and effective means to retrieve the information they

are looking for on the portal, its contents are being classified according to a taxonomy,

i.e., a classification scheme which organizes in a hierarchical structure the main cate-

gories of interest in the domain. By virtue of this classification, the user can query the

portal by referring to the categories of the taxonomy, and get as reply those documents

that belong to the same or related categories. Notably, the reference to the categories

329

does not need to be explicit, i.e., the user is not required to a priori know the taxonomy

to pose queries to the portal (see also below).

In order to simplify the process of definition, validation, and maintenance of the

taxonomy, and to ease the possible integration in the portal of contents coming from

external information sources, to realize our taxonomy we analyzed existing (de-facto)

standards. Among various proposals for content classification and terminological rep-

resentation in the biomedical domain (e.g., UMLS2, ICD3, SNOMED CT4, GALEN5),

in our project we referred to MeSH (Medical Subject Headings)6 a taxonomy devel-

oped by the National Library of Medicine (NLM) of the United States. This choice has

been motivated by the fact that MeSH is specifically tailored to information retrieval

(and thus suited to our aims), contains also non-biomedical or clinical categories, and

with respect to other proposals has more compact dimensions (it includes around 22000

terms), which makes it simpler to use.

In fact, to make easier the process of content classification, we operated a simplifi-

cation of the MeSH, aimed at both reducing the number of categories and eliminating

the most technical ones. However, to not loose the advantages of adopting a (de-facto)

standard, we simply “cut” some branches of the “MeSH tree” so as to exclude too de-

tailed categories. In this process, we have been helped by domain experts. The resulting

taxonomy contains around 3500 MeSH terms.

Despite MeSH includes general purpose categories (e.g., the ones of the Disciplines

and Occupations or Phenomena and Processes branches), we found out cases in which

MeSH results insufficient in order to satisfactory classify some documents included in

the portal. To overcome this problem, we decided to include in our taxonomy some of

the categories used for article classification in (the Italian version of) Wikipedia7, and

in particular we selected the categories included in the Human Activities branch of the

Wikipedia classification schema8, which in fact substitutes in our taxonomy the (more

limited) Humanities branch of MeSH. We choose the Wikipedia classification for two

main reasons: (i) Wikipedia is one of the most popular portal on the Internet, and its

contents are widely shared among several millions of users; (ii) its category tree is

designed through a collaborative process aiming at including categories proposed by

the users, and therefore particularly suited for information retrieval activities.

We finally observe that, to further support the process of content classification in

the portal, we foreseen the development of tools helping the research of the categories

in the taxonomy. In this respect several directions can be followed: (i) realization of

keyword-based search mechanisms to directly access the categories of interest in the

taxonomy (thus avoiding to manually navigate the taxonomy); (ii) use of a dictionary

2 http://www.nlm.nih.gov/research/umls/index.html
3 http://www.who.int/classifications/icd/en/
4 http://www.ihtsdo.org/snomed-ct/
5 http://www.opengalen.org
6 http://www.nlm.nih.gov/mesh/meshhome.html
7 http://www.wikipedia.org/
8 http://it.wikipedia.org/w/index.php?title=

Speciale:AlberoCategorie&target=attivitá+

umane&mode=categories&dotree=Vai

 330

(extending the one already available with MeSH) to include in the taxonomy also syn-

onyms of categories, thus both expanding the lexicon of the taxonomy and including

more terms in it, in a way transparent to the user; (iii) definition of techniques for

automatic keyword extraction from text documents, in such a way that document clas-

sification could be done according to extracted terms, in the spirit of [3,9]. More details

on the taxonomy and the classification process in the portal of the Italian Ministry of

Health can be found in [5].

Conclusions. In this paper we have presented a project focused on the definition of

guidelines for online communication on protection and promotion of the health in the

Italian NHS (including regional health web portals, local health authorities websites,

hospital websites, etc.), and the realization of a mock-up to serve as input for a redesign

of the web portal of the Ministry of Health. The guidelines are published online and are

currently in the process of being formally adopted by all the interested administrations.

In a scenario in which all websites of the NHS organizations are realized in accordance

with such guidelines, the portal of the Ministry of Health can be also able to act as a

broker, in order to offer a centralized access to information and services of the NHS.

An interesting future issue will be to consider how users will react, with respect to trust

and privacy concerns, about the personalization features of the portal offered through

the MyPage, as they may feel as their information access requests on the portal might

be logged and analysed for potential medical information.

References

1. Disparità e prossimità. Performance dei servizi, domanda di comunicazione e malattie on-

cologiche (in Italian). Franco Angeli, 2007.

2. Linee guida per la comunicazione on line in tema di tutela e promozione della salute (in

Italian). http://www.salute.gov.it/pubblicazioni/ppRisultato.jsp?

id=1473, 2011.

3. Ananiadou, S., and McNaught, J. Text mining for biology and biomedicine. Artech House

Books, 2006.

4. Andreassen, H., Bujnowska-Fedak, M., Chronaki, C., Dumitru, R., Pudule, I., Santana, S.,

Voss, H., and Wynn, R. European citizens’ use of e-health services: a study of seven coun-

tries. BMC Public Health 7, 53 (2007).

5. Ausiello, S., De Angelis, A., Felli, P., Lembo, D., Mecella, M., and Russo, A. Ministero

della Salute: Ipotesi di progettazione e mock-up del nuovo portale orientato al cittadino e

del relativo canale (in Italian), 2010. A copy can be requested by email to the authors.

6. Fox, S., and Jones, S. The social life of health information. www.pewinternet.org/

Reports/2009/8-The-Social-Life-of-Health-Information.aspx.

7. Krebs, P., Prochaska, J., and Rossi, J. A meta-analysis of computer-tailored interventions for

health behavior change. Prev. Med. 51, (3–4) (2010).

8. Portnoy, D., Scott-Sheldon, L., Johnson, B., and Carey, M. Computer-delivered interven-

tions for health promotion and behavioral risk reduction: a meta-analysis of 75 randomized

controlled trials, 1988-2007. Prev. Med. 47 (2008).

9. Rullo, P., Policicchio, V., Cumbo, C., and Iiritano, S. Olex: effective rule learning for text

categorization. IEEE Transaction on Knowledge and Data Engineering 21, 8 (2009).

10. Strecher, V. Internet methods for delivering behavioral and health-related interventions

(ehealth). Annu. Rev. Clin. Psychol. 3 (2007).

331

(a) Homepage

(b) Menu

Fig. 1. The mock-up

 332

An approach to Content-Based Image Retrieval
based on the Lucene search engine library⋆

(Extended Abstract) ⋆⋆

Claudio Gennaro, Giuseppe Amato, Paolo Bolettieri, Pasquale Savino
{claudio.gennaro, giuseppe.amato, paolo.bolettieri, pasquale.savino}@isti.cnr.it

ISTI - CNR, Pisa, Italy

Abstract. Content-based image retrieval is becoming a popular way
for searching digital content as the amount of available multimedia data
increases. However, the cost of developing from scratch a robust and
reliable system with content-based image retrieval facilities for large
databases is quite prohibitive.

In this paper, we propose to exploit an approach to perform approximate
similarity search that is based on the observation that when two objects
are very close one to each other they ’see’ the world around them in the
same way. Accordingly, we can use a measure of dissimilarity between the
views of the world at different objects, in place of the distance function
of the underlying metric space. To employ this idea the low level image
features (such as colors and textures) are converted into a textual form
and are indexed into the inverted index by means of the Lucene search
engine library. The conversion of the features in textual form allows us
to employ the Lucene’s off-the-shelf indexing and searching abilities with
a little implementation effort. In this way, we are able to set up a robust
information retrieval system that combines full-text search with content-
based image retrieval capabilities.

1 Introduction

The continuous reduction of the cost of multimedia devices such as cameras,
camcorders, and smartphones, is driving the demand for content-based image
and video retrieval tools for multimedia digital libraries. Several attempts are
currently being made to provide these capabilities, for instance some commer-
cial products like SnapTell (http://www.snaptell.com) and Google goggles
(http://www.google.com/mobile/goggles) have been available for on-line vi-
sual search for smartphones. However, the cost of developing and deploying from
scratch a robust and reliable system with content-based image retrieval facilities
could not be within the range of possibilities for everyone.

⋆ This work was partially supported by the ASSETS project, funded by the European
Commission and by the VISITO project, funded by the Tuscany region of Italy.

⋆⋆ This work is a short version of [7].

2

In this paper, we would like to approach the problem of similarity search
by enhancing the full-text retrieval library Lucene1 with content-based image
retrieval facilities. Apache Lucene is a high-performance, full-featured text search
engine library written entirely in Java that is suitable for nearly any application
requiring full-text search abilities.

In particular, we use a technique for approximate similarity search when data
are represented in generic metric spaces. The metric space approach to similarity
search requires the similarity between objects of a database to be measured by
means of a distance (dissimilarity) function, which satisfies the metric postu-
lates: positivity, symmetry, identity, and triangle inequality. The advantage of
the metric space approach to the data searching is its “extensibility”, allowing
us to potentially work for a large number of existing proximity measures as well
as many others to be defined in the future. In contrast, many approaches need
objects to be represented as vectors and cannot be applied to generic metric
spaces.

The basic idea exploited in our approach has been independently introduced
by Amato et al [1] and Chavez et al. [4] and consists on observing that two objects
x1 and x2 are very similar (which in metric spaces means that they are close one
to each other), if their view of the surrounding world (their perspective) is similar
as well. This implies that, if we take a set of objects from the database and we
order them according to their similarity to x1 and x2, the obtained orderings
are also similar. Therefore, we can approximatively judge the similarity between
any two arbitrary objects x1 and x2, by comparing the ordering, according to
their similarity to x1 and x2, of a group of reference objects, instead of using the
actual distance function between the two objects.

Clearly, it is possible to find some special examples where very similar (or
even identical) orderings correspond to very dissimilar objects. For instance, if
reference points are all positioned on a line, two objects that are positioned on
another line orthogonal to the first one will produce the same ordering of the
reference points, independently of their actual position. However, as it has been
proved in [1], even with a random selection of the reference points, the accuracy
of this approach is very good.

Capitalizing on the work of Amato et al [1], we also use the inverted files in
our research. Another similar approach, called MiPai [5], uses a compact prefix
tree for estimating the real distance order of the indexed objects with respect
to a query. All these above mentioned approaches make use of index methods
completely designed and developed from scratch. Although the results of these
systems are quite impressive2, they probably will not easily move from research
prototypes to commercial applications due to the strong effort required to main-
tain and support such information systems. Consider, for example, Lucene: at
the time of this writing, Lucene’s core team includes about half a dozen active
developers. In addition to the official project developers, Lucene has a fairly

1 http://lucene.apache.org
2 http://mipai.esuli.it/
http://mi-file.isti.cnr.it/CophirSearch/

 334

3

Fig. 1. Example of perspective based space transformation. a) Black points are ref-
erence objects; white points are data objects; the gray point is a query. b) Encoding
of the data objects in the transformed space. c) Distance dρ and similarity s in the
transformed space.

large and active technical user community that frequently contributes patches,
bug fixes, and new features.

Moreover, only the approach in [5] provides a full-text search on descrip-
tive textual metadata, which is, however, not combined with the content-based
similarity search. Our approach instead since it is built on top of Lucene pro-
vides complex query processing by combining similarity search with the full-text
search.

The structure of the paper is as follows. Section 2 formalizes the idea of
searching by using the perspective of the objects and shows how this idea can
be efficiently supported by the use of the Lucene library. Section 3 proposes a
preliminary performance evaluation of the proposed solution.

2 Perspective based space transformation

Let D be a domain of objects and d : D ×D → R be a metric distance function
between objects of D. Let R ∈ Dm, be a vector of m reference objects chosen
from D.

Given an object x ∈ D, we represent it as the ordering of the reference
objects R according to their distance d from x. More formally, an object x ∈ D
is represented with O(x), where O(x) is the vector of ranks of all objects of R,
ordered according to their distance d from x.

We denote the rank in O(x) of a reference object ri ∈ R as Oi(x). For
example, if O4(x) = 3, r4 is the 3rd nearest object to x among those in R.

Figure 1 exemplifies the transformation process. Figure 1a) sketches a num-
ber of reference objects (black points), data objects (white points), and a query

 335

4

object (gray point). Figure 1b) shows the encoding of the data objects in the
transformed space. We will use this as a running example throughout the re-
mainder of the paper.

As we anticipated before, we assume that if two objects are very close one
to each other, they have a similar view of the space. This means that also the
orderings of the reference objects according to their distance from the two ob-
jects should be similar. There are several standard methods for comparing two
ordered lists, such as as Kendall’s tau, the Spearman Footrule Distance, and the
Spearman Rho Distance [6]. In this paper, we concentrate our attention on the
latter distance, which is also used in [4]. The reason of this choice (explained
later on) is tied to the way standard search engines process the similarity be-
tween documents and query. Given two ordered lists O(x) and O(q) (x, q ∈ D),
containing the ranks of all objects of R, the Spearman Rho Distance dρ between
O(x) and O(q) is computed as in the following:

dρ(O(x), O(q)) =

√√√√
m∑

i=1

(Oi(x)−Oi(q))2 (1)

where m is the dimension of the vector R. This distance measures the degree in
which rankings correspond with each other and it can be used in place of the
metric distance d (see Figure 1c)).

In order to reduce the search cost and also, as we will see, the size of the
index, it is convenient to take just the closest reference objects to represent any
object that has to be indexed. Let kx ≤ m be the number of reference objects
used for representing the objects. Note that, in this case, different objects will be
typically represented by different reference objects, given that different objects
will have different neighbor reference objects. This idea can be extended also to
the query, for which we can exploit a number kq ≤ kx of nearest reference objects.

If we define two approximate version of the vectors Õk, such that Õk
i (x) = k+1

for all i such that Oi(x) > k (with either k = kx or k = kq), we can still use the
distance (1), i.e:

dρ(Õ
kx(x), Õkq (q)) =

√√√√
m∑

i=1

(Õkx(x)− Õkq (q))2. (2)

In this case, we assume that x belongs to the dataset and q is the query. This
is a generalization of the Spearman Rho Distance with location parameter for
the special case l = kx = kq [6], which evaluates the distance (or dissimilarity)
of two top-k ranked lists.

Up to now, we have discussed how to compare two partial rankings of refer-
ence objects corresponding to objects and query. However, we did not say how
to implement the proposed idea into a standard full-text search engine.

Most text search engine, including Lucene, use the Vector Space model to
represent text. In this representation, a text document is represented as a vector
of terms each associated with the number of occurrences of the term in the

 336

5

document. Therefore, we have to define a textual representation each metric
object of the database so that the inverted index produced by Lucene looks like
the one presented above and that its built-in similarity function behaves like the
Spearman Similarity rank correlation used to compare ordered lists. This can be
achieved in several ways, in the following we outline our solution.

First, we associate each element ri ∈ R with a unique alphanumeric keyword
τi. Then we use the function tk(x), defined in the following, to obtain a space-
separated concatenation of zero or more repetitions of τi words:

tk(x) =

i⋃

i=1

k+1−Ok
i (x)⋃

j=1

τj

where, by abuse of notation, we denote the space-separated concatenation of
words with the union operator

⋃
. The function tk(x) returns a text represen-

tation of x such that, if ri appears in position p in the list of the k reference
objects nearest to x, then the term τi is repeated (k + 1)− p times in the text.
The function tk(x) is used to generate the textual representation of the object x
to be used for both indexing and querying purposes. Specifically, we use k = kx
for indexing and k = kq for querying.

In our case, this means that, if for instance term τi corresponding to the
reference descriptor ri (1 ≤ i ≤ m) appears n times, the i-th element of the
vector will contain the number n, and whenever τi does not appear it will contain

0. Let us refers to these vectors of size m as O
kx
(x) and O

kq
(q), which correspond

to tkx(x) and tkq (q), respectively. The cosine similarity is typically adopted to
determine the similarity of the query vector and a vector in the database of the
text search engine, and it is defined as:

simcos(O
kx
(x), Q

kq
(q)) =

O
kx
(x) ∗Q

kq
(q)

‖O
kx
(x)‖| O

kq
(q)‖

,

where ∗ is the scalar product. simcos can be used as a function that evalu-
ates the similarity of the two ranked lists in the same way as dρ(x, q) defined in
(2) does (although it is defined as a distance), and it is possible to prove that
the first one is an order reversing monotonic transformation of the second one,
and then that they are equivalent for practical aspects 3. This means that if
we use dρ(Õ

kx(x), Õkq (q)) and we take the first k nearest metric objects from
dataset (i.e, from the shortest distance to the highest) we obtain exactly the

same descriptors in the same order if we use simcos(O
kx
(x), Q

kq
(q)) and take

the first k similar objects (i.e., the greater values to the smaller ones). This is
illustrated in Figure 1c). The proof of this proposition is omitted due to space
limitations of this paper but may be demonstrated using simple mathematical
steps. To have an idea on how these textual representations look like, consider

3 To be precise, it is possible to prove that simcos(x, q) is an order reversing monotonic
transformation of d2ρ(x, q). However, since dρ(x, q) is monotonous this does not affect
the ordering.

 337

6

the example reported in Figure 1, and let us assume τ1 = RO1, τ2 = RO2, etc.
The function t will generate the following output

t5(x1) = “RO5 RO5 RO5 RO5 RO5 RO2 RO2 RO2 RO2 RO1 RO1 RO1 RO3 RO3 RO4”
t5(x2) = “RO4 RO4 RO4 RO4 RO4 RO3 RO3 RO3 RO3 RO5 RO5 RO5 RO1 RO1 RO2”
t5(x3) = “RO5 RO5 RO5 RO5 RO5 RO2 RO2 RO2 RO2 RO3 RO3 RO3 RO1 RO1 RO4”
t5(x4) = “RO3 RO3 RO3 RO3 RO3 RO5 RO5 RO5 RO5 RO2 RO2 RO2 RO1 RO1 RO4”

and for the query q:

t5(q) = “RO5 RO5 RO5 RO5 RO5 RO1 RO1 RO1 RO1 RO2 RO2 RO2 RO3 RO3 RO4”

If we exploit the idea of taking just the closest reference objects to represent
any object that has to be indexed, and assuming, for instance, kx = 3 (the
number of reference objects used for indexing), and kq = 2 (the number of
reference objects used for generating the query), the textual representations
become:

t3(x1) = “RO5 RO5 RO5 RO2 RO2 RO1”
t3(x2) = “RO4 RO4 RO4 RO3 RO3 RO5”
t3(x3) = “RO5 RO5 RO5 RO2 RO2 RO3”
t3(x4) = “RO3 RO3 RO3 RO5 RO5 RO2”

and for the query q:

t2(q) = “RO5 RO5 RO1”

This representation of an object will be clearly smaller than using all reference
objects. In addition, this has also the effect of reducing the size of the inverted
file. In fact, every object will be just inserted into kx posting lists, by reducing
their size and by also reducing the search cost.

3 A Real Application and Performance Evaluation

In this section, we report the results of an experimental evaluation of the pro-
posed method. For both testing and demonstration, we developed a web user
interface to perform image content based retrieval on the CoPhIR dataset [3],
which consists of 106 millions images, taken from Flickr (www.flickr.com), de-
scribed by MPEG-7 visual descriptors. Content based retrieval can be performed
by using similarity functions of the visual descriptors associated with the images.

We have indexed the whole CoPhIR dataset and for each image, we created
five Lucene fields which can be queried separately or in combination. The first
field contains the unique identifier of the Flickr image. The second field maintains
the textual information taken from title, and tags of the original Flickr image.
The other three fields contain the content generated by the t function explained
above for searching on three different pre-combined visual features. In particular,
in order to support content based search, the CoPhIR project extracted several
MPEG-7 visual descriptors from each image, three descriptors for describing the
colors (SCD, CSD, and CLD) and two for describing textures (EHD and HTD).
We have indexed three different aggregations of those descriptors, the first one

 338

7

Fig. 2. Recall varying the number k for different values of kq parameter (left), and
query time for different values of kq parameter (right).

combining the three color descriptors, the second one combining the two texture
descriptors, and the third one combining all five descriptors. In this way we
leave the possibility to the user to search for colors and textures independently
or to search all the descriptors together. The weights used for aggregating the
descriptors are the ones suggested in [2].

From page http://lucignolo.isti.cnr.it/cophirUI a demo web appli-
cation of the developed search engine can be found. From that page it is possible
to perform a full-text search, a similarity search starting from one of the ran-
dom selected images. Besides the three types of visual similarities, thanks to
the search functionality of Lucene, it also provides complex query processing by
combining any of the three types of similarity search with the full-text search
on descriptive metadata.

We conducted our experiments using the combination of all visual descriptors,
with 20,000 reference objects and by setting kx = 50 during the indexing. We
used the measure of the recall to assess the accuracy of the method. Specifically,

given a query object q, the recall is defined as R = #(S∩SA)
#S

, where S and SA are
the ordering of the k closest objects to q found respectively by the exact similarity
and by the proposed method. In practice, we compare the efficacy of our solution
with an algorithm that exploits a sequential scan of the whole database. The
comparison was made at the same conditions, using only the similarity obtained
as combination of all five MPEG-7 descriptors, without exploiting the textual
content. For this purpose 100 queries were randomly selected from the database.
Results are shown in Figure 2. The graphs show the recall varying the number
of items retrieved k for various options of the kq ≤ k. The performance are very
similar to the one presented in [5], where the same dataset was used.

Figure 2 also shows the average query processing time as function of kq. As
expected, the search cost increases with the size of kq, and become unacceptable
for kq > 20. This performance can be easily improved if the architecture consists
of multiple Lucene indexes, since Lucene search framework includes parallel and
multi-threads search facilities. Our index consists of ten separated Lucene in-

 339

8

dexes each one including about 1/10 of the whole dataset. If the indexes reside
on different physical disks, we may obtain performance improvements; however,
in our tests conducted with a single physical disk, the performance with multi-
thread search was slightly better than with a single-thread search. The total
space occupation of the Lucene indexes is 530GB, which means about 5.24KB
for each image record.

4 Conclusions and future work

In this paper we presented an approach to approximate similarity search in met-
ric spaces based on a space transformation that relies on the idea of perspective
from a data point. We proved through a concrete implementation that the pro-
posed approach has clear advantages over other methods existing in literature
in terms of easiness in implementation. A major characteristic of the proposed
technique is that it can be implemented by using inverted files, thus capitalizing
on existing software investments. There are still some issues that are worth of
investigations to further improve this technique. For instance, we can improve
the quality of the approximation by reordering the first k objects of the result
according to the actual distance d used in the original space of the object.

References

1. G. Amato and P. Savino. Approximate similarity search in metric spaces using
inverted files. In Proceedings of the 3rd international conference on Scalable infor-
mation systems (InfoScale ’08), pages 1–10. ICST, 2008.

2. M. Batko, P. Kohoutkova, and D. Novak. Cophir image collection under the mi-
croscope. Similarity Search and Applications, International Workshop on, 0:47–54,
2009.

3. P. Bolettieri, A. Esuli, F. Falchi, C. Lucchese, R. Perego, and F. Rabitti. Enabling
content-based image retrieval in very large digital libraries. In Second Workshop on
Very Large Digital Libraries (VLDL 2009), pages 43–50. DELOS, 2009.

4. E. Chavez, K. Figueroa, and G. Navarro. Effective proximity retrieval by ordering
permutations. IEEE Transactions on Pattern Analysis and Machine Intelligence,
30:1647–1658, 2007.

5. A. Esuli. Pp-index: Using permutation prefixes for efficient and scalable approximate
similarity search. In Proceedings of the 7th Workshop on Large-Scale Distributed
Systems for Information Retrieval (LSDS-IR09), pages 17–24, 2009.

6. R. Fagin, R. Kumar, and D. Sivakumar. Comparing top-k lists. SIAM J. of Discrete
Math., 17(1):134–160, 2003.

7. C. Gennaro, G. Amato, P. Bolettieri, and P. Savino. An approach to content-based
image retrieval based on the lucene search engine library. In Proceeding of the 14th
European Conference on Research and Advanced Technology for Digital Libraries
(ECDL 2010), LNCS.

 340

A semantics-enabled registry for Web APIs
recommendation (extended abstract)

Devis Bianchini, Valeria De Antonellis and Michele Melchiori

Dipartimento di Ingegneria dell’Informazione
Universita’ degli Studi di Brescia, Via Branze, 38, 25123 Brescia

{bianchin|deantone|melchior}@ing.unibs.it

Abstract. Currently, Web applications can be quickly developed by
combining existing APIs, independently provided by third parties, that
make available ready-to-use functionalities and access to contents. This
approach is gaining a lot of interest as an opportunity to integrate con-
tents and application logics from independent sources with a limited ef-
fort. In this paper we present a semantics-enabled registry for Web API
and we address the problem of supporting the retrieval and exploratory
browsing of available Web APIs. Web APIs are semantically annotated
and organized in the registry according to similarity and coupling cri-
teria. The content of the registry is validated on the basis of collective
knowledge available on the Web.

1 Introduction

With the advent of Web 2.0, users are more and more directly involved in the
development of new Web applications, starting from many available Web APIs,
independently provided by third parties. The roles of Web API provider and
Web application designer are distinct in space and time: the former role is de-
voted to the creation of Web APIs, taking into account all technical details and
technological issues, the latter mainly concentrates on Web APIs choice and
composition, with a limited developing effort.

Several efforts have been devoted to the design of tools which support im-
proved development of Web applications, often referred to as Web mashups [7].
The general problem is allowing a developer to explore and understand the space
of pubblicly available Web APIs. Moreover, we aim at supporting the develop-
ment process in a proactive way by suggesting the more suitable APIs at design
time.

In [3], a faceted classification of unstructured Web APIs and a ranking algo-
rithm have been applied to the ProgrammableWeb APIs repository to improve
the search mechanism. The classification and searching solution is still based on
IR techniques. The MatchUp system described in [4] addresses the problem of
proactive suggestion of components, described according to a formal model based
on Datalog rules, focusing in particular on the auto-completion of mashups: when
the designer selects a component, the system suggests other components to be
connected on the basis of recurrent patterns of components in the repository.

The iServe registry [8] provides a platform for publishing both RESTful and
WS* services semantically annotated to better support their discovery. The fo-
cus is on semantic annotation and publishing. A Web-based interface which
supports mashup of semantic-enriched Web APIs is proposed in sMash [5]. Pos-
sible mashups are shown as a graph, where each vertex represents an API and
an edge between two APIs means that they are mashupable, that is, they can
be used together in a mashup.

In this paper, main goal is to describe the design of a semantics-enabled
Web API registry, where Web API descriptors are stored according to a concep-
tual model which abstracts from implementation aspects and includes semantic
annotation with respect to domain ontologies. We highlight the relevance of se-
mantic annotation to enable a semi-automatic composition of Web APIs. With
respect to existing systems, we provide Web APIs selection by relying on simi-
larity and coupling criteria and by taking into account the collective knowledge
on past Web applications built starting from the Web APIs (see, for example,
www.programmableWeb.com where about 3000 APIs and 5700 applications are
published). More in general, our approach aims at building a framework for
application development based on Web APIs that includes a high level phase
of APIs selection and composition, separated from the low level activities of
programming code writing to actually glue the selected APIs.

In the registry, Web API descriptors are organized by means of semantic
links, set by computing similarity-based coefficients introduced in [2]. These co-
efficients are obtained through the application of matching techniques which rely
on the semantic annotation of Web API descriptors. We distinguish two kinds
of semantic links: functional similarity links between descriptors which provide
similar functionalities, functional coupling links between descriptors whose in-
puts/outputs are coupled. The content of the registry is validated on the basis of
collective knowledge available on the Web. Registry browsing, driven by semantic
links, will provide an interactive and proactive support to the Web application
designer. Registry browsing is implemented through a Web-based graphical user
interface. The registry is intended to be used in an integrated way with tools
and frameworks for the improved creation of Web applications based on available
Web APIs provided by third parties.

The paper is organized as follows: Section 2 introduces our vision; the Web
API model on which the registry is based and the registry organization are
described in Section 3; Section 4 presents the Web-based interface to browse the
registry contents; finally, Section 5 closes the paper and points out future work.

2 The approach

Consider for example a common estate Web application to search for a new home
or to find mortgage rates. The Web application designer starts to build the ap-
plication by choosing among available Web APIs and integrating their respective
GUIs: Web APIs which allow to specify searching criteria for a mortgage, such
as the property type or the desired minimum and maximum price; Web APIs
to present estate agencies advertisements; a Google map that visualizes search

 342

Fig. 1. The approach steps.

results on a map and also provides road markings. A set of common elements can
be identified in Web APIs descriptions: (i) inputs and outputs; (ii) operations,
usually associated with buttons or links on the Web API graphical interface; (iv)
events, to model the interactions of the user with the Web API interface that
trigger operations on the other Web APIs. However, the descriptions of APIs
are featured by semantic heterogeneities that hinder their discovery as well as
how they can be composes: as a very simple example, to identify a geograph-
ical position, the term Coordinates could be used in a Web API for estate
advertisements, while the terms Position and latLng in the Google map API.

In this context, approaches and techniques to search and proactively suggest
Web APIs to be combined in a Web application constitute important issues on
which this paper aims at giving a contribution.

In our vision, the Web APIs are semantically annotated and made available
to be assembled through the steps shown in Figure 1.

– Semantic annotation. Available Web APIs are semantically annotated by
associating API elements (inputs/outputs/operations) to concepts defined
in domain ontologies. The result of this phase is a collection of semantic
descriptors, whose structure is described in Section 3.1.

– Matching and linking of semantic descriptors. Semantic-based matching tech-
niques are applied to the semantic descriptors to organize them in a registry.
The description of the registry and its use are the focus of this paper.

– Web API recommendation. Organization of Web APIs in the registry is ex-
ploited to provide: (i) proactive suggestion of Web APIs with respect to their
similarity with the designer’s requirements; (ii) interactive support to the de-
signer for Web APIs composition, according to an exploratory perspective.

3 Semantics-enabled Web APIs organization

The registry we propose in this paper is composed of: (i) semantic-enriched de-
scriptors of available Web APIs, that abstract from the implementation aspects

 343

and, specifically, include semantic annotation with respect to domain ontologies;
(ii) semantic links to organize Web APIs, distinguishing between similarity links,
set between descriptors that provide similar functionalities, and coupling links,
set between descriptors that can be integrated in the same Web application.

3.1 Semantic descriptor for Web APIs

The description of Web APIs as found on the Web typically relies on non struc-
tured HTML documentation that makes difficult machine processing. Therefore
techniques, formats and tools for semantic annotation of hRESTS Web APIs
based on lightweight semantic models as MicroWSMO have been proposed in [6]
to abstract from APIs heterogeneities. Semantic annotation of Web APIs re-
quires that: (i) APIs are classified with respect to categories, that are taken
from standard taxonomies available on the Web (identified by a taxonomy URI);
(ii) operation names, inputs and outputs and event outputs are annotated with
concepts, extracted from domain ontologies and identified by a concept URI.
Domain ontologies are built by domain experts and can be designed ad-hoc for a
particular application or can be made available on the Web for general purposes.
If a suitable ontology is not available, it must be created first, for example us-
ing common editors (such as Protégé OWL). We do not commit any particular
ontology formalism.

Semantic annotation of Web APIs is performed according to the following
steps: (a) identification of elements (that is, operations, inputs, outputs) in the
unstructured HTML document which represents the Web API, to produce an
hRESTS description (using the SWEET tool [6]); (b) search for ontologies suit-
able for elements annotation and of taxonomies of categories for Web API clas-
sification; (c) annotation and classification of the Web API according to the
MicroWSMO notation. The MicroWSMO description of the API, extended with
semantically annotated events, is represented as a semantic descriptor [2]. For-
mally, we define a semantic descriptor SDi as:

SDi = 〈CATi, OPi, EVi〉 (1)

where: CATi is a set of categories, OPi is a set of operations, EVi is a set
of events. Each operation opk ∈ OPi is described by the operation name opk,
the operation inputs IN(opk) and the operation outputs OUT (opk), that are
annotated with concepts taken from the reference domain ontologies. Each event
evh ∈ EVi is described by the set of ontological concepts which annotate the
event outputs OUTev(evh) as well.

3.2 Similarity-based organization of Web APIs

Descriptors in the registry are related in two ways: (i) pairs of descriptors which
perform the same or similar functionalities are connected through a functional
similarity link; (ii) pairs of descriptors which provide complementary function-
alities and can be composed in a Web application are connected through a func-
tional coupling link. Functional similarity and coupling have been detailed in [2].

 344

A functional similarity link between two semantic descriptors SDi and SDj

is set if their categories are compatible (that is, at least one SDj category is the
same or less specific than one SDi category) and is formally defined as:

〈SDi, SDj , SimIO(SDi, SDj)〉 (2)

where SimIO(SDi, SDj)≥δ is the functional similarity degree and δ ∈ [0, 1] is
a threshold experimentally set. The functional similarity degree is computed to
quantify how much SDj provides at least the operations and I/Os required in
SDi; no matter if SDj provides additional operations and I/Os. The building
block of this expression is the Dice coefficient [9], used in Information Retrieval
and the computation of a concept affinity CAff() between pairs of, respectively,
(i) operations, (ii) I/Os parameters, (iii) event outputs and operation inputs,
used in the semantic descriptors to be matched. The coefficient CAff ∈ [0..1]
evaluates the similarity between two concepts. To this purpose, we rely on tech-
niques such as those extensively defined in [1]. Here we simply state that CAff

is based on both a terminological (domain-independent) matching based on the
use of WordNet and a semantic (domain dependent) matching based on ontology
knowledge.

Functional coupling links between events EVi raised by a semantic descriptor
SDi and operations OPj caught by a semantic descriptor SDj is formally defined
as

〈SDi, SDj , CouplIO(SDi, SDj)〉 (3)

where CouplIO(SDi, SDj)≥θ is the coupling degree and θ ∈ [0, 1] is a thresh-
old experimentally set. CouplIO() is obtained by computing values of event-
operation coupling coefficients, CouplEvOp(evi, opj), evaluated as the average
CAff() between the outputs of evi∈EVi and the inputs of opj∈OPj .

Let be SD the set of semantic descriptors, OP (SD) (resp., EV (SD)) the
overall set of operations (resp., events) for all the semantic descriptors in SD,
M c the set of candidate correspondences between annotated event outputs and
operation inputs automatically detected during the functional coupling evalua-
tion. The registry is defined as a 3-uple 〈SD,SL, CL〉, where SL⊆SD×SD×[0, 1]
is the set of similarity links between descriptors and CL⊆SD×SD×[0, 1]×M c is
the set of coupling links between event/operation pairs.

3.3 Tag-based validation of coupling links

Coupling links established between descriptors according to the techniques ex-
plained in the previous section are validated with reference to Web applications
actually built and described in public repositories. To this purpose, we con-
sider public repositories like programmableWeb.com that collect: (i) tagged Web
APIs, (ii) Web applications built on these Web APIs. The validation occurs
when the API is stored in the registry. In particular, joint occurrence within the
same Web application of pairs of components tagged with tags associated with
SDi and SDj is searched and took into account as a further source of evidence
for the composition pattern represented by the coupling link between SDi and
SDj. In our approach, for each descriptor SDi in the registry, we maintain the
set TAG(SDi) of its tags collected accessing programmableWeb.com through its

 345

APIs1. Moreover, each coupling link from SDi to SDj is set as strong if exists
at least a pair of tags, tih ∈ TAG(SDi) and tjk ∈ TAG(SDj), such that the
following conditions hold:

– Support(tih, tjk) ≥ γsupp

– Confidence(tih, tjk) ≥ γconf

Otherwise, the link is set as weak. Values γsupp γconf are thresholds that set the
minimal acceptable values of confidence and support for validating a link. The
coefficients Support(tih, tjk) and Confidence(tih, tjk), defined in Table 1, are
the usual coefficients used in data mining to discover association rules between
data items and are evaluated on the whole set of Web applications available
on the public repository. Specifically, the first one measures the frequency of
joint occurrences of tih and tjk in the repository; the second one quantifies how
strong is the following implication: the presence of tih in an application implies
the presence of tjk in the same application. The higher the values of support
and confidence, the stronger the evidence that developers combine in the same
application some Web APIs having the same tags featuring SDi and SDj.

Tag-based support and confidence

support(tih, tjk) =
#WA including comp. C1, C2, with tih∈TAG(C1) and tjk∈TAG(C2)

#WA
∈ [0, 1]

confidence(tih, tjk) =
#WA including comp. C1, C2, with tih∈TAG(C1) and tjk∈TAG(C2)

#WA including comp. C1 with tih∈TAG(C1)
∈ [0, 1]

where #WA is the number Web Applications

Table 1. Support and confidence coefficients.

4 A Web-based interface for proactive suggestion of Web
APIs

The Web API registry is meant to support an application design tool currently
under development. The Graphical User Interface (GUI) presented in the fol-
lowing is part of this tool. In particular, the GUI shown in Figure 2 has been
implemented to facilitate registry browsing. Descriptors and links are stored in
a relational database. The interface has been implemented using the ZK open
source framework, providing a library of AJAX components to implement dif-
ferent search functionalities on the registry:

1 http://api.programmableweb.com/.

 346

Fig. 2. Graphical User Interface to show the results of the experimental validation.

– search by category, in the upper-left part of the interface, enables filtering
of Web APIs according to their category; the category is selected in the
“Search for categories” field;

– search by keyword, in the upper-right part of the interface, enables tra-
ditional keyword-based retrieval of components; the keywords are specified
in the “Search for components” field and are matched against the names
of the Web APIs, the names of their inputs/outputs or the names of their
operations;

– browse by similarity, on the left, enables browsing according to simi-
larity degree between Web API descriptors; the selected descriptor SDi is
highlighted as a circle in the center of the “Similarity link” panel (e.g., the
FindShops descriptor in Figure 2); all the descriptors SDj related to SDi

through a similarity link are displayed as circles around SDi; the size of
each circle is proportional to the SimIO(SDi, SDj) value; for example, the
FindShops descriptor is more similar to the MusicShop descriptor than to
the FindLibrary one; by moving the mouse on a descriptor, a tooltip shows
details about the descriptor itself;

– browse by coupling, on the right, enables browsing according to coupling
degree between Web API descriptors; the selected descriptor SDi is high-
lighted as a pentagon in the center of the “Coupling link” panel (see, for
example, the FindShops descriptor in Figure 2); other descriptors SDj cou-
pled with SDi are shown as hexagons around the pentagon; the size of each
hexagon is proportional to the CouplIO(SDi, SDj) value; for example, the
MapViewer descriptor presents a CouplIO(SDi, SDj) value that is higher
then the HelloGeoMap descriptor. A filter is available in the registry GUI to
restrict the result to show only strong links.

Planned experimentation and validation. We plan to experimentally eval-
uate the registry prototype according to effectiveness and efficacy. The effective-

 347

ness of the registry will be investigated according to the recall and precision of
the search functionalities that we discussed above. In this test, a domain expert
will manually define the set of Web APIs that are similar or coupled with re-
spect to a given request. Then the number of relevant APIs identified through the
search functionalities will be counted and compared with: (i) the total number
of APIs returned by the system (precision); and (ii) the total number of relevant
APIs manually identified in the dataset (recall). Then we intend to evaluate the
efficiency of the registry by analyzing the response time of the system with re-
spect to the number of Web APIs in the registry (population) for adding a new
component to the registry and setting the similarity and coupling links.

5 Conclusions and future work

In this paper we presented a semantic-enabled registry of Web APIs. Web API
are semantically annotated and organized in the registry according to similarity
and coupling criteria. The registry is intended to be used in an integrated way
with tools and frameworks for easy creation of Web applications starting from
available Web APIs, implementing different kinds of search modalities based
on the registry structure. Experimentation will be performed to evaluate the
effectiveness of registry in terms of precision and recall for selection of coupled
and similar Web APIs. Moreover, we plan to evaluate the scalability of the
system to publish new Web APIs with respect to the registry size.

References

1. D. Bianchini, V. De Antonellis, and M. Melchiori. Flexible Semantic-based Service
Matchmaking and Discovery. World Wide Web Journal, 11(2):227–251, 2008.

2. D. Bianchini, V. De Antonellis, and M. Melchiori. A recommendation system for se-
mantic mashup design. In Proc. of Ninth International Workshop on Web Semantics
- WebS 2010 - DEXA Workshops, pages 159–163, 2010.

3. K. Gomadam, A. Ranabahu, M. Nagarajan, A. Sheth, and K. Verma. A Faceted
Classification Based Approach to Search and Rank Web APIs. In ICWS, pages
177–184, 2008.

4. O. Greenshpan, T. Milo, and N. Polyzotis. Autocompletion for Mashups. In Proc.
of the 35th Int. Conf. on Very Large DataBases (VLDB’09), pages 538–549, 2009.

5. Bin Lu, Zhaohui Wu, Yuan Ni, Guo Tong Xie, Chunying Zhou, and Huajun Chen.
smash: semantic-based mashup navigation for data api network. In 18th Interna-
tional World Wide Web Conference (WWW2009), pages 1133–1134, 2009.

6. M. Maleshkova, C. Pedrinaci, and J. Domingue. Semantic annotation of Web APIs
with SWEET. In Proc. of 6th Workshop on Scripting and Development for the
Semantic Web, 2010.

7. Anne H. H. Ngu, Michael Pierre Carlson, Quan Z. Sheng, and Hye young Paik.
Semantic-based mashup of composite applications. IEEE Trans. on Services Com-
puting, 3(1):2–15, 2010.

8. Carlos Pedrinaci, Dong Liu, Maria Maleshkova, David Lambert, Jacek Kopecky,
and John Domingue. iserve: a linked services publishing platform. In Ontology
Repositories and Editors for the Semantic Web (ORES2010), May 2010.

9. C. J. van Rijsbergen. Information Retrieval. Butterworth, 1979.

 348

Link Prediction su Reti Multidimensionali

Giulio Rossetti Michele Berlingerio Fosca Giannotti
KDDLab, ISTI-CNR, Pisa, Italy
{name.surname}@isti.cnr.it

Sommario L’analisi di reti complesse è un campo di ricerca interdi-
sciplinare, che vede coinvolti fisici, sociologi, matematici, economisti e
informatici. In questo articolo estendiamo la formulazione classica del
problema del Link Prediction allo scenario delle reti multidimensionali,
ossia quelle reti che ammettono più di un link fra due entità. Introducia-
mo una nuova formulazione che tenga conto delle informazioni multidi-
mensionali espresse dalle reti analizzate, e alcune famiglie di predittori
progettati appositamente per sfruttare tali informazioni. Presentiamo
infine una valutazione sperimentale dell’applicazione delle soluzioni pro-
poste a reti multidimensionali reali. I risultati preliminari ottenuti sono
incoraggianti, e spingono verso una ricerca più estensiva di soluzioni al
problema del Link Prediction su reti multidimensionali.

1 Introduzione

Durante gli ultimi anni si è assistito al sorgere, nella comunità scientifica, di un
grande interesse per l’analisi e l’estrazione di conoscenza dalle reti complesse che
oggi dominano il mondo reale. Una delle direzioni di ricerca è legata all’analisi
e la comprensione delle dinamiche evolutive che regolano nel tempo la struttura
delle reti. Il tempo nelle reti può giocare un duplice ruolo: nel primo la struttura
della rete evolve e si assiste all’apparizione di nuovi nodi o archi, mentre nel
secondo, al passare del tempo, vengono compiute delle azioni da parte dei nodi
(gli utenti di un social network si scambiano messaggi, ricercatori collaborano
alla stesura di articoli, e via discorrendo). A causa della dinamicità delle reti, è
comprensibile che l’interesse di numerosi lavori si sia incentrato sulla ricerca di
pattern evolutivi che siano in grado di predire come queste evolvano nel tempo.

Recentemente, alcuni ricercatori si sono accorti che molte delle reti reali sono
multidimensionali, ossia una coppia di nodi può essere connessa da più relazioni,
che chiamiamo dimensioni. Differenti dimensioni possono rappresentare o tipi
di relazione differenti (amicizia, parentela, ecc.), oppure diversi valori dello stes-
so tipo di relazione (come per esempio la collaborazione in diverse conferenze).
Nel mondo reale esistono diversi esempi di reti multidimensionali, come la rete
completa dei trasporti (dove treno, autobus, aereo, e nave sono quattro delle
dimensioni possibili), le reti sociali (dove due persone possono essere connesse
perché sono amiche, o giocano nella stessa squadra, o partecipano agli stessi even-
ti), o le reti di collaborazione (dove ogni conferenza è una dimensione diversa).
Appare chiaro come questo tipo di reti, rispetto a quelle usualmente studiate in
letteratura, presentino un ulteriore grado di libertà nella loro complessità, ossia

le dimensioni. Diventa infatti interessante studiare le relazioni che intercorrono
fra diverse dimensioni, l’importanza di una dimensione sulle altre, il fatto che
due dimensioni si escludano a vicenda, e via discorrendo. In questo scenario, pen-
sando al problema dell’analisi dell’evoluzione delle reti, una possibile domanda
interessante da porsi è in quale o quali dimensioni apparirà più probabilmente
un nuovo arco.

La multidimensionalità comporta la necessità di sostituire il modello usual-
mente utilizzato come base per l’analisi di reti, i grafi semplici, con uno più
espressivo, i multigrafi. Come conseguenza di tale sostituzione, diviene necessa-
rio rivedere gli approcci algoritmici già studiati per i principali problemi di Data
Mining in modo da tener conto delle ulteriori informazioni topologiche a dispo-
sizione per l’analisi. Congiuntamente alle informazioni inerenti la dimensionalità
è interessante, soprattutto per gli studi incentrati sull’evoluzione delle reti, avere
la possibilità di osservare, con il maggior dettaglio possibile, la cronistoria della
rete oggetto di analisi. Una descrizione dettagliata della storia evolutiva di una
rete consente, infatti, di raffinare i risultati ottenuti sfruttando una ancora più
vasta fonte di informazioni.

In questo articolo ci occupiamo dell’evoluzione temporale di una rete mul-
tidimensionale introducendo un’estensione multidimensionale del problema del
Link Prediction (la predizione di nuovi archi in una rete in evoluzione), e definia-
mo formalmente alcune classi di predittori che tengano conto delle informazioni
di correlazione e anticorrelazione tra le dimensioni. Presentiamo quindi, bre-
vemente, alcune reti multidimensionali, utilizzate per l’analisi sperimentale, e
illustriamo i principali risultati preliminari ottenuti.

2 Definizione del problema

In [7], il problema del Link Prediction viene definito, data una rete sociale os-
servata ad un istante temporale t, come il problema di predire gli archi che si
andranno ad aggiungere ad essa negli istanti successivi a t. Una volta introdotta
la multidimensionalità tale formulazione del problema deve essere necessaria-
mente estesa: le nuove informazioni fornite dalla rete introducono una maggiore
complessità poiché i risultati proposti dai modelli predittivi devono riuscire a di-
scriminare le dimensioni in cui compariranno gli archi predetti. Diamo di seguito
una definizione formale del problema per l’ambito multidimensionale.

Definizione 1 (Link Prediction Multidimensionale) Sia G = (V,E, L, T)
un multigrafo, non orientato, definito dagli insiemi finiti V dei nodi, E degli
archi, L delle dimensioni e T degli istanti temporali associati agli archi.

Il problema del Link Prediction, dato un multigrafo G ed un istante temporale
t′ > max{t : t ∈ T} ha come obiettivo predire gli archi che entreranno a far parte
del grafo originario in tale istante futuro e la specifica dimensione in cui essi si
formeranno.

Per ogni arco predetto - identificato dalla tripla (nodo, nodo, dimensione) -
deve inoltre essere calcolato uno score di confidenza della predizione.

 350

Come vediamo, quindi, la multidimensionalità aggiunge un grado di libertà
al problema: non ci interessa solo sapere quali coppie di nodi si connetteranno in
futuro, ma vogliamo anche sapere in quali dimensioni questo avverrà. In sezione
4 introduciamo alcune misure multidimensionali a supporto della soluzione al
problema, mentre in sezione 5 introduciamo alcune famiglie di predittori.

3 Lavori Correlati

Molte pubblicazioni hanno trattato il problema del Link Prediction in reti mo-
nodimensionali e i principali modelli evolutivi sfruttati per effettuare un’analisi
predittiva sulle reti sociali. Le soluzioni predittive analizzate in letteratura pos-
sono essere suddivise in non supervisionate e supervisionate a seconda che queste
propongano formule chiuse, indipendenti dalla rete da analizzare, per effettuare
la predizione, oppure guidino la fase predittiva tramite l’ausilio di informazioni
topologiche estratte dalla rete stessa.

Fra i predittori non supervisionati, in [8] viene introdotta una soluzione ba-
sata sul principio del preferential attachment, mentre in [1] viene introdotto un
modello basato invece sulle caratteristiche quantitative dei nodi comuni. Una
buona rassegna dei modelli non supervisionati è [7], in cui gli autori confronta-
no empiricamente molti dei classici approcci di questo tipo. Nel nostro artico-
lo, modifichiamo alcuni di questi predittori in modo da adattarli allo scenario
multidimensionale.

Due predittori supervisionati sono invece [5] e [4], il primo dei quali, basato
sull’estrazione di regole evolutive frequenti [2], non solo è anche in grado di
predire nuovi nodi, ma utilizza tutta la storia temporale degli archi presenti
nella rete.

In [6] gli autori presentano il problema di predire archi positivi (trust) e ne-
gativi (distrust). Sebbene questo possa sembrare una formulazione multidimen-
sionale del Link Prediction, il problema affrontato è in realtà di classificazione,
poichè viene predetta solo l’etichetta dell’arco.

4 Misure multidimensionali

Come abbiamo visto, nella letteratura del Link Prediction, molti predittori si
basano su misure strutturali calcolate sulla rete. In analogia, i modelli che pro-
poniamo in questa sezione sono basati su misure multidimensionali. Innanzitutto,
quindi, vediamo qui alcune misure su reti multidimensionali su cui i nostri pre-
dittori sono basati. Per la natura preliminare di questo lavoro, presentiamo qui
solo alcune delle misure utilizzate.

L’introduzione della multidimensionalità nel modello analizzato causa la ne-
cessità di rivedere parte delle misure utilizzate comunemente nell’analisi di reti:
in particolare è necessario definire nuovamente i concetti di neighbors e di degree
di un nodo. Mentre, infatti, in un grafo semplice non orientato, le due coincidono,
ciò non accade più in un multigrafo.

351

Facendo riferimento a [3], in cui gli autori hanno introdotto un framework
per l’analisi di reti multidimensionali, riportiamo una variante multidimensio-
nale della misura di neighbors, una misura atta a cogliere l’importanza che una
specifica dimensione può avere nella rete sulle altre, e due misure che contano
la frazione di nodi e di archi presenti in una dimensione. Introduciamo, infine,
una nuova misura multidimensionale, che estende il framework citato, mirata a
pesare un arco in una dimensione relativamente alla sua storia temporale.

Definizione 2 (NeighborsXor) Sia v ∈ V un nodo di una rete G e D ∈ L un
insieme di dimensioni. La funzione NeighborsXor: V × P (L) → N (dove P (L)
identifica l’insieme delle parti di L), definita come:

NeighborsXor(v,D) =
∑

u∈V

kuv(D) (1)

dove

kuv(D) =

{
1 se ∀(u, v, d) ∈ E : d ∈ D
0 altrimenti

(2)

calcola il numero di vicini del nodo v raggiungibili tramite dimensioni in D, e
non tramite archi etichettati con altre dimensioni.

Definizione 3 (Dimension Relevance Weighted) Sia v ∈ V un nodo in
una rete G e D ∈ L un insieme di dimensioni. La funzione Dimension Relevance
Weighted: V × P (L) → [0, 1], è definita come:

DRW (v,D) =

∑
u∈N NeighborsSet(v,D)nuvd

nuv

Neighbors(v, L)
(3)

dove: NeighborsSet(v,D) identifica il numero dei nodi vici a v raggiungibili tra-
mite archi etichettati da dimensioni appaetenenti all’insieme D, Neighbors(v, L)
identifica il numero dei nodi vicini a v raggiungibili tramite archi appartenen-
ti ad una qualsiasi dimensione, nuvd denota il numero di dimensinoni in cui
compaiono archi tra i nodi u e v appartenenti a D, e nuv denota il numero di
dimensioni in cui compaiono archi tra u e v. Questa misura calcola la frazio-
ne di vicini direttamente raggiungibili dal nodo v seguendo archi appartenenti
solo alle dimensioni incluse in D, pesata rispetto alle altre possibili dimensioni
connettenti ciasun vicino.

Definizione 4 (Ndd) Dati V l’insieme dei vertici, D l’insieme delle dimensio-
ni (con d ∈ D) e E l’insieme degli archi della rete si definisce il coefficiente di
Node Dimension Degree come:

Ndd(d) =
| {u ∈ V |∃v ∈ V : (u, v, d) ∈ E} |

|V |
(4)

Definizione 5 (Edd) Dati V l’insieme dei vertici, D l’insieme delle dimensioni
(con d ∈ D) e E l’insieme degli archi della rete si definisce il coefficiente di Edge
Dimension Degree come:

Edd(d) =
| {(u, v, d) ∈ E|u, v ∈ V } |

|E|
(5)

 352

Definizione 6 (Wpres) La funzione Wpres calcola il totale degli istanti - pesato
in base all’ordine temporale - in cui un determinato arco è comparso nella rete
nella dimensione specificata. Archi comparsi in istanti recenti hanno un peso
maggiore.

Wpres(u, v, d) =
∑

{t|(u,v,d,t)∈E}

Πt (6)

dove Πt indica il peso dell’istante temporale t.

5 Modelli Predittivi

Per affrontare il problema del Link Prediction sono stati proposti, in letteratura,
molteplici modelli sia supervisionati che non supervisionati. La grande vastità
e diversità dei modelli definiti deriva dall’aver ipotizzato, o estratto, differenti
pattern evolutivi da eterogenee tipologie reti. In analogia, in questa sezione, in-
troduciamo diverse classi di predittori da noi definiti. Per la natura preliminare
di questo lavoro e per ragioni di spazio, introduciamo solo due famiglie di pre-
dittori. Facciamo notare, però, che è possibile combinare diversi predittori fra
loro, oppure moltiplicarli per una o più delle misure sopra definite, in modo da
catturare più segnali sovrapposti nell’evoluzione della rete. Questo è esattamen-
te l’approcio seguito in [5], dove gli autori presentano diverse combinazioni fra
il loro predittore basato sulle regole di evoluzione frequenti e alcuni predittori
classici come Adamic-Adar e Common Neighbors.

Come prima soluzione, abbiamo modificato alcuni dei classici modelli non
supervisionati (sono stati presi in considerazione Adamic-Adar, Common Nei-
ghbors e Jaccard) e li abbiamo adattati allo scenario multidimensionale. Per fare
ciò, abbiamo semplicemente sostituito la misuraNeighbors da essi utilizzata, con
la sua variante NeighborsXor in modo da poter discriminare la dimensione degli
archi predetti. In questo modo abbiamo creato una base sperimentale per il con-
fronto dei successivi predittori, le cui performance sono state valutate rispetto a
questi modelli.

Una soluzione più avanzata è stata quella di combinare i tre predittori base
con le misure multidimensionali Ndd, Edd, e Wpres (utilizzate come coefficienti
moltiplicativi degli score) in modo da poter valutare se l’introduzione di ulteriori
informazioni sulla struttura multidimensionale della rete riescono a garantire
predizioni migliori.

L’ultima soluzione sperimentata è basata sulla misura DRW introdotta in
precedenza. Contrariamente a quanto fatto finora, non utilizziamo i modelli base
nella predizione, ma ci affidiamo esclusivamente ad un modello ideato ad hoc e
alle informazioni temporali fornite dalla rete.

Definizione 7 (WDR) Siano u, v ∈ V nodi della rete e d ∈ D una dimen-
sione: il predittore WeightedDimensionRelevance con informazioni di Weighted
Presence è definito come:

WDR(u, v, d) = DRW (u, d) ∗DRW (v, d) ∗ (1 +Wpres(u, v, d)) (7)

353

Durante la fase sperimentale abbiamo in realtà definito e provato diverse
combinazioni di predittori, aggregati (non solo moltiplicazione), e coefficienti.
Tuttavia, per ragioni di spazio e data la natura preliminare del lavoro, vediamo
solo gli esperimenti relativi ai predittori sopra definiti.

6 Analisi Sperimentale

In questa sezione vediamo i risultati preliminari ottenuti applicando i nostri
predittori ad alcune reti reali. Ciasuna rete è stata divisa in training e test set, e
l’accuratezza dei predittori è stata misurata sul test set tramite curve ROC. Tale
modalità di comparazione è stata scelta poiché consente una più facile lettura
dei risultati ottenuti rispetto a quanto offerto dalle curve di Precision/Recall.

6.1 Reti Multidimensionali

Abbiamo utilizzato reti di diversa natura, ed in particolare:

– IMDb1: rete di attori cinematografici. Due attori sono connessi se hanno par-
tecipato ad uno stesso film in uno stesso anno, e le dimensioni rappresentano
la tipologia del film. Nodi: 43.867, dimensioni: 28. Il training set è composto
da 216.544 archi appartenenti ad un arco temporale di 10 anni (1998-2007),
il test set da 54.749 archi appartenenti all’anno successivo.

– DBLP2: rete di collaborazioni scientifiche. Due autori sono connessi se hanno
partecipato alla stesura di un articolo in uno stesso anno, e le dimensioni sono
definite dalle specifiche conferenze. Nodi: 30.176, dimensioni: 28. Il training
set è composto da 78.956 archi appartenenti ad un arco temporale di 10 anni
(1998-2007), il test set da 14.650 archi appartenenti all’anno successivo.

– GCD3: rete di fumettisti. Due fumettisti sono connessi se hanno partecipato
alla stesura di uno stesso numero di un fumetto in un determinato arco
temporale. Le dimensioni rappresentano la sezione del fumetto a cui hanno
collaborato (ad es. copertina, storia). Nodi: 10.000, dimensioni: 6. Il training
set è composto da 140.546 archi appartenenti all’arco temporale 1990-1999,
il test set da 4.945 archi appartenenti all’anno successivo.

– GTD4: rete di gruppi terroristici. Due gruppi terroristici sono connessi se
hanno pianificato un attentato nello stesso arco temporale in uno stesso
stato. Gli stati rappresentano le dimensioni. Nodi: 2.755, dimensioni: 209.
Il training set è composto da 25.200 archi, appartenenti all’arco temporale
1970-2007, il test set 2.572 archi appartenenti all’anno successivo.

1 http://www.imdb.com
2 http://dblp.uni-trier.de
3 http://www.comics.org
4 http://www.start.umd.edu/gtd

 354

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

0e+00 1e-04 2e-04 3e-04 4e-04 5e-04 6e-04

T
P

R
 (

R
e

c
a

ll)

FPR (1-specificity)

Common Neighbors
Common Neighbors * Ndd

Adamic Adar * Ndd
Jaccard * Ndd

Common Neighbors * Edd
Adamic Adar * Edd

Jaccard * Edd
 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

0e+00 1e-04 2e-04 3e-04 4e-04 5e-04 6e-04
T

P
R

 (
R

e
c
a

ll)

FPR (1-specificity)

Common Neighbors
Common Neighbors * Wpres

AdamicAdar * Wpres
Jaccard * Wpres

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

0e+00 2e-02 4e-02 6e-02

T
P

R
 (

R
e
c
a
ll)

FPR (1-specificity)

WDR

(a) IMDb - base e Ndd e Edd (b) IMDb - base e Wpres (c) IMDb - WDR

 0

 0.01

 0.02

 0.03

 0.04

 0.05

 0.06

0e+00 1e-05 2e-05 3e-05 4e-05 5e-05 6e-05

T
P

R
 (

R
e
c
a
ll)

FPR (1-specificity)

Common Neighbors
Common Neighbors * Wpres

AdamicAdar * Wpres
Jaccard * Wpres

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0e+00 1e-04 2e-04 3e-04 4e-04 5e-04 6e-04 7e-04 8e-04

T
P

R
 (

R
e
c
a
ll)

FPR (1-specificity)

Common Neighbors
Common Neighbors * Wpres

AdamicAdar * Wpres
Jaccard * Wpres

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

0e+00 2e-05 4e-05 6e-05 8e-05 1e-04 1e-04 1e-04

T
P

R
 (

R
e
c
a
ll)

FPR (1-specificity)

Common Neighbors
Common Neighbors * Wpres

AdamicAdar * Wpres
Jaccard * Wpres

(d) DBLP - base e Wpres (e) GCD - base e Wpres (f) GTD - base e Wpres

Figura 1. Alcuni dei risultati ottenuti. Sull’asse delle ascisse è riportato i valori di FPR, mentre
sulle ordinate i valori di TPR.

6.2 Risultati

In Figura 1 riportiamo le curve ROC calcolate sui risultati ottenuti sulle nostre
reti. La prima riga mostra le differenze fra le varie famiglie di predittori sulla rete
IMDb. In Figura 1(a) mostriamo l’andamento dei predittori di base moltiplicati
per i coefficienti multidimensionali globali: utilizzando Common Neighbors come
modello base di riferimento è possibile notare come gli incrementi nelle perfor-
mance risultino contenuti seppur presenti. In Figura 1(b) abbiamo i predittori
base estesi per l’analisi temporale tramite il moltiplicatore Wpres. In questo caso
gli incrementi delle performance predittive risultano più sensibili. La Figura 1(c)
riporta l’andamento del predittore WDR: in questo grafico si è omesso il confron-
to con i modelli base a causa della diversa scala utilizzata per la definizione del
grafico. La seconda riga riporta invece i predittori base moltiplicati con Wpres,
nelle altre tre reti. Come si può osservare, in queste reti la conoscenza multi-
dimensionale e la storia temporale completa degli archi favorisce notevolmente
l’accuratezza della predizione.

Un’analisi generale dei risultati suggerisce come l’andamento delle perfor-
mance sia strettamente legato alla reale topologia della rete in esame. Questo
risultato, per quanto non consenta la determinazione di un predittore univer-
sale, ossia di un modello con performance sempre superiori indipendentemente
dalla rete analizzata, era attendibile data la tipologia dei modelli introdotti (non
supervisionati basati su neighbors).

Quanto a Edge/Node Dimension Degree e Weighted Presence, sulle reti ana-
lizzate possiamo affermare che l’introduzione di moltiplicatori multidimensionali

355

globali alla rete, e temporali locali ai singoli archi, consente di incrementare le
performance dei modelli base rispettivamente nel 40-60%, per Ndd e Edd, e nel
60%, per Wpres, dei test eseguiti. Tale incremento varia a seconda del modello
base a cui i coefficienti moltiplicativi sono applicati.

Tramite l’adozione del modello ad hoc WDR è possibile ottenere, per le
reti analizzate, i migliori risultati sia per numero di predizioni corrette, sia per
l’assegnazione degli score di confidenza ad ogni predizione.

7 Conclusioni e Lavori Futuri

Abbiamo presentato un’estensione del problema del Link Prediction allo sce-
nario delle reti multidimensionali. Guidati da diverse misure multidimensionali
topologiche e storiche, abbiamo definito diverse famiglie di predittori per queste
reti. I risultati preliminari ottenuti sono incoraggianti, e sembrano confermare
la validità dell’approccio, e l’effettiva potenza delle misure multidimensionali nel
catturare fenomeni legati anche al modello evolutivo delle reti.

In futuro, ci proponiamo di estendere l’analisi sperimentale al fine di carat-
terizzare le reti secondo la loro prevedibilità temporale, tramite le misure e i
predittori proposti. Inoltre, intendiamo verificare la fattibilità dell’introduzione
di modelli supervisionati per risolvere il problema del Link Prediction su reti
multidimensionali.

Riferimenti bibliografici

1. Lada A. Adamic and Eytan Adar. Friends and neighbors on the web. Social
Networks, 25(3):211–230, 2003.

2. Michele Berlingerio, Francesco Bonchi, Björn Bringmann, and Aristides Gionis. Mi-
ning graph evolution rules. ECML PKDD ’09, pages 115–130, Berlin, Heidelberg,
2009. Springer-Verlag.

3. Michele Berlingerio, Michele Coscia, Fosca Giannotti, Anna Monreale, and Dino
Pedreschi. Foundations of multidimensional network analysis. Tech. Rep. 2010-TR-
004. http://puma.isti.cnr.it/dfdownload.php?ident=/cnr.isti/2010-TR-004, 2010.

4. Mustafa Bilgic, Galileo Mark Namata, and Lise Getoor. Combining collective clas-
sification and link prediction. ICDMW ’07, pages 381–386, Washington, DC, USA,
2007. IEEE Computer Society.

5. Björn Bringmann, Michele Berlingerio, Francesco Bonchi, and Arisitdes Gionis.
Learning and predicting the evolution of social networks. IEEE Intelligent Systems,
25(4):26–35, 2010.

6. Jure Leskovec, Daniel P. Huttenlocher, and Jon M. Kleinberg. Predicting positive
and negative links in online social networks. In Michael Rappa, Paul Jones, Juliana
Freire, and Soumen Chakrabarti, editors, WWW, pages 641–650. ACM, 2010.

7. David Liben-Nowell and Jon Kleinberg. The link prediction problem for social
networks. CIKM ’03, pages 556–559, New York, NY, USA, 2003. ACM.

8. David M. Pennock, Gary W. Flake, Steve Lawrence, Eric J. Glover, and C. Lee
Giles. Winners don’t take all: Characterizing the competition for links on the web.
PNAS, 99(8):5207–5211, April 2002.

 356

Spatio-temporal intersection of trajectories

under uncertainties

Paolino Di Felice and Matteo Orsini

Department of Electrical and Information Engineering,

Wpkxgtukv{"qh"NÓCswknc."NÓCswknc"*Kvcn{+
rcqnkpq0fkhgnkegBkpi0wpkxcs0kv."ocvvgqqtukpkB{cjqq0kv"

Abstract. The paper focuses on the spatio-temporal intersection of pairs of

trajectories (i.e., time ordered sequences of points). It starts from the sketch of a

linear algorithm already appeared in the literature working under the

assumption that the exact position of the moving points is known at each time

instant. Unfortunately, such an hypothesis is not appropriate in most real cases

because of the many sources of uncertainty which undermine our knowledge

about the actual position of the moving points. Hence, a detailed algorithm that

abandons such an assumption is formalized, implemented and evaluated against

synthetic data. A template trajectory database is adopted to prove the

effectiveness of the intersection operator in real applications. Short conclusions

end the paper.

1 Introduction

With the growing number of mobile applications, made possible by the wide-

spread use of cheap devices that capture positions, data analysis on large sets of

historical moving objects trajectories becomes increasingly important. Moving objects

databases have been the subject of intensive research since the end of the nineties.

If only the position in space of an object is relevant, then the moving point (m-

point, in the following) is the basic abstraction. Examples of m-points are vehicles,

people, or animals moving on the earth ground. M-points databases follow into two

categories: one representing current movements and the other representing histories of

movements. In this paper, we refer to databases of the second kind, often called

trajectory databases.

A lot of research about m-objects databases has been carried out by Güting and his

colleagues (see, for instance, [1] and [2]). Their work, relevant both from the

methodological and theoretical point of view, unfortunately does not help to face the

needs common to most enterprises when they try to develop today real time

applications. In fact, Güting and his colleagues at the implementation level

concentrated their efforts on the development from scratch of the SECONDO system

[3]. The design of this prototype ignores the provided spatial extensions of existing

DBMSs, moreover SECONDO does not conform to the OGC standards as it does not

follow any available data model and, as such, it is not embeddable into the DBMS

infrastructure of an organization, where lot of static spatial data is already stored.

On the opposite, the ongoing HERMES project [4] aims at extending the capabilities

of existing DBMSs in order to aiding designers and developers of spatio-temporal

databases in managing every day applications about moving objects that change

location, shape and size in time. Specifically, the spatio-temporal functionality of

HERMES are provided as a data cartridge on top of Oracle. Our work shares the same

vision and motivations at the basis of the HERMES project.

In [1] it was introduced the so called sliced representation to represent the

trajectories drawn by m-points. The basic idea of such a modeling method is to

decompose a trajectory into a set of temporal ordered units called slices such that

within a slice the exact position of the m-point can be calculated at any time instant

by some mkpf" qh" ÐukorngÑ hwpevkqp0" Vjku" crrtqcej" ku" rgthgev" kp" c" Ðrgthgev" yqtnfÑ0"
Unfortunately the real life is much more complex and, in particular, it is permeated by

the uncertainty. The relevance of the uncertainty topic in the arena of m-points

databases is proven by several papers (e.g., [5], [6], [7], [8], [9], [10] and [11])0"
The contributions of our work are the following:

｠ we revisit the spatio-temporal intersection algorithm of pairs of trajectories

originally sketched in [12] in such a way that its output somehow takes into

account the uncertainty that usually limits our knowledge about the exact

position of m-points at a generic instant time. To cope with such an uncertainty

the proposed solution returns a set of time intervals instead of a set of specific

timestamp values;

｠ the algorithm is implemented (as a user defined function) on top of the

PostgreSQL open-source DBMS enhanced with the PostGIS spatial extension

and evaluated by running experiments with synthetic data. The numerical results

show that the proposed solution is extremely fast and, hence, of practical

interest;

｠ as the final step, a template trajectory database is implemented to give evidence

of the expressiveness of the intersection operator to carry out basic spatio-

temporal analysis.

2 Background

As said in the Introduction, the background of the present paper goes back to the

pioneer work made by Güting and colleagues. In particular in [1] they introduced the

concept of sliced representation, the basic idea of which is to decompose the temporal

development of a moving value into a set of temporal units called slices. To each slice

is associated a unit defined as the pair {I, f(t)}, where I is a time interval and f(t) is

some kind of ÐsimpleÑ function (e.g., linear) that models the movement of the m-point

inside I.

Fig.1 shows an example of a m-point consisting of three temporally ordered units.

Within each unit, the evolution is linear at constant speed and it is described by the

function f(t)=(x0+x1t, y0+y1t), where x0,x1,y0,y1 樺 "温, that allows to trace the (x,y)

 358

coordinates taken by the m-point at any instant t樺I. Note that the units cannot

temporally overlaps, yet gaps are possible (i.e. periods during which the position of

the m-point is undefined).

Fig. 1. The sliced representation of a moving point

In [2] a large set of spatio-temporal operators was formally defined; here we focus

on one of them (intersection) whose signature is:

moving(point)¬moving(point) γ"moving(point),

where moving(point) is a data type. In [12] the authors sketched a possible

algorithm of such an operator. In the following, we recall it.

The sequences of units that make up the two trajectories involved in the spatio-

temporal intersection are preliminarily synchronized with an operation named

refinement partition, which is obtained by breaking the units into other units that have

the same value of f(t) but are defined on smaller time intervals, so that a resulting unit

of the first argument and one of the second argument are defined either on the same

time interval or on two disjoint time intervals. This means that through each point of

any segment of both segment sequences we place a plane parallel to the x-y-axis

obtaining a certain number of slices. As shown in Fig.2, for each slice two situations

can happen: either a slice only contains one partial segment from one sequence (white

zone) or two partial segments can be found (grey zone). In the former case there can

be no intersection. In the latter case the segment intersection test is checked in

constant time, using the well-known plane sweep algorithm [13]. If the two segments

intersect at the point (x*,y*), then the unit {[t*,t*], f(t)=(x*,y*)} is added to the result,

where the interval I coincides with the instant t* in which the m-points occupied the

intersection point. If the two segments share a line described by the function f*(t),

then the unit {[tini,tend), f(t)=f*(t)} is added to the result.

Let n and m be the number of consecutive segments of the two trajectories, the

intersection computation traverses both sequences until the end of one sequence is

reached. Each segment is considered exactly once since the time synchronization can

be performed on the fly. This leads to a run-time cost of O(n+m).

359

Fig. 2. A pictorial representation of the intersection algorithm

3 Sources of uncertainty about m-points

Working with m-points the following sources of uncertainty come into the picture:

｠ uncertainty about the knowledge of the position of the m-points over time. The

main sources are: a) uncertainty in the knowledge of the m-point motion law

(because of: traffic condition, weather condition, the kind of way on which the

movement takes place - city street, provincial road with many bends, mountain

road with lots of ups and downs, highway, and the speed limits to take care of);

b) measurement errors, c) computational errors, and masking of the exact

position of m-points due to privacy/anonymity reasons (e.g., [8]).

｠ Uncertainty in the reconstruction of the trajectory of the m-point.

Because of the manifold sources of uncertainties just listed, it is appropriate to state

that is fond to assume the correctness of the where-when values returned by the

computation of the spatio-temporal intersection of pairs of trajectories. We think to be

more suitable to return an answer that admits a certain degree of flexibility. It is fair to

remark that the fact that Güting and his colleagues model the m-points without taking

into account the uncertainty must not surprise because their model dates back to the

end of nineties, and at that time the uncertainty issue was not at the centre of the

research agenda.

The choice taken in this paper is middle course: we assume that the where value is

correct, while a temporal interval is returned to denote when the rendezvous between

the two m-points may be occurred. Circumstance, this latter, not verifiable in any

way, after renouncing to the assumptions at the basis of the sliced representation.

By assuming correct the geometric position of the rendezvous of two m-points is

equivalent to ignore the uncertainty caused by the measurement errors, the

computational errors, and the uncertainty in the reconstruction of their trajectories. On

the other side, by adopting a time interval to denote the temporal window when the

spatio-temporal intersection may be occurred is equivalent to take somehow into

 360

account the uncertainty caused by ignoring the m-rqkpvuÓ"oqvkqp" ncy"yjqug" ghhgevu"
are definitely more vast.

We conclude this section by discussing a little bit more how the m-rqkpvÓu"oqvkqp"
law issue impact on the spatio-temporal intersection problem. As an example, let us

refer to Fig.3 and let us assume that the temporal relation existing among the points 1,

2, 3, and 4 is that of Fig.4. In other words, let us suppose that the interval [t3..t4] in

which the m-point mpB moved from position 3 to position 4 partially overlaps the

interval [t1..t2] in which mpA moved from 1 to 2. If we assume to know the motion

law of mpA and mpB when they move from positions 1 to 2 and from 3 to 4,

respectively, then it is possible to compute if they temporally met in Z or not, simply

recurring to some Rj{ukeuÓu" ncy" vq" dg" godgffgf" kpvq" vjg" unit function inside the

corresponding interval I. Otherwise, we lose all the certainties and, consequently, we

cannot state anything.

Fig. 3. Two geometrically intersecting trajectories (projected on the x-y Cartesian plane)

Fig. 4. A temporal relationship between m-points mpA and mpB

As said above, in this paper we renounce to the knowledge of the motion law of the

m-points because in the reality it is mostly unpredictable. But, we adopt a

computational method that allows to break the stalemate. In practical terms, with regard

to Fig.3 and the hypothesis taken above (Fig.4+." vjg"cpuygt" vq" vjg"ÐwhetherÑ" kuuwg" ku"
ÐyesÑ." yjkng" vjg" cpuygt" vq" vjg" ÐwhenÑ" kuuwg" ku" gzrtguugf" kp" vgtou" qh" vjg" vgorqtcn"
interval [t3..t2] where such an event falls, if it happens, circumstance, this latter, not

provable analytically any more.

If we take into consideration the fact that the timestamps linked to the points

making up the trajectories in the database are those for which the m-point position is

acquired, it follows that the extent of the interval [t3..t2] is less or equal to the extent

of the acquisition interval. In practical terms, we can say that for most real

applications this value is a matter of minutes and, hence, absolutely satisfactory.

361

4 Spatio-temporal intersection algorithms

The algorithm to calculate the spatio-temporal intersection of pairs of trajectories

detailed below (and named time_meet) is a revised version of the algorithm sketched in

Sec.2. The most important novelty we introduce here concerns the treatment of the

intersection points (x*,y*), that are no longer associated with a single timestamp t* but

with a time interval [tini,tend), specifying the period in which it may have taken place the

rendezvous between the two m-points (in the sense and for the reasons given in Sec.3).

On the opposite, the intersections whose geometry has dimension 1 are treated as in

[12].

In the following, a generic trajectory consists of a time ordered sequence of points:

{<P1, t1>,<P2, t2@."È.">Pn+1, tn+1>} (i.e. t1<t2<È<tn+1).

In turn, a generic point (P i) is described by the pair <xi,yi> denoting its geographic

position expressed in a reference system (eg.: WGS84), while <ti=t(P i)> is the

corresponding timestamp (shortened as TS in the sequel). The t-value adds semantics

to the knowledge of the pure geographic position of the m-point, offering a richer

support to the decisions makers. As usual, we model the geometry of a trajectory as a

linestring (shortened as LS in the sequel), that is, as a curve with linear interpolation

between points. The generic pair of consecutive points P iP i+1 defines a line segment,

over the time interval [ti,ti+1).

The time_meet algorithm scans all the pairs of line segments whose intervals

temporally overlap then, for each of them, it checks (by means of the spatial operators

uvakpvgtugevu*igqogvt{3.igqogvt{4+" and uvakpvgtugevkqp"
*igqogvt{3.igqogvt{4+ - see [14]) whether and where the two participant

segments spatially intersect. The first operator (uvakpvgtugevu*+) assesses if it

takes place the intersection between two input geometries and returns true in the

affirmative case, false otherwise. The second operator, instead, returns a geometry

that represents the shared portion of the two geometries. Both such operators use the

well-known plane sweep algorithm able to achieve in constant time the result, when

the geometries are two line segments.

The time_meet algorithm follows.

--

Algorithm time_meet (in1 integer, in2 integer)

--

Input: in1 and in2 identify the pair of trajectories involved in the spatio-

temporal test

Output: table result(IdTraj1 integer, IdTraj2 integer, intersection_geometry

geometry, initial_time timestamp with time zone, final_time timestamp

with time zone)

Method:

1. Let lsA={A1, A2."È."Cn+1} and lsB={B1, B2."È."Dm+1} be the LSs in the database

identified by in1 e in2, respectively.

2. Let tsA={tk | tk=t(Ak), where Ak belongs to lsA and k=1, 4.È."p-3’ and tsB={sj

| sj=t(Bj), where Bj belongs to lsB and j=1, 4.È."o-3’"dg"vjg"ugv"qh"VUs of the

points of lsA and lsB, respectively.

 362

3. FOR EACH pair {[ti, ti+1), [sj, sj+1)} of overlapping time intervals detected in a

 synchronized scan of tsA and tsB DO

4. IF (st_intersects(AiAi+1, BjBj+1)) THEN

5. geom = st_intersection(AiAi+1, BjBj+1)

6. tini = max{ti, sj}

7. tend = min{ti+1, sj+1}

8. Add (in1, in2, geom, tini, tend) to the table result

9. END IF

10. END FOR

11. return result

12. END time_meet

--

Using the ordering of the line segments with respect to the time, the search of the

not temporally disjoint pairs of segments can be carried out by a synchronized scan

(row 3) of the two trajectories involved in the test. With regard to the example of

Fig.5, the spatial intersection test (row 4) on the first temporally overlapping couple

of segments ({A4A5, B1B2}) fails. To determine the next pair of segments to be tested

(row 3), the algorithm checks which one of the two segments ended first and it

advances on the trajectory it belongs to (in the example, we advance on trjA and test

the pair {A5A6, B1B2}). When the segments spatially intersect (as in the case of {A5A6,

B3B4} and {A6A7, B5B6}) the time_meet algorithm first calculates (row 5) the shared

intersecting geometry (point (x*,y*) and line B5A7 of Fig.5), then it computes (rows 6-

7) the temporal window [tini,tend) ([s3,t6) and [s5,t7) of Fig.5). The spatial-temporal

intersection so determined is added to the result (row 8). The algorithm halts when the

end of one of the two trajectories is reached and, hence, all possible pairs {[ti, ti+1), [sj,

sj+1)} have been taken into account.

Fig. 5. Two trajectories involved in the time_meet test

The algorithm performs all the computations in a single scan of the two

trajectories. Since the IF-THEN block of instructions can be executed in constant time

(O(1) - the arguments of the uvakpvgtugevu*+ and uvakpvgtugevkqp*+"
operators are line segments) and the time synchronization can be performed on the

363

fly, the time_meet can be executed in O(n+m), where n and m indicate the number of

line segments of the two input trajectories.

As final consideration, we note that the intersection computation algorithm can be

easily modified to calculate the intersection test of pair of trajectories, that is to

construct an algorithm (t_meet) that returns true if it is detected at least one spatial-

temporal intersection, false otherwise.

5 Implementation and evaluation of the time_meet algorithm

For the purposes of carrying out the experiments reported in the following, we

refer to the single-table database:
vtclgevqt{"*"

Rmg{<"kpvgigt."Ujcrg<"igqogvt{."
VkogXcnwgu<"vkoguvcor"ykvj"vkog"¦qpg"CTTC["+"
"

As implementation platform we chose the PostgreSQL open-source DBMS (vers.

8.4.3) enhanced with the PostGIS spatial extension (vers. 1.4.2). On such a platform,

the creation of the previous table requires two steps: in the first step a no-spatial table

is created, hence the spatial column is added through the invocation of the postGIS

cffIgqogvt{Eqnwop constructor."
In order to carry out the campaign of experiments, the vtclgevqt{" table was

populated with synthetic tuples generated by an Ðcf"jqeÑ"PL/pgSQL function which

makes use of the well-known tcpfqo*+ function to calculate the <x,y> coordinates

of the points. The values of the TSs (in charge of the built-in function pqy*+) start

when the generating function begins the execution and, at each iteration, an increment

of 10 minutes takes place. The function receives as input parameter an integer equal

to the number of line segments of the trajectory to be generated.

The algorithm time_meet (as well as t_meet) has been implemented as a User

Defined Function called vkogaoggv*+" (vaoggv*+) on top of the postgreSQL/

postGIS. The idea of implementing the proposed algorithms as UDFs to be added to

the built-in UDFs of the system has the double benefit of making them available for

being called from any queries as well as from external software applications that

connect to the database.

Table 1 shows the response time of the function vkogaoggv*+ for increasing

values of n and m. The measurements were carried out on a Sony Vaio equipped with

the Pentium Dual Core T4200 processor, 2Ghz and 4 GB RAM.

Table 1. Summary of the campaign of experiments

n m vkogaoggv*+"
50 50 0.3 sec

50 500 2.8 sec

500 500 9 sec

As we can see from the table, the CPU-times are very low. A further improvement

of the performances can be achieved by modifying the time_meet algorithm by

preceding the parallel scan of the two trajectories with their time alignment. Such an

 364

operation consists in identifying those portions of the two trajectories that have no

overlapping time intervals. Since the points are time ordered, such a research can be

done in logarithmic time without impacting on the overall computational complexity

of the vkogaoggv*+ operator. With respect to Fig.5, the time alignment excludes

from the intersection test the portion of trjA on the left of point A4 and the portion of

trjB on the right of point B6, by reducing the number of line segments involved in the

test, so saving CPU time.

6 A template database and example queries

This section gives evidence of the effectiveness of the proposed operators to

conduct the spatio-temporal analysis. The section starts by defining a very simple

database composed of three tables, followed by their feeding with few tuples, hence

two queries are posed and their output is shown. The scripts that follow comply with

the SQL of the postgreSQL/postGIS DBMS.

The database tables:
vtclgevqt{"*È+"*ugg"Ugevkqp"6+="
rqkpvQhKpvgtguv"*"

KF<"kpvgigt."Nqecvkqp<"igqogvt{."Fguetkrvkqp<"xctejct*422+"+="
ctgcQhKpvgtguv"*"

KF<"kpvgigt."Dqwpfct{<"igqogvt{."Fguetkrvkqp<"xctejct*422+"+"
Besides the first table (already introduced in Sec.5), the other two add further

semantics to the ÐvgorncvgÑ"database enhancing the spatial analysis. In fact, in actual

applications, rqkpvQhKpvgtguv and ctgcQhKpvgtguv can be used to store,

respectively, a set of relevant landmarks (e.g., petrol stations, churches, museums)

and areas (e.g., downtown restricted areas, recreation areas, natural parks).

The SQL population scripts:

KPUGTV""KPVQ"vtclgevqt{"*Rmg{."Ujcrg."Vkogxcnwgu+""
XCNWGU" *322.")NKPGUVTKPI*43"4.37"4."32"8."5"8."3"33+)<<IGQOGVT[."

)}$4232/32/43"2;<22<22$."$4232/32/43"2;<32<22$.""
$4232/32/43"2;<42<22$."$4232/32/43"2;<52<22$.""
$4232/32/43"2;<62<22$’)<<vkoguvcor"ykvj"vkog"¦qpg"CTTC[+."

" *323.")NKPGUVTKPI*8";.":"5."37"5.";";."6"4+)<<IGQOGVT[."
)}$4232/32/43"2:<72<22$.$4232/32/43"2;<22<22$.""
$4232/32/43"2;<32<22$."$4232/32/43"2;<42<22$.""
$4232/32/43"2;<52<22$’)<<vkoguvcor"ykvj"vkog"¦qpg"CTTC[+"

KPUGTV"KPVQ"rqkpvQhKpvgtguv*KF."Nqecvkqp."Fguetkrvkqp+""
XCNWGU" *3.)RQKPV*32"4+)."PWNN+."*4.)RQKPV*6"6+)."PWNN+.""

" *5.)RQKPV*34"32+).PWNN+."*6.)RQKPV*422"422+)."PWNN+"
"

KPUGTV"KPVQ"ctgcQhKpvgtguv*KF."Dqwpfct{."Fguetkrvkqp+""
XCNWGU" *44.")RQN[IQP*7"7."33"4."35":."6":."7"7+)<<IGQOGVT[."PWNN+

Fig.6 ujqyu" vjg" igqogvt{" qh" Ðvjg" uegpgÑ" *rtqlgevgf" qp" vjg" x-y Cartesian plane)

that reflects the content of the example database we refer to in this section. The point

of interest (200 200) does not appear in the figure because it falls out of scale.""

365

The proposed queries make use of vkogaoggv*+ and vaoggv*+" (besides the

spatial operators uvafkuvcpeg*+ and igqogvt{aeqpvckp*+ Î [14]). Thanks to

those operators, the SQL formulation is kept simple in both cases.

Fig. 6. The geometry of the reference ÐuegpgÑ"

Q1""
Given a trajectory (e.g., that identified by the p.k. 100), retrieve from the database

the p.k. of the remaining ones that share, with the target trajectory, at least a spatio-

temporal intersection in the interval bounded by the TSs 2010-10-21 09:00:00 and

2010-10-21 10:00:00. Display the spatio-temporal intersections falling within the

given time interval, as well as the points of interest situated within a distance of 10m

from those intersections.

 366

The output of query Q1 shows that between the trajectory identified by the p.k. 100

and that identified by the p.k. 101 there exists a spatio-temporal intersection. The

rendezvous between the two m-points could be occurred between the 09:20:00 and

the 09:30:00 of the 21
st
 of October 2010 at point of geometry (6.85714 6).

Furthermore, we can see that there are three points of interest within a distance of

10m from the intersection point.

Q2
Given a trajectory (e.g., that identified by the p.k. 100), retrieve from the database

the p.k. of the remaining ones that share, with the initial one, at least a spatio-temporal

intersection inside a certain area of interest (let say that having ID=22 in the table

ctgcQhKpvgtguv). Moreover, for each couple of trajectories, show where and when

they met inside such an area.

The interpretation of the output of query Q2 trivially follows from that of Q1."

7 Conclusions

The vkogaoggv*+ and vaoggv*+ spatio-temporal operators were defined,

implemented and evaluated. Technically they were added as UDFs to the PostgreSQL

DBMS equipped with the PostGIS spatial extender. vaoggv*+/vkogaoggv*+ can

play, in the context of m-points databases, the same role plaid by the

uvakpvgtugevu*+/ uvakpvgtugevkqp*+ (being part of OGC standard from many

years now) in the context of applications on top of standard spatial databases.

The choice of the previous two operators, primarily motivated by their practical

usefulness, offers also the chance to reaffirm the necessity to ensure adequate support,

at the DBMS level, to spatio-temporal applications whose relevance is constantly

grown in the last years (e.g., [15]). In absence of an adequate repertoire of operators

about m-points, the negative repercussions at the application level are essentially two:

367

greater development difficulties and worst performances. Two shortcomings to be

avoided.

References

1. Forlizzi, L., Güting, R. H., Nardelli, E., and Schneider, M.: A Data Model and Data

Structures for Moving Objects Databases. In Proc. ACM SIGMOD International

Conference on Management of Data: 319-330, 2000.

2. Güting, R. H., Bohlen, M. H., Erwig, M., Jensen, C. S., Lorentzos, N. A., Schneider, M.,

and Vazirgiannis, M.,: A foundation for representing and querying moving objects. ACM

Transactions on Database Systems, 25(1), 1-42, 2000.

3. Güting, R. H., Behr, T., and Düntgen, C.: SECONDO: A platform for Moving Objects

Database research and for publishing and integrating research implementations. IEEE Data

Engineering Bulletin 33(2), 56-63, 2010.

4. Pelekis, N., Frentzos, E., Giatrakos, N., Theodoridis, Y.: HERMES: aggregative LBS via a

trajectory DB engine. In Proc. of the ACM SIGMOD International Conference on

Management of data, 2008.

5. Trajcevsky, G., Wolfson, O., Hinrichs, K., and Chamberlain, S.: Managing uncertainty in

moving object databases. ACM Transactions on Database Systems, 29(3), 463-587, 2004.

6. Abul, O., Bonchi, F., and Nanni, M.: Never walk alone: uncertainty for anonymity in

Moving Object Databases. In Proc. of the International Conference on Data Engineering,

2008.

7. Frentzos, E., Gratsias, K., and Theodoridis, Y.: On the Effect of Location Uncertainty in

Spatial Querying. IEEE Transactions on Knowledge and Data Engineering, 21(3), 2009.

8. Giannotti, F. and Pedreschi, D.: Mobility, Data Mining and Privacy. Springer, 2008.

9. Trajcevski, G., Choudhary, A., Wolfson, O., Ye, L., and Li, G.: Uncertain Range Queries

for Necklace. 11th IEEE International Conference On Mobile Data Management, 199-208,

2010.

10. Othman W.: Uncertainty Management in Spatio-temporal Databases, PhD Thesis in

Theoretical Computer Science, Hasselt University, May 2009.

11. Kuijpers B. and Othman W.: Trajectory databases: Data models, uncertainty and complete

query languages. Journal of Computer and System Sciences. 76(7), 538-560, 2010.

12. Cotelo Lema, J.A., Forlizzi, L., Güting, R. H., Nardelli, E., and Schneider, M.: Algorithms

for Moving Object Databases. The Computer Journal, 46(6), 680-712, 2003.

13. Nievergelt, J., Preparata, F. P.: Plane-Sweep Algorithms for Intersecting Geometric

Figures. Com. of the ACM, 25(10), 1982.

14. OpenGIS Implementation standard for geographic information. Simple feature Access, Part

2: SQL Option (ref. number: OGC 06-104r4), 2007.

15. Di Felice, P., Liguori, G., and Cestra, G.: WpÓctejkvgvvwtc" uqhvyctg" rgt" nq" uxknwrrq" fk"
applicazioni riguardanti dati spazio-tempo dipendenti. Congresso annuale AICA."NÓCswknc.
2010 - ISBN/ISSN: 978-88-905406-0-8.

 368

"

"

"

"

"

"

"

"

"

Poster Track

Assessing the effectiveness of “Precise” Activity

Diagrams in the Context of Business Process

Modeling

Francesco Di Cerbo1, Gabriella Dodero1 Gianna Reggio2, Filippo Ricca2, and
Giuseppe Scanniello3

1 CASE, Libera Università di Bolzano-Bozen, Italy,
francesco.dicerbo|gabriella.dodero@unibz.it

2 DISI, Università di Genova, Italy,
filippo.ricca|gianna.reggio@disi.unige.it

3 Dipartimento di Matematica e Informatica, Università della Basilicata, Italy,
giuseppe.scanniello@unibas.it

Abstract. UML activity diagrams are a commonly used notation for
modeling business processes. In this paper, we present a novel precise
style for this notation and a controlled experiment to assess its effective-
ness. The context of the experiment is constituted of master students in
Computer Science at the Free University of Bolzano-Bozen in Italy. The
results indicate that the subjects achieved a significantly better com-
prehension level when business processes are modeled using the precise
style with respect to a “lighter” variant, with no significant impact on
the effort to accomplish the comprehension tasks.

Keywords: Business Process Modeling, UML activity diagrams, Controlled ex-
periment, Precise and Ultra-light styles.

1 Introduction

To be competitive in the global market, many organizations have been changing
their business processes [4]. In this context, modeling, management, and en-
actment of business processes are considered relevant to support organizations
in their daily activities. Regarding the modeling of business processes, a num-
ber of process definition languages — such as BPMN [9], event-condition-action
mechanisms [1], graph rewriting mechanism [5] and Petri Nets [2] — have been
proposed in the literature.

More recently, the use of the Unified Modeling Language (UML) [11] has
been suggested in the context of business process modeling. This trend is mainly
due to the fact that UML has been conceived for the communication among
people and so it may represent a natural choice for such a kind of modeling [8].
Further, in favor of the UML notation there is its flexibility that allows choosing
the preferred degree of precision/abstractiveness to express models. For example,
different options are available ranging from “light” styles, where nodes and arcs

2 Di Cerbo et al.

of the activity diagrams are decorated by natural language text, to more rigorous
ones, where nodes and arcs might be expressed in a formal language. “Light”
activity diagrams are simple to write/use but their inherent ambiguity could
complicate the communication among participants. On the other hand, more
precise/rigorous notations are more complex to use but limit ambiguity and
they can be transformed into executable models (e.g., expressed in BPEL) more
easily.

In this paper, we sketch our precise UML activity diagrams to model business
processes. This style has been proposed and used in the context of the TECDOC
project1 together with other variants: ultra-light, light, and conceptual precise.
In order to compare the proposed precise style with a lighter variant (precisely
the ultra-light one) a controlled experiment with master students in Computer
Science has been conducted and the results have been presented in the paper.

2 Process modeling with UML

2.1 Basic Terminology

The basic activities in a business process are the basic task of the process, while
the process objects are the entities over which an activity of the process is per-
formed. The active entities that perform the tasks are process participants, and
whenever it will be relevant, we will distinguish the human participants from
those corresponding to software and hardware systems.

2.2 Ultra-light style

The ultra-light style is the one often used in the industry for business process
modeling, see e.g., [7]. Following the ultra-light style a process is modeled by a
UML activity diagram, where nodes (activity and object) and guards on the arcs
leaving the decision nodes are decorated by natural language text and usually
they follow neither rules nor patterns.

Participants of the process may be modeled only by introducing swimlanes
and titles of the various lanes. The objects produced and consumed by the ac-
tivities of a business process may be optionally made explicit by using object
nodes.

In Fig. 1, we present the ultra-light UML model of the business process
Process Order, namely one of the experimental objects used in the empirical
investigation presented here. It is a parametric activity diagram that receives as
input the Requested Order (see the node at the boundary of the activity diagram)
for an on-line shop. Tasks are represented in the model as rounded rectangles,
while produced process objects are shown as rectangles. The activity diagram
describes how the order is managed by the on-line shop. It is quite easy to
understand and there is no need to further comment it.
1 the TECDOC project, funded in the framework of research activities of Ligurian
Technology District SIIT, aimed to define methodologies to efficiently schedule, co-
ordinate, monitor and manage Complex Organizations.

372

Assessing the effectiveness of “Precise” Activity Diagrams 3

Fig. 1. Ultra-light model of Process Order

Fig. 2. Precise model of Process Order (activity and class diagram)

373

4 Di Cerbo et al.

2.3 Precise Style

The participants and the objects of a business process modeled by the precise
style are explicitly listed and precisely modeled with UML by means of classes.
This represents the most remarkable difference with respect to the ultra-light
style. Conversely, the behavioral view of the process is given by an activity
diagram where actions and conditions will be written by using respectively: the
language for the action of UML and OCL [10] (the textual language for boolean
expressions part of UML). Whenever the object nodes will be used, they should
be typed by UML classes and data types; and if swim-lanes are used, they should
be given titles by participants.

Fig. 2 shows the precise model of the Process Order case. In the process we
have two participants (both of kind human beings) the Client and the Company,
and three business objects: ORDER, PAYMENT and INVOICE. The three objects
are related among them as shown by the constraints in the participants/objects
box (see the box on the bottom of Fig. 2). The flow of the business object
ORDER is shown by using its name in the various action nodes, whereas the flow
of INVOICE has been emphasized by using an object node.

The class diagram in Fig. 2 introduces the classes typing the participants
and the objects with their relevant operations and attributes, together with
their mutual relationships. For example we can see that a payment and an in-

voice are relative to exactly one order. The dashed arrows, i.e., the dependency
relationships denote that the company may work on the payments, the invoices
and the orders, whereas the client may manage only the payment and the order.
Constraints may be used to finely describe the various classes. For example, the
constraint on the operation receives of class Company (see the note in Fig. 2)
expresses in OCL that an order is considered acceptable by the company if and
only if it is well-formed and available.

3 Experimentation Setup

In this section we highlight the design of the experiment following the guidelines
proposed by Wohlin et al. in [14]. For replication purposes, the experimental
package (in English) and the raw data are made available on the Web3.

3.1 Context and Hypotheses Formulation

The experiment was conducted with 26 master students in Computer Science
at the Free University of Bolzano-Bozen. This experiment represented an op-
tional educational activity of two Software Engineering courses: Infrastructures
for Open Service Oriented Architectures and Requirements and Design of Soft-
ware Systems. As mandatory laboratory activity of the former course, the stu-
dents had previously individually developed Web services using specification
documents that included UML models in terms of class, sequence, and activity

3 www.scienzemfn.unisa.it/scanniello/BPM/

374

Assessing the effectiveness of “Precise” Activity Diagrams 5

diagrams. Students of the course Requirements and Design of Software Systems
had already made use of UML in the design of a non-trivial software system.

The perspective of this study is twofold. From the point of view of researchers,
it is an investigation of the effectiveness of using precise activity diagrams in
the specification of business processes; and from the point of view of project
managers, it is an evaluation of the possibility of adopting this style. Accordingly,
we have defined and tested the following null hypotheses:
- Hlo: The use of precise activity diagrams does not significantly improve

the comprehension level of the subjects to perform a task.
- Hto: There is no significant difference in terms of effort when using precise
or ultra-light activity diagrams to perform a comprehension task.
The objective of the statistical analysis is to reject the null hypotheses, thus
accepting the corresponding alternative ones that can be easily derived. Hl0 is
one tailed [14] since we expect a positive effect of the precise style on the process
comprehension, whileHt0 is two-tailed since we cannot postulate an expectation.

3.2 Design

We adopted a counterbalanced design [14] as shown in Table 1. We considered
four groups: A, B, C, and D. Each group was formed by subjects randomly se-
lected (precisely: 7 subjects for groups A and D; 6 for groups B and C). Each
subject worked on two comprehension Tasks (i.e., Task 1 and Task 2) on the
following two experimental Objects : Process Order (PO) and Document Man-

agement Process (DMP). Each time subjects used the precise or the ultra-light
activity diagrams.

The selected business processes refer to application domains on which the
subjects were familiar with. PO is for processing orders in an on-line shop (see
Fig. 1). Conversely, DMP is in charge of managing the review process of any
kind of document (e.g., recipes for culinary dishes).

3.3 Selected Variables

In this experiment, the only independent variable is Treatment, which is a nom-
inal and admits two values: Precise and Ultra-light. Further, we selected the
following dependent variables to test the null hypotheses: comprehension level
and comprehension effort.

The comprehension level dependent variable is used to measure the compre-
hension of the subjects on each business process model. To this end, we asked
the subjects to answer a comprehension questionnaire (one for each experimental
object) composed of multiple choice questions. Fig. 3 shows a sample question
(Question 8) concerning the comprehension questionnaire of PO.

The provided answers have been measured using an information retrieval
based approach. In particular, the correctness and the completeness of the an-
swers have been measured, similarly to [13], using precision and recall, respec-
tively. In order to get a single value representing a balance between correctness
and completeness, we used the F-measure, i.e., the harmonic mean of precision

375

6 Di Cerbo et al.

A B C D

Task 1 PO Precise PO Ultra-light DMP Precise DMP Ultra-light

Task 2 DMP Ultra-light DMP Precise PO Ultra-light PO Precise

Table 1. Experiment design

8. Ινδιχατε τηε χασε/σ ιν ωηιχη α χοµπανψ δοεσ νοτ αχχεπτ αν ορδερ

 Τηε ορδερ ισ νοτ ωελλ−φορµεδ (ε.γ., τηε ιτεµσ θυαντιτψ ισ νοτ ινδιχατεδ ιν τηε ορδερ)

 Τηε ωορκερσ οφ τηε χοµπανψ ηολδ α στρικε

 Τηε χλιεντ δοεσ νοτ οων α χρεδιτ χαρδ

 Τηε ιτεµσ ρεθυεστεδ ιν τηε ορδερ αρε νοτ αϖαιλαβλε

 Τηε χλιεντ δ

Fig. 3. A sample question of the comprehension questionnaire for PO

and recall values. For example, if a student had answered to Question 8 of the
PO task (Fig. 3) picking the first, second and fifth answer, where the correct
answers are only the first and the fourth ones, the precision value will be 0.33
(three answers given and only one correct) while the recall value will be 0.5 (one
correct answer out of two). The F-measure value will be then 0.39.

The overall comprehension level achieved by each subject, which assumes
value ranging from 0 to 1, has been computed using the overall average of the
F-Measure values of all the questions. A value close to 1 indicates a very good
understanding of the business process, while a value close to 0 indicates a very
bad comprehension level.

The comprehension effort variable measures the time, expressed in minutes,
that each subject spends to accomplish a task. We got the comprehension effort
values using the start and stop times the subjects were asked to record.

3.4 Execution and Experimental Material

We asked the subjects to use the following procedure to execute both the com-
prehension tasks: (i) specify name and start-time in the comprehension ques-
tionnaire; (ii) answer independently the questions by consulting the provided
material; (iii) mark the end-time of the task.

To perform the experiment the subjects were provided with the following
hard copy material: (i) a summary of the modeled business process, (ii) the
comprehension questionnaires and the models of the business processes, (iii) a
unique post-experiment questionnaire2 to be filled in after the two tasks.

4 Analysis and Results

In this section, the results of the data analysis are sketched quickly with respect
to the defined null hypotheses. In all the performed statistical tests, we decided

2 For space reasons, the results of the post-experiment questionnaire are not presented.

376

Assessing the effectiveness of “Precise” Activity Diagrams 7

Precise Ultra-Light
Object mean med σ mean med σ MW test Wilcoxon test

All 0.79 0.84 0.11 0.62 0.66 0.14 < 0.001 <0.001

DMP 0.76 0.74 0.10 0.64 0.64 0.10 0.005 -

PO 0.80 0.84 0.11 0.58 0.69 0.19 0.003 -

Table 2. Descriptive statistics of comprehension level and statistical test results.

(as it is customary) to accept a probability of 5% of committing Type-I-error
[14].

4.1 Comprehension level

Table 2 reports some descriptive statistics (i.e., mean, median, and standard
deviation) of comprehension level and the results of statistical analysis conducted
on the gathered data. Because of the sample size (26 subjects) and mostly non-
normality of the data we adopted non-parametric tests to test the first null
hypothesis. In particular we selected Mann-Whitney test for unpaired analysis
and Wilcoxon test for paired analysis. We used these tests since they are very
robust and sensitive [14].

The one-way unpaired Mann-Whitney test (p− value < 0.001) and the one-
way paired Wilcoxon test (p− value < 0.001) provide evidence that there exists
a significant difference in terms of comprehension level between the two treat-
ments. Therefore, in general, we can reject the null hypothesis Hl0. The mean
comprehension level improvement achieved with precise diagrams is of 17 points
(see means of the “All” row in Table 2), i.e., 27,41%. Similar results can be
observed for the primary measures. For space reasons we report only results of
Mann-Whitney tests: precision (p−value < 0.001) and recall (p−value < 0.001)
and for both objects, DMP (p− value = 0.005) and PO (p− value = 0.003).

4.2 Comprehension effort

Students with precise diagrams employed more time that students with ultra-
light diagrams. Means and medians are respectively: 22’16” and 20 minutes for
precise diagrams; 22’12” and 19’50” minutes for ultra-light diagrams. A two-
tailed unpaired Mann-Whitney test returned 0.9 as p− value. A similar value is
returned by paired Wilcoxon test (p− value = 0.6). Therefore we cannot reject
the overall null hypothesis Ht0. Even analyzing the two objects separately no
significant difference was found. The results of the unpaired two-tailed Mann-
Whitney test were 0.56 and 0.57 for DMP and PO, respectively.

5 Conclusion

UML activity diagrams provide an intuitive and easy way to express business
processes models [3], [8], [6]. However, their effectiveness is mostly not assessed
by means of controlled experiments. Indeed, only a few other studies perform

377

8 Di Cerbo et al.

empirical evaluations in business process formalisms comparisons. An example
is [12], where a comparison between UML and BPMN is presented.

In this paper, we have proposed a precise style for the UML activity diagrams
in the context of business process modeling. The effectiveness of this style has
been investigated with respect to a less rigorous style by using a controlled
experiment. The results of this investigation indicated a significant effect of the
precise style on the comprehension (+27.61%), whith no impact on the effort.

References

1. L. Aversano, A. De Lucia, M. Gaeta, P. Ritrovato, S. Stefanucci, and M. L. Vil-
lani. Managing coordination and cooperation in distributed software processes: the
genesis environment. Software Process: Improvement and Practice, 9(4):239–263,
2004.

2. S. Bandinelli, E. Di Nitto, and A. Fuggetta. Supporting cooperation in the spade-1
environment. IEEE Trans. Softw. Eng., 22:841–865, December 1996.

3. A. De Lucia, R. Francese, and G. Tortora. Deriving workflow enactment rules from
uml activity diagrams: a case study. Symposium on Human-Centric Computing
Languages and Environments, 0:211–218, 2003.

4. H. E. Eriksson and M. Penker. Business Modelling with UML. Wiley Computing
Publishing, 2000.

5. P. Heimann, G. Joeris, C. Krapp, and B. Westfechtel. Dynamite: Dynamic task nets
for software process management. In Proceedings of the International Conference
on Software Engineering, pages 331–341, 1996.

6. S. Jurack, L. Lambers, K. Mehner, G. Taentzer, and G. Wierse. Object flow
definition for refined activity diagrams. In Proceedings of the 12th International
Conference on Fundamental Approaches to Software Engineering, pages 49–63,
Berlin, Heidelberg, 2009. Springer-Verlag.

7. R. Monfared, A. West, R. Harrison, and R. Weston. An implementation of the
business process modelling approach in the automotive industry. Journal of Engi-
neering Manufacture, 216(11):1413–1428, 2002.

8. E. D. Nitto, L. Lavazza, M. Schiavoni, E. Tracanella, and M. Trombetta. Deriving
executable process descriptions from UML. In Proceedings of the 22rd International
Conference on Software Engineering, pages 155–165, 2002.

9. OMG. Business process model and notation (BPMN) Version 2.0. OMG Final
Adopted Specification, Object Management Group, 2006.

10. OMG. Object constraint language (OCL) specification, version 2.2. Technical
report, Object Management Group, February 2010.

11. OMG. Unified modeling language (OMG UML) specification, version 2.3. Technical
report, Object Management Group, May 2010.

12. D. Peixoto, V. Batista, A. Atayde, E. Borges, R. Resende, and C. Pádua. A
Comparison of BPMN and UML 2.0 Activity Diagrams. In VII Simposio Brasileiro
de Qualidade de Software, 2008.

13. F. Ricca, M. Di Penta, M. Torchiano, P. Tonella, and M. Ceccato. The role of
experience and ability in comprehension tasks supported by uml stereotypes. In
29th International Conference on Software Engineering (ICSE 2007), Minneapolis,
MN, USA, May 20-26, 2007, pages 375–384, 2007.

14. C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B. Regnell, and A. Wesslén. Exper-
imentation in Software Engineering - An Introduction. Kluwer, 2000.

378

Repositories of conceptual schemas: concepts, constructs,

methods and quality dimensions1

Carlo Batini, Marco Comerio, Enrica Pasqua, and Gianluigi Viscusi

[batini, comerio, pasqua, viscusi] @ disco.unimib.it

Dipartimento di Informatica, Sistemistica e Comunicazione (DISCo),

Università di Milano-Bicocca, Milan, Italy

Abstract. Repositories of conceptual schemas have been proposed in literature

to represent data managed in complex large scale information systems. In this

paper we discuss concepts, constructs, methods and quality dimensions for

repositories of conceptual schemas. In particular, the paper considers the two

main state of the art paradigms to organize huge amounts of heterogeneous

data: integration, to catch the resolution of heterogeneities among data, and

abstraction, to enable representation of data at different levels of synthesis.

Furthermore, in this paper we provide a formalization of all these issues, and

investigate several quality dimensions of a repository.

1 Introduction

In a modern organization there can be operating hundreds and even thousands of

databases developed and managed in different times and by different teams, resulting

in an extremely fragmented view of the overall information content managed in the

organization. In this paper we discuss concepts, constructs, methods and quality

dimensions proposal for repositories of conceptual schemas. The discussion is

grounded on the framework for repository design and development initially

investigated in [1], where the central idea was to iteratively make use of

abstraction/refinement primitives for bottom-up/top-down generation of schemas,

together with integration/diversification primitives for unification/diversification of

schemas characterized by different types of heterogeneities.

The paper is structured as follows. In Section 2 we revisit and compare previous

and present researches and experiences on repositories of schemas that, for what

concern the authors of the paper go back to twenty years ago. In Section 3 we provide

a new formalization of the concepts involved in repositories, namely abstract and

integrated schema, refinement/abstraction and integration/diversification primitives.

Section 4 introduces several quality dimensions and metrics that can be adopted to

1 This work is partially supported by the SAS Institute srl (Grant Carlo Grandi) and by the

Italian MoSeForAgroFood project, funded by the Lombardy region.

represent and analyze the quality of a repository. We conclude the paper discussing

future works.

2 Related work

Large organizations with a long history and a consequent large set of legacy

information systems need instruments to face conceptual change and schema

evolution management and maintenance of very large set of conceptual schemas. At

the state of the art, these challenges have been considered in terms of i) clustering of

schemas [2], ii) hierarchical structuring of schemas [3], iii) methods an techniques for

conceptual schema analysis and classification [4], and iv) application of integration-

abstraction primitives for building dictionaries and repositories of schemas [1, 5].

As to clustering, it can take different names such as typology, numerical taxonomy,

and partitioning [6], and applying to different domains such as epidemiology, cellular

manufacturing, linguistics, data mining, and economics. Furthermore, at the state of

the art Entity-Relationship clustering algorithms and approaches are still mainly

semiautomatics, asking for “experts” involvement [7]. As a consequence, there is still

a poor clustering assistance in diagramming tool.

Primitives for schema integration are introduced in [8], where a methodology for

schema integration in the Entity Relationship model is presented. Integration and

abstraction primitives have been introduced in [1], where several properties of the

repositories adopting such primitives have been formally modelled and investigated.

Abstractions in conceptual modelling have been studied to support database design,

database comprehension and schema summarization [4], formal characterizations of

generic relationships [9], and, recently, theories of ontology granularity [10].

Different approaches to repository management have been proposed in the

literature: remarkably, a system to manage conceptual models represented in different

languages, among which UML, and Web ontologies represented in RDFS and OWL-

DL, is presented in [11]. Finally, heuristic methodologies and tools for efficient

production of repositories reusing other repositories are presented in [12]. Usage of

repositories in eGovernment initiatives is discussed in [5].

3 Concepts, constructs and methods for repositories of schemas

A conceptual schema S is a set of entities, relationships, generalizations, IS-A

relationships in the Entity Relationship model with usual meanings [13]. Without loss

of generality we will consider only binary relationships; an n-ary relationships Rn

defined among entities E1, .., En can be transformed in a new entity Rn connected with

n binary relationships to E1, .., En. We will not consider cardinalities and other

constraints, and identifiers.

A repository of conceptual schemas is a set of schemas, representing at conceptual

level the whole information content of the databases of an organization. A schema

may be basic, abstract, or integrated.

 380

A basic schema is a schema resulting from the conceptualization of a database of

the organization. Schemas in the repository are placed in levels. Basic schemas

constitute the level 0 of the repository. Besides basic schemas, other schemas in a

repository can be generated by two types of transformation primitives, namely i)

abstraction, that has in input a single schema and generates in output a single schema

and ii) integration, that has in input n schemas and generates in output a single

schema, under the constraint that each schema in the repository is in input to only one

transformation and there is only one schema that is in input to no transformation (the

repository is a tree). Both abstraction and integration have associated inverse

operations (namely, refinement and diversification), in which the roles of input and

output schema(s) are exchanged.

An abstract schema AS = abstraction (S) is a schema resulting from the application

of abstraction primitives to a schema S in the repository. Inversely, a refined schema

RS = refinement (S) is a schema resulting from the application of refinement

primitives to a more abstract one. If the level of schema S is i, the level of a

corresponding abstract schema AS is i+1.

An integrated schema IS = integration (S1, S2, …, Sn) is a schema resulting from the

integration of n schemas S1, S2, …,Sn. The integration process, deeply investigated in

the literature [13, 14], can be expressed in terms of two activities, namely: i)

discovering heterogeneities in schema matching, and ii) applying integration

primitives, namely transformations performed on schemas to be integrated in order to

produce the reconciled integrated schema.

We assume that all concepts of S1, S2, …,Sn are represented in S. Similarly to

abstraction, also integration has an inverse conceptual operation, named

diversification, that transforms a schema S into a set of schemas S1, S2, …, Sn with a

process that makes use of diversification primitives, that have a complementary role

with respect to integration primitives. In order to simplify the structure of repositories,

we will assume in the following that one schema in the repository can be involved in

only one abstraction or integration. Concerning the level of integrated schemas, if the

levels of schemas S1, S2, …,Sn are level1, level2, …, leveln, the level of IS is equal to

max (level1, level2, …, leveln) + 1.

Two types of structures can appear in the repository: refinement chains (or,

inversely, abstraction chains, we prefer from now on to adopt the refinement instead

of abstraction as the relevant transformation), that can be made of one to n refinement

(abstraction) steps among schemas, and integration (diversification) trees and steps,

with similar meanings.

Due to the above organization, the repository can be described at two levels of

detail, we may distinguish the high level structure and the full structure of a

repository. The high level structure is made of (i) refinement chains and schemas

involved, and (ii) integration trees and schemas involved. The full structure includes

refinement primitives used in refinement steps and concepts involved in refinement

primitives. Codes are assigned to schemas, refinements chains and integration trees

according to the following rules:

1. Refinement chains are identified by a code Ri placed on top of the chain;

schemas in refinement chains of length n are assigned codes Ri1, Ri2, …, Rin.

381

2. Integration steps are identified by a code Ik placed on the bottom of the

integrated schema in the step; the n source schemas involved in the

integration step are assigned codes Ik1, Ik2, Ikn.

3. Double codes are assigned to schemas that are both the top schema in a chain

and a source schema in an integration step.

The above rules for codes allow us to associate levels to the set of refinement

chains and the set of integration steps, considered as independent structures in the

schema; we adopt a top-down enumeration. E.g. when only refinement chains are

considered, refinement chain R1 has level 1 and refinement chain R2 has level 2.

We have now to make more precise the concept of abstraction/refinement

primitive. Here we prefer to proceed top-down, starting our formalization with the

concept of refinement primitive (r-primitive in brief); the formalization of the inverse

concept of abstraction primitive is straightforward.

A refinement primitive is made of two parts, called respectively the source schema

SS and the target schema TS.

Figure 1: Basic refinement primitives

We assume in the following that SS is made of a unique concept, entity or

relationship. When an abstraction primitive is applied to a schema S, the concepts of S

that match SS are substituted by the concepts in TS; the primitive has to specify which

concepts in TS inherit the links of SS in S, and the names of concepts in TS. Among all

possible types of primitives, we distinguish a subset characterized by a simple

structure, and we call them basic r- primitives. They are represented in Figure 1.

Notice that relationships in primitives rp1, rp2, rp3 may be n-ary.

Complex refinement primitives are refinement primitives whose structure in terms

of left hand schema and/or right hand schema may be general. We consider and use a

subset of complex primitives, those ones that have in the left hand side schema a

single concept, entity or relationship.

Uqwteg"uejgoc Vctigv"uejgocEqfg

tr3

tr4

tr5

tr6

tr7

Tgncvkqpujkr gzrcpfgf
kpvq vyq *p+"Tgncvkqpujkru

Gpvkv{ gzrcpfgf kpvq c"
Tgncvkqpujkr dgvyggp vyq *p+
Gpvkvkgu

Tgncvkqpujkr gzrcpfgf
kpvq cp Gpvkv{ cpf"vyq
Tgncvkqpujkru

Gpvkv{ gzrcpfgf kpvq c"
Igpgtcnk¦cvkqp dgvyggp
vyq *p+"gpvkvkgu

Gpvkv{ gzrcpfgf kpvq cp
KU/C"tgncvkqp"dgvyggp
vyq Gpvkvkgu

V{rg qh rtkokvkxg

 382

3.1 Methods for repository generation

As for single conceptual schemas, there are basic design patterns also for repository

design. We analyze three design patterns: bottom-up, top down, and mixed.

A bottom up process proceeds as shown in Figure 2, with a divide and conquer

strategy, from granular low-level schemas to high-level compact and homogenised

schemas made of abstract concepts. Notice that here we use the term bottom-up for

the whole process of repository generation.

Given a set of basic schemas S = [S1, S2, …, Sn]

1. Perform

̋ Cluster schemas in S in m groups

̋ For each group produce an integrated schema IS

̋ For each integrated schema, produce an abstract schema

Until it is feasible to integrate schemas in one step

2. Produce the final integrated schema

3. Perform

̋ Produce an abstract schema

Until the abstract schema is considered adequately compact

Figure 2: Bottom-up process for repository design

In a top-down process (see Figure 3) a fully integrated abstract view of all concepts

in basic schemas is ideally available at the beginning of the process: the process

proceeds with refinement or diversifications until all basic schemas are reached.

Given a set of basic schemas S = [S1, S2, …, Sn]

Generate a high level schema with less than ten macro concepts

Perform

̋ For each schema that is a leaf of the generation process, decide whether to

refine it or else to diversify it into n schemas.

̋ If refine then

̋ Using r-primitives produce a refined schema

Else

̋ Choose n, and using diversification primitives produce a set of n

diversified schemas

Until all basic schemas are leafs of the generation process.

Figure 3: Top-down process for repository design

A mixed process proceeds alternatively with top-down and bottom-up steps. The

issue of choosing the “best” process for a specific organization and its basic schemas

S1, S2, …, Sn is a relevant one, and needs the specification of the concept of “best”

through suitable quality dimensions and metrics.

383

4 Qualities of repositories

A repository of conceptual schemas may be characterized in terms of several

quality dimensions and related metrics. Single schema dimensions have been

investigated in the literature, see [15, 16]. The most investigated qualities of schemas

are i) readability, the property of the schema to express the meaning of the reality

represented in a clear way for its intended use; ii) correctness, the correct

representation of requirements in terms of the model categories; iii) minimality, every

aspect of requirements is represented only once in the schema; iv) completeness, the

extent to which a schema includes all the concepts in the requirements; v)

maintainability, the property of the schema of being easily changed when

requirements change.

When we move from one schema to a repository of schemas, we may use the

above quality dimensions for single schemas, while we have to introduce new

qualities that characterize the structure of the repository and the generation process of

schemas in the repository by means of abstractions (refinements) or integrations

(diversification). Such aspects of structure and of generation processes may concern

consecutive schemas in refinement chains, or else repositories and their views. We

define now quality dimensions of a repository, and classify them according to the

distinction we made between qualities referred to the high level structure of the

repository and qualities referred to the full structure.

Qualities pertaining the high level structure of the repository are global schema

balancing, schema refinement balancing, local integration balancing, and global

integration balancing.

Global schema balancing is a property of the high level structure of the repository,

and requests that schemas different from basic schemas have a similar size, where the

size can be expressed by the number of concepts (entities, relationships, etc.) in the

schema. Basic schemas have sizes that depend historically on the relevance and

evolution of the corresponding databases. When moving from basic schemas to higher

level schemas, this property says that we should proceed toward achieving

homogeneity in the complexity of schemas generated, expressed by their size. Schema

refinement balancing refers to the homogeneous disposition of schemas in refinement

chains. Local integration balancing is a property of integration steps in the high level

structure, and requests that the schemas involved in the integration step are of similar

size. It can be seen as a subproperty of global schema balancing. Global integration

balancing is a property of integration chains, and requests that the schemas in the

different integration steps are of similar number. Global integration balancing

captures a different quality of the high level structure of the repository than previous

qualities.

We now discuss qualities referred to the full structure of the repository, and

especially on the distribution and complexity of refinement (abstraction) and

integration (diversification) balancing; they are: concept refinement balancing, global

and local refinement balancing, and understandability.

Concept refinement balancing concerns the homogeneous refinement of high level

concepts in refinement chains, from abstract schemas to the concrete ones. While

 384

concept refinement balancing makes reference to the balancing of refinement chains

of the whole repository, global and local refinement balancing make reference to the

repository seen in its relationship with the views that have been produced referring to

single concepts or else single sectors of the organization. A view associated to a

concept, e.g., in the upper level schema, shows the full set of refinements and

diversification primitives that the concept undergoes.

Finally, understandability can be defined as the effort required to the users of the

repository to understand the generative process, where low effort corresponds to high

understandability.

Figure 4: Two cases of low and high understandability

In Figure 4 we see two cases of low and high understandability. Here the intuition is

that in the left hand side refinement chain has a discontinuous refinement process, and

in some cases proceeds with simple refinements, in other with complex ones.

5 Conclusion and Future work

In this paper we have discussed concepts, methods and qualities of repositories of

conceptual schemas under a unified perspective. Conceptual schemas are a relevant

asset for organizations facing the today inedited large amount of available data,

allowing to have a representation of the managed concepts and their relevance for the

organization activities. Nevertheless, the amount of conceptual schemas is often

related to the number of databases in an organization and their changes in time.

Due to these issues, an organization having hundreds and even thousands of

databases, and willing to build an integrated representation of the conceptual content

of the whole set of databases, needs both for abstracted and integrated representations

of all concepts in databases, due to the complexity involved in the matching,

homogenisation and merging activities of large amount of schemas. Thus, in this

paper we point out the relevance of repository of conceptual schemas for these issues,

whereas a systematization of state of art concepts and methods is required.

The major contribution of the paper concerns, on the one hand, the systematization

and extension of state of the art concepts and methods; on the other hand, the

introduction and discussion of quality dimensions of repositories.

385

In future work the discussed apparatus consisting in refinement/abstraction and

integration/diversification primitives will be considered all together to model new

types of quality dimensions of repositories and metrics for the ones presented in this

paper. Furthermore, future work will be also devoted to analyze the important issue

of the costs of repository generation.

References

1. Batini, C., Di Battista, G., Santucci, G.: Structuring primitives for a dictionary of entity

relationship data schemas. Software Engineering, IEEE Transactions on 19, 344-365 (1993)

2. Akoka, J., Comyn-Wattiau, I.: Entity-relationship and object-oriented model automatic

clustering. Data & Knowledge Engineering 20, 87-117 (1996)

3. Shoval, P., Danoch, R., Balabam, M.: Hierarchical entity-relationship diagrams: the model,

method of creation and experimental evaluation. Requirements Eng. 9, 217-228 (2004)

4. Castano, S., De Antonellis, V.D., Fugini, M.G., Pernici, B.: Conceptual schema analysis:

techniques and applications. ACM Trans. Database Syst. 23, 286-333 (1998)

5. Viscusi, G., Batini, C., Mecella, M.: Information Systems for eGovernment: a quality

of service perspective. Springer, Berlin-Heidelberg (2010)

6. Tavana, M., Joglekar, P., Redmond, M.A.: An automated entity-relationship clustering

algorithm for conceptual database design. Information Systems 32, 773-792 (2007)

7. Simperl, E., Sure, Y.: The Business View: Ontology Engineering Costs. In: Hepp, M.,

Leenheer, P., Moor, A., Sure, Y. (eds.) Ontology Management, vol. 7, pp. 207-225. Springer

US (2008)

8. Batini, C., Lenzerini, M.: A Methodology for Data Schema Integration in the Entity

Relationship Model. Software Engineering, IEEE Transactions on SE-10, 650-664 (1984)

9. Dahchour, M., Pirotte, A., Zimányi, E.: Generic Relationships in Information Modeling. In:

Spaccapietra, S. (ed.) Journal on Data Semantics IV, vol. 3730, pp. 1-34. Springer Berlin /

Heidelberg (2005)

10. Keet, C.M.: Enhancing comprehension of ontologies and conceptual models through

abstractions. Springer-Verlag, Berlin Heidelberg (2007)

11. Hauch, R., Miller, A., Cardwell, R.: Information intelligence: metadata for information

discovery, access, and integration. SIGMOD ’05: Proceedings of the 2005 ACM SIGMOD

international conference of Management of data, New York, NY, USA, pp. 793–798. ACM

12. Batini, C., Grosso, R., Longobardi, G.: Design of Repositories of Conceptual Schemas in

the small and in the large. Proceedings of the eGovernment Workshop '05 (eGOV05) (2005)

13. Batini, C., Ceri, S., Navathe, S.B.: Conceptual Database Design: An Entity-Relationship

Approach. Benjamin Cummings/ Addison Wesley, Palo Alto, California, USA (1991)

14. Batini, C., Lenzerini, M., Navathe, S.B.: A comparative analysis of methodologies for

database schema integration. ACM Comput. Surv. 18, 323-364 (1986)

15. Moody, D.L.: Theoretical and practical issues in evaluating the quality of conceptual

models: current state and future directions. Data & Knowledge Eng. 55, 243-276 (2005)

16. Akoka, J., Comyn-Wattiau, I., Cherfi, S.S.S.: Quality of conceptual schemas an

experimental comparison. In: Research Challenges in Information Science, 2008. RCIS

2008, pp. 197-208. (2008)

 386

A conceptual framework and an underlying

model for community detection and management
in a Social Internetworking scenario

Pasquale De Meo1, Antonino Nocera2, Giovanni Quattrone3, and Domenico
Ursino2

1 Dipartimento di Fisica, Sezione di Informatica, Università di Messina
Viale F. Stagno D’Alcontres, 31, 98166 Messina, Italy

2 DIMET, Università Mediterranea di Reggio Calabria,
Via Graziella, Località Feo di Vito, 89122 Reggio Calabria, Italy

3 Department of Computer Science, University College of London
Malet Place Engineering Building, London, WC1E 6BT, United Kingdom

pdemeo@unime.it,a.nocera@unirc.it,

g.quattrone@cs.ucl.ac.uk,ursino@unirc.it

Abstract In this paper we propose a conceptual framework, and an
underlying model, to handle community detection, characterization and
membership in a Social Internetworking scenario. In order to face these
problems, our framework must preliminarily handle a further one, i.e.
user similarity detection.

1 Introduction

In the last years social networks have become one of the key actors in the World
Wide Web context. Currently, the most famous ones (e.g., Facebook and Twitter)
have largely exceeded one hundred million members. Many of the current social
networks are centered around a main topic, such as work, research, school, sport,
etc. For this reason users interested in many topics have often to subscribe to
multiple social networks.

This trend leads to a fragmentation of both the contents and the profile asso-
ciated with each user inside different social networks. In order to face this issue,
the concept of Social Internetworking has been recently proposed. This term in-
dicates a scenario in which more, possibly heterogeneous, social networks coop-
erate to form a sort of federated system. Currently, there exist some commercial
attempts to provide Social Internetworking functionalities; among them we cite
Google Open Social, Power.com, Gathera and Friendfeed. All these systems are
characterized by an underlying commercial philosophy; as a consequence, they
provide only some basic functionalities that, however, work very well from an
efficiency and effectiveness point of view.

As for the scientific standpoint, to the best of our knowledge, only some
attempts to propose a Social Internetworking System have been presented in the
literature [12,4,5]. Actually, Social Internetworking is a very challenging issue

2 P. De Meo, A. Nocera, G. Quattrone, D. Ursino

and the problems that can be investigated in this context are numerous and
extremely fascinating (see [4] for some of them).

One of the most interesting problems in Social Internetworking is community
detection. It aims at constructing very cohesive and loosely coupled communi-
ties of users possibly belonging to different social networks. In the literature, the
detection of user communities inside a single social network has been highly in-
vestigated [6,7,9,11,13]. However, the corresponding solutions cannot be directly
extended to the Social Internetworking context because the information to han-
dle in this case is much more complex; for instance, the information that two
users are both members of a social network whereas only one of them is a mem-
ber of another social network is extremely important in a Social Internetworking
scenario whereas it is not relevant if a single social network is considered.

Two other challenging problems strictly related to the previous one are com-
munity characterization and community membership. The former aims at detect-
ing the main features that best represent a given community. The latter aims at
determining the membership degree of a given user to one or more communities.

In order to face all these problems it is necessary to consider a preliminary
one, i.e. the detection of similarities among users of a Social Internetworking
System, possibly registered to different social networks. With regard to this
problem, it is worth pointing out that many methods to compute similarities
among users have been proposed. A first one compares their profiles; in this way
the semantic similarity among them is determined. An alternative method con-
siders the actions performed by them. Interestingly enough, these relationships
could connect also users who do not know each other.

The four problems considered above are strictly related to each other and,
therefore, it would be interesting to simultaneously face all of them. In our
opinion one of the best ways to perform this task consists in the definition of a
framework capable of handling all of them.

All the ideas expressed above represent the basis of this paper; in fact, in it
we propose a conceptual framework, following the Component-Based Develop-
ment paradigm and the layers architectural pattern, and an underlying model,
for community detection, characterization and membership in a Social Internet-
working System (hereafter, SIS).

This paper is organized as follows: Section 2 illustrates the proposed model
for the representation of a SIS. Section 3 is devoted to present the proposed
framework and to discuss its main characteristics. A comparison between the
proposed framework and some related approaches can be found in Section 4.
Finally, in Section 5, we draw our conclusions.

2 The proposed SIS model

A SIS consists of a set of social networks, a set of users operating on them and
a set of resources stored therein.

A user can join more social networks of a SIS; in this case, analogously to
what happens in other Social Internetworking scenarios (see, for instance, the

 388

A conceptual framework and an underlying model for community detection... 3

reference scenario of Google Social Graph) we assume that it is possible (in case
with the support of the user himself) to know all the accounts adopted by him
in the social networks of the SIS. As a consequence, a unique identifier can be
associated with a user in the whole SIS.

A set of tags can be associated with a user; they express his main activities
and interests. Social networks allow users to post resources inside them. The
identifier of a resource is unique only for a given user and does not depend on
the social network where he posts it. Each resource is described by means of a
set of tags. Inside the SIS each user can access a resource and can evaluate it by
means of a numerical score. Resources of interest can be detected by submitting
suitable queries; a query consists of a set of tags which specify the information
needs of the user submitting it. Finally, if a mutual agreement exists, two users
can declare their friendship within a given social network of the SIS.

From the previous description it is possible to observe that, in a SIS with
the characteristics described above, a user ui can perform four kinds of action,
namely: (i) membership: it indicates that ui has joined a social network sk; (ii)
friendship: it denotes that ui has become friend of a user ul in sk; (iii) post: it
indicates that ui has posted a resource rj in sk; (iv) evaluation: it denotes that
ui has evaluated rj in sk; the corresponding evaluation is a number belonging
to the real interval [0, 1].

In order to define a SIS model with the features specified above we must
preliminarily introduce the concepts of user profile and resource profile.

Specifically, the profile of a user ui is a tuple Pui
= 〈IDui

, Tui
〉, where: (i)

IDui
is the identifier of ui; as previously pointed out, IDui

is unique within a
SIS; (ii) Tui

= {t1, t2, . . . , tp} is a set of tags specifying the interests of ui; these
are the tags mostly used by him in the past for labeling or searching for the
resources of his interests.

The profile of a resource rj is a tuple Prj
= 〈IDrj

, UserIDrj
, Trj

〉, where:
(i) IDrj

and UserIDrj
are the identifiers of rj and of the user who posted it,

respectively; in our SIS model, a resource rj is univocally identified for the user
who posted it; as a consequence, it is univocally identified in the SIS by the
pair 〈IDrj

, UserIDrj
〉; (ii) Trj

= {t1, t2, . . . , tm} is the set of the tags labeling
rj and specifying its content.

We are now able to introduce our model for representing a SIS.

Definition 1. Let U be a set of users, let R be a set of resources and let S be a
set of social networks. A Social Internetworking System SIS can be represented
by a hypergraph H = 〈NSet, ESet〉 where:

– NSet = NSetU∪NSetR∪NSetS is the set of the nodes of H. There is a node
uni ∈ NSetU for each user ui ∈ U ; a label 〈U, Pui

〉, where Pui
is the profile

of ui, is associated with this node. There is a node rnj ∈ NSetR for each
resource rj ∈ R; a label 〈R, Prj

〉, where Prj
is the profile of rj , is associated

with this node. There is a node snk ∈ NSetS for each social network sk ∈ S;
a label 〈S, IDsk

〉, where IDsk
is the identifier of sk, is associated with this

node.

 389

4 P. De Meo, A. Nocera, G. Quattrone, D. Ursino

– ESet = ESetM ∪ESetF ∪ESetP ∪ESetV is the set of the hyperedges of H.
Each hyperedge is associated with an action carried out by a user; specifi-
cally: (i) there is a hyperedge eM (uni, snk) ∈ ESetM if ui has joined sk; a
label 〈M〉 is associated with eM ; (ii) there is a hyperedge eF (uni, unl, snk) ∈
ESetF if ui and ul have specified that they are friends in sk; a label 〈F 〉
is associated with eF ; (iii) there is a hyperedge eP (uni, rnj , snk) ∈ ESetP
if ui has posted rj in sk; a label 〈P 〉 is associated with eP ; (iv) there is a
hyperedge eV (uni, rnj , snk) ∈ ESetV if ui has evaluated rj in sk; a label
〈V, v〉 is associated with eV ; here v indicates the value that ui assigned to rj

in sk. �

It is worth pointing out that, in the scenario considered in Definition 1,
users may be involved in four action types (i.e., membership to a social network,
friendship, resource post and resource evaluation). However, besides these com-
mon action types, our approach can be easily extended to include other ones
possibly performed inside social networks.

3 The proposed conceptual framework

The architecture of the proposed conceptual framework consists of four layers.
In its turn, each layer consists of a set of components. The four layers of our
framework are:

– The User Similarity Modeling Layer; it handles a mathematical model to
compute the similarity of each pair of SIS users on the basis of the actions
performed by them or of the content of their profiles.

– The Clustering Layer; it exploits the user similarities computed by the User
Similarity Modeling Layer and groups users into virtual communities by
means of suitable clustering algorithms.

– The Community Characterization Layer; it characterizes the virtual com-
munities returned by the Clustering Layer on the basis of the information
provided by the User Similarity Modeling Layer.

– The Membership Layer; for each SIS user, it determines the degree of his
membership to each virtual community detected by the Clustering Layer.

The components currently defined for the User Similarity Modeling Layer
are:

– The ARM (Action Relationship Modeling) component; it builds a matrix
whose generic element represents the similarity degree of a pair of users; for
this purpose it considers all the actions of a given type performed by them.

– The RA (Relationship Aggregation) component family; each RA receives a
set of matrixes, one for each action type, and returns a matrix obtained by
suitably aggregating them.

– The SRM (Semantic Relationship Modeling) component; it builds a matrix
whose generic element represents the semantic similarity degree of a pair of
users; for this purpose it exploits the corresponding user profiles.

 390

A conceptual framework and an underlying model for community detection... 5

The Clustering Layer currently contains only one component, called SC,
which constructs virtual communities.

The components currently defined for the Community Characterization Layer
are:

– The CDBCC (Centrality Detection Based Community Characterization)
component; for each community detected by the Clustering Layer on the
basis of the actions performed by SIS users, it identifies the κ most repre-
sentative users who characterize the community in the whole.

– The SBCC (Semantic Based Community Characterization) component; for
each community detected by the Clustering Layer on the basis of user pro-
files, it builds a profile which characterizes the community itself from the
semantic point of view.

The components currently defined for the Membership Layer are:

– The RUBM (Representative User Based Membership) component; given
a SIS user, it determines the degree of his membership to each virtual
community detected by the Clustering Layer on the basis of the actions
performed by the SIS users; for this purpose it exploits the corresponding
representative users derived by the CDBCC component.

– The NBM (Neighborhood Based Membership) component; it solves the
same problem solved by RUBM but by means of a different strategy based
on the analysis of the neighborhood of the considered user.

– The SBM (Semantic Based Membership) component; given a SIS user, it
determines the degree of his membership to each virtual community detected
by the Clustering Layer on the basis of user profiles; for this purpose it com-
pares the profiles of both the considered user and the virtual communities.

It is worth pointing out that all the matrixes handled by the framework
components are very sparse. As a consequence, suitable techniques for the man-
agement of very sparse matrixes are exploited to manage them.

Due to space limitations we cannot illustrate the components of the proposed
framework in detail. However, in the following, we shall investigate its main
features.

The main characteristic of our conceptual framework is that it operates on a
SIS, instead of on a single social network. Even if the modeling of a SIS can be
seen as an extension of the one of a social network (for instance, in both cases, it
could be possible to use graphs or hypergraphs), the algorithms for solving the
problems of interest are much more complex. For instance, they must consider
that some social networks of a SIS could handle complementary information
that, if suitably aggregated in the SIS, could provide some value added. On the
other side, some social networks in a SIS could use different ways to represent
the same information; in this last case, a preliminary homogeneity task appears
necessary. Think, for instance, of the concepts of friendship, trustworthiness
and reliability in different social networks. Think, also, that a user could have
different profiles, different reputations, etc. in different social networks because

 391

6 P. De Meo, A. Nocera, G. Quattrone, D. Ursino

these last ones can use different policies to handle and evaluate these properties
and/or because a user could have different behaviors in different social networks.
The social networks themselves could have different trusts and reputations, and
this last information appears extremely useful to handle. All these heterogeneity
issues must not be handled when operating on a single social network, whereas
they become one of the main focuses when operating on a Social Internetworking
scenario. Clearly, the algorithms underlying the components of the proposed
framework handle all these problems and, therefore, are much more complex
than the ones operating on a single social network.

As a further characteristic of our framework consider that, in the context of
social networks, the simplest way to compute user similarities consists of com-
puting the corresponding Jaccard coefficient. However, this coefficient is often
not suited in Social Networking and Social Internetworking because it considers
only the acquaintances of a user (and, therefore, local information), whereas it
does not take global information into account. Our framework exploits infor-
mation stored in the whole SIS to compute user similarities. In particular, it
examines the whole set of paths connecting the nodes associated with two users,
rather than only the direct links existing between them.

Furthermore, the approaches operating on single social networks are often
based on the analysis of the structural properties of the involved networks. In
order to handle the information heterogeneity problem possibly characterizing
social networks in a SIS, our approach considers also the behaviors and the
semantic information concerning involved users. Behaviors are derived from the
examination of the actions performed by users; semantic information is extracted
from the analysis of their profiles.

These are the main characteristics of our conceptual framework taken as a
whole. The algorithms underlying each of its components have also other speci-
ficities and novelties that we cannot describe here due space limitations. We
provide only some highlights about them in the next section.

4 Related work

In this section we compare our approach with other related ones already pre-
sented in the literature. Before carrying out this comparison, we point out that,
to the best of our knowledge, no conceptual framework conceived to jointly han-
dle user similarity detection as well as community detection, characterization and
membership in a Social Internetworking scenario has been already proposed in
the literature. As a matter of fact, all the previous approaches to handle user
similarity detection or community detection, characterization and membership
have been conceived to operate on a single social network.

In [1] the problem of computing user similarities in single social networks is
formalized as an optimization problem. Other approaches compute similarities
by exploiting matrix based methods. For instance, the approach of [10] uses a
modified version of the Katz coefficient, SimRank [8] provides an iterative fix-
point method and the approach of [2] operates on directed graphs and uses an

 392

A conceptual framework and an underlying model for community detection... 7

iterative approach relying on their spectral properties. Our approach, like the
last ones mentioned above, uses information stored in the whole network (in
our case in a SIS) to compute user similarities. However, there are some strong
differences between the approaches described above and ours. First of all, the
main goal of our approach is the construction and the management of virtual
communities and, in this context, user similarity detection is just a step of this
procedure. Moreover, generally, the approaches described above are based on the
analysis of the structural properties of the involved networks. By contrast, our
approach considers also the behaviors and the semantic information of involved
users.

A large number of community detection algorithms is based on the concept
of network modularity. This task is NP-hard and, then, suitably heuristics must
be considered [6,3,7]. Many of the approaches described above return disjoint
communities, i.e. they assign each user to only one community. Our approach
follows a different perspective; in fact, it first constructs virtual communities
and, then, for each pair 〈ui, V Commx〉, where ui is a user and V Commx is a
detected community, it computes a coefficient stating the membership degree of
ui to V Commx. As for a second difference, many of the approaches described
above detect communities by directly analyzing the graph associated with the
social network which they operate on; in this analysis, they consider the infor-
mation associated with the edges of this graph. By contrast, our approach detects
communities by constructing support graphs starting from the hypergraph asso-
ciated with the SIS which it operates on; these support graphs encode similarity
relationships among users and are derived on the basis of the information as-
sociated with both the nodes and the hyperedges of the hypergraph representing
the SIS. The third difference regards the features considered to characterize
detected communities. In fact, many approaches described above do not focus
on this problem; other ones perform this task by considering the behavior of the
involved users. By contrast, our approach associates a great relevance with this
issue and, in fact, implements different possible ways to perform this task.

5 Conclusions

In this paper we have proposed a conceptual framework to handle community de-
tection, characterization and membership in a SIS. In our opinion the proposed
framework should not be considered as an “end-point” but as a “starting-point”.
As a matter of fact, it could be the precursor of a framework for the manage-
ment of a SIS. This framework could consist of a central core (handling both
the hypergraph representing the SIS and a catalogue of its users, resources and
social networks) to which a large variety of plugins could be added; this way
of proceeding is typical of many high-success software frameworks (think, for
instance, of Eclipse and Thunderbird). In this way, it could be possible to realize
a catalogue of plugins specialized to solve the various problems typical of Social
Internetworking. As a further effort, it could be possible to design an intelligent
wizard, based on an underlying recommender system, which suggests to a user

 393

8 P. De Meo, A. Nocera, G. Quattrone, D. Ursino

the plugins that he should add in the framework to satisfy his needs, and guides
him in their installation.

References

1. V. Batagelj, P. Doreian, and A. Ferligoj. An optimizational approach to regular
equivalence. Social Networks, 14(1-2):121–135, 1992.

2. V.D. Blondel, A. Gajardo, M. Heymans, P. Senellart, and P. van Dooren. A Mea-
sure of Similarity between Graph Vertices: Applications to Synonym Extraction
and Web Searching. SIAM Review, 46(4):647–666, 2004.

3. A. Clauset, M. Newman, and C. Moore. Finding community structure in very large
networks. Physical Review Part E, 70(6):066111, 2004.

4. P. De Meo, A. Nocera, D. Rosaci, and D. Ursino. Recommendation of reliable users,
social networks and high-quality resources in a Social Internetworking System. AI
Communications, 24(1):31–50, 2011.

5. P. De Meo, A. Nocera, G. Terracina, and D. Ursino. Recommendation of similar
users, resources and social networks in a Social Internetworking Scenario. Infor-
mation Sciences, 181(7):1285–1305, 2011.

6. M. Girvan and M. E. Newman. Community structure in social and biological
networks. Proceedings of the National Academy of Science of the United States of
America, 99(12):7821–7826, 2002.

7. R. Guimera and L. Nunes Amaral. Functional cartography of complex metabolic
networks. Nature, 433(7028):895–900, 2005.

8. G. Jeh and J. Widom. SimRank: a measure of structural-context similarity. In
Proc. of the ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (SIGKDD’02), pages 538–543, Edmonton, Alberta, Canada, 2002.
ACM Press.

9. M.S. Kim and J. Han. CHRONICLE: A Two-Stage Density-Based Clustering
Algorithm for Dynamic Networks. In Proc. of the International Conference on
Discovery Science (DS’09), pages 152–167, Porto, Portugal, 2009. Lecture Notes
in Computer Science. Springer.

10. E.A. Leicht, P. Holme, and M. E. J. Newman. Vertex similarity in networks.
Physical Review Part E, 73(2):026120, 2006.

11. M. Newman and E.A. Leicht. Mixture models and exploratory analysis in networks.
Proceedings of the National Academy of Sciences of the United States of America,
104:9564–9, 2007.

12. Y. Okada, K. Masui, and Y. Kadobayashi. Proposal of social internetworking. In
Web and Communication Technologies and Internet-Related Social Issues - HSI
2005, volume 3597 of Lecture Notes in Computer Science, pages 114–124. Springer
Berlin / Heidelberg, 2005.

13. G. Palla, I. Derenyi, I. Farkas, and T. Vicsek. Uncovering the overlapping commu-
nity structure of complex networks in nature and society. Nature, 435(7043):814–
818, 2005.

 394

Groupware Mail Messages Analysis for Mining
Collaborative Processes (poster paper)

Claudio Di Ciccio1, Massimo Mecella1

Monica Scannapieco2, and Diego Zardetto2

1 Sapienza – Università di Roma
Dipartimento di Informatica e Sistemistica Antonio Ruberti

Via Ariosto 25, Roma, Italy
{cdc,mecella}@dis.uniroma1.it
2 Istituto Nazionale di Statistica

Via Balbo 16, Roma, Italy
{scannapi,zardetto}@istat.it

Nowadays, the most of the research related to workflows has considered the
management of formal business processes. There has been some discussion of
informal processes, often under names such as “artful business processes”, e.g.,
[1]: informal processes are typically carried out by those people whose work
is mental rather than physical (managers, professors, researchers, etc.), the so
called “knowledge workers” [2]. With their skills, experience and knowledge,
they are used to perform difficult tasks, which require complex, rapid decisions
among multiple possible strategies, in order to fulfill specific goals. In contrast
to business processes that are formal and standardized, often informal processes
are not even written down, let alone defined formally, and can vary from person
to person even when those involved are pursuing the same objective. Knowledge
workers create informal processes “on the fly” to cope with many of the situations
that arise in their daily work. While informal processes are frequently repeated,
since they are not written down, they are not exactly reproducible, even by their
originators, nor can they be easily shared. Their outcome releases and their
information exchanges are very often done by means of e-mail conversations,
which are a fast, reliable, permanent way of keeping track of the activities that
they fulfill.

The objective of the research proposed in this position document is to auto-
matically build, on top of a collection of e-mails, a set of workflow models that
represent the artful processes which lay behind the knowledge workers activities.

A company can take many advantages out of this work. First of all, the un-
specified agile processes that are autonomously used become formalized: since
such models are not defined a priori by experts but rather inferred from real-life
scenarios that actually took place, they are guaranteed to respect the true exe-
cutions and not reflect the expected ones (often Business Process Management
tools are used to show the discrepancy between the theoretical workflows and
the concrete ones). Secondly, such models can be shared and compared, so that
the best practices might be put in evidence from the community of knowledge
workers, to the whole business benefit. Moreover, without any further compu-
tational cost, an analysis over such processes can be done, so that bottlenecks

and delays in actual executions can be found out. We remark here that all of
these utilities come out with almost no effort for workers, due to the automated
nature of the envisioned approach.

The approach we would like to pursue, in order to retrieve a collection of
process models out of an initial set of e-mail messages, involves many research
fields at a time, each concerning a sequential phase of the overall processing.
For first, we exploit text categorization techniques to filter the set of e-mails
of interest out of the whole provided collection. Then, we make use of object
matching algorithms to obtain clusters of related e-mail conversations, from the
previous extracted subset. Every cluster is subsequently treated by text min-
ing information extraction procedures, in order to find out which tasks e-mail
messages are about. Finally, process mining is used to abstract process models
representing the workflows, which the sets of subsumed tasks were considered
traces of. We aim in the future to release a prototype realization of our approach,
named MailOfMine.

Background and state of the art. Process Mining, also referred to as Work-
flow Mining (see [3]), is the set of techniques that allow the extraction of struc-
tured process descriptions, stemming from a set of recorded real executions.
Such executions are intended to be stored in so called event logs, i.e., textual
representations of a temporarily ordered linear sequence of tasks. There, each
recorded event reports the execution of a task (i.e., a well-defined step in the
workflow) in a case (i.e., a workflow instance). Beware that events are always
recorded sequentially, even though tasks could be executed in parallel: it is up to
the algorithm to infer the actual structure of the workflow that they are traces
of, identifying the causal dependencies between tasks (conditions).

The idea to apply process mining in the context of workflow management
systems was introduced in [4]. There, processes were modeled as directed graphs
where vertices represented individual activities and edges stood for dependencies
between them. Cook andWolf, at the same time, investigated similar issues in the
context of software engineering processes. In [5] they described three methods for
process discovery: one using neural networks, another with a purely algorithmic
technique, the last adopting a Markovian approach. The authors consider the
latter two the most promising approaches. The purely algorithmic approach
builds a finite state machine where states are fused if their futures (in terms of
possible behavior in the next k steps) are identical. The Markovian approach
uses a mixture of algorithmic and statistical methods and is able to deal with
noise. Note that the results presented in [5] are limited to sequential behavior.

Most of the nowadays mainstream process mining tools model processes as
Workflow Nets (WFNs – see [6]), explicitly designed to represent the control-flow
dimension of a workflow. From [4] onwards, many techniques have been proposed,
in order to address specific issues: pure algorithmic (e.g., α algorithm, drawn in
[7] and its evolution [8], α++), heuristic (e.g., [9]), genetic (e.g., [10]). Indeed,
heuristic and genetic algorithms have been introduced to cope with noise, that
the pure algorithmic techniques were not able to manage.

 396

A very smart extension to the previous research work has been recently
achieved by the two-steps algorithm proposed in [11]. Differently from previous
works, which typically provide a single process mining step, it splits the compu-
tation into two phases: the first builds a Transition System (TS) that represents
the process behavior and the tasks causal dependencies; the second makes use of
the state-based “theory of regions” ([12], [13], [14]) to construct a WFN which
is bisimilar to the TS. The first phase is made “tunable”, so that it can be either
more strictly adhering or more permissive to the analyzed log traces behavior,
i.e., the expert can decide a balance between “overfitting” and “underfitting”.
Recall, indeed, that event logs are not the whole universe of possible traces that
may run: hence, on one hand, the extracted process model should be valid for
future unpredictable cases; on the other hand, it should be checked whether
such a process model actually adheres to the behavior that most of the gathered
traces reflected in the past (we say “most” here to emphasize that a little per-
centage of the whole log may represent erroneous deviations from the natural
flow of tasks). The second phase has no parameter to set, since its only aim is
synthesizing the TS into an equivalent WFN. Thus, it is fixed, while the for-
mer step can be realized exploiting one among many of the previously proposed
“one-step” algorithms (for instance, [9] seems to integrate well).

[2] describes the “ACTIVE” EU collaborative project, coordinated by British
Telecom, currently ongoing (due date is February 2011). Such project addresses
the need for greater knowledge worker productivity by providing more effective
and efficient tools. Among the main objectives, it aims at helping users to share
and reuse informal processes, even by learning those processes from the user’s
behavior.

Object Matching (OM) is the problem of identifying pairs of data objects
coming from different sources and representing the same real world object. The
aim of OM techniques is typically related to the cleaning of large data sets from
erroneous duplicates. Such duplicates usually derive from misspellings, abbrevi-
ations, lack of standard formats, or any combination of these factors. Analogous
techniques can be used to achieve a reference reconciliation (see [15]), namely
the identification of related references in complex information spaces where data
corresponding to the same reference can be structurally heterogeneous (e.g., e-
mail contacts, documents, spreadsheets). If data objects are records, the problem
is known in literature as Record Linkage (RL) [16]. Integration of different data
sources and improvement of the quality of single sources are only some of the
real application scenarios that need to solve the OM problem. The RL version of
the OM problem has received considerable attention by the scientific community.
Most of the works (e.g. [17], [18]) focus on solving the problem within a rela-
tional DBMS: often, in the real world, entities have two or more representations
in databases. Duplicate records do not share a common key and/or they contain
errors that make duplicate matching a difficult task.

Some techniques for discovering strong entity associations in semi-structured
data, such as document meta-data, are also known (e.g., see [19]). Here, the
attention is moved towards a novel technique, proposed in [20]. Such a method-

397

ology differs from the others in the field, indeed, since (i) it is able to treat not
only records but every kind of objects, provided that it is possible to define a
distance for them, (ii) it is focused on effectiveness rather than on the ability
to manage huge amount of data, (iii) its nature is completely automated. Re-
garding the third point, there were new unsupervised techniques (such as [17])
already proposed, but none of them, to the best of our knowledge, were fully
automated. Indeed, though not requiring exactly a clerically prepared training
set, such techniques still depend critically on some external inputs (e.g., human
intervention is needed to set crucial parameters for the algorithms in [17]). It
achieves such a result by applying a two-phases algorithm. It makes use of sta-
tistical models that allow to represent a probability distribution as a convex
combination of two distinct probability distributions: the one stemming from
the sub-population of Matches (M) and the other from that of Unmatches (U).
Thus, the two consecutive tasks are: (i) estimating mixture parameters by fitting
the model to the observed distance measures between pairs; (ii) then, obtaining
a probabilistic clustering of the pairs into Matches and Unmatches, by exploiting
the fitted model. In the clustering step the fitted mixture model is used to search
an optimal classification rule such that each pair can be assigned, based on its
observed distance value, either to theM or to the U class. Such this constrained
optimization problem is solved by means of a purposefully designed evolutionary
algorithm [21].

Text Mining, or Knowledge Discovery from Text (KDT) deals with the ma-
chine supported analysis of text: indeed, it refers generally to the process of
extracting interesting information and knowledge from unstructured text. It is
a field in the intersection of related areas such as information retrieval, machine
learning, statistics, computational linguistics and, especially, data mining.

Natural language text contains much information that is not directly suitable
for automatic analysis by a computer. However, computers can be used to sift
through large amounts of text and extract useful information from single words,
phrases or passages. Therefore, text mining can be interpreted in the sense of an
information extraction activity, i.e., as a restricted form of full natural language
understanding, where we know in advance what kind of semantic information
we are looking for.

Text mining covers many other topics that are out of the scope of this pa-
per: for a comprehensive survey on it, please refer to [22] or, for a more extended
explanation, [23]. A particular discipline of interest that belongs to it is Text Cat-
egorization (TC, also known as Text Classification or Topic Spotting), namely,
the activity of assigning categories (symbolic labels), from a given set, to natural
language texts, on the basis of endogenous knowledge only (i.e., knowledge is ex-
tracted from the documents only and not from other possible external sources).
The categories in the given set can be two (Binary TC, i.e., a document can
belong to a category or its complement) or more. TC is applied in many con-
texts, such as document filtering and automated metadata generation. For a
comprehensive survey on Machine Learning in Automated Text Categorization,
the reader can refer to [24].

 398

As a successful example of application, we want to report here a case that
deeply relates with the research proposal of this paper: [25] proposes a method
employing text mining techniques to analyze e-mails collected at a customer
center. The method uses two kinds of domain-dependent knowledge: one is a
key concept dictionary manually provided by human experts and the other is a
concept relation dictionary automatically acquired by a fuzzy inductive learning
algorithm. Based upon the work exposed in [26], the depicted method takes
as input the subject and the body of an e-mail, decides a text class for the
e-mail, extracts key concepts from e-mails and finally presents their statistical
information as well.

The MailOfMine proposed approach. As depicted in Figure 1,
MailOfMine is intended to be divided into layers that act in series like in
a waterfall model. Each layer is built to achieve a specific task (e-mail reading,
e-mail filtering, e-mail clustering, tasks extraction, workflow mining). The initial
input is a file storing a whole repository of e-mail messages. The final output is
a set of process models inferred from the given input. In the middle, every layer
is drawn to receive as input the result that comes from the upper one, starting
from the raw e-mails, and in turn take the output to the lower one, down to the
final process models.

The very first task is accomplished by a plug-in based system, that must be
able to extract a common format for e-mail messages, stemmed from heteroge-
neous sources: for example, Microsoft Outlook, Mozilla Thunderbird, Evolution
Mail files use different storage formats, but the system must be able to manage
them all.

In Figure 1, such task corresponds to the layer 0 (Multiple E-Mail Storage
Formats Extraction).

From that point on, the proposed approach follows this pattern, founded on
a double analysis/synthesis passage:

1. (Mail Filtering) analysis on the set of heterogeneous e-mail messages to filter
irrelevant messages out (Text Categorization, Information Retrieval);

2. (Mail Clustering) synthesis on the set of relevant messages, to cluster related
ones into homogeneous3 sets (Object Matching);

3. (Tasks Inference) analysis on each cluster, to extract the tasks out (Infor-
mation Extraction);

4. (Workflows Inference) synthesis on tasks, to build a process model that
conforms with the subsumed trace (Process Mining).

Conclusions. In this paper, the MailOfMine approach and its basic idea of
inferring artful business process models, i.e., agile workflows formal represen-
tations, from knowledge workers e-mail storage files, have been proposed. The

3 Here “homogeneous” has to be intended with respect to the activities to serve for
the purpose of task inference.

399

Fig. 1. The MailOfMine architecture

 400

approach can take advantage of many previous works that succeeded in the het-
erogeneous research fields that are involved in this context (Text Mining, Object
Matching, Process Mining). However, new research is indeed needed: the chal-
lenge is not only in the integration of various techniques, but also in applying
process mining techniques on top of more traditional text mining ones. Currently
we are studying the details of all the different layers/steps, and then we will pro-
ceed to an effective validation, by applying the approach and the prototype tool
to a corpus of about 10 GByte emails, collected over 10 year of work of some
authors to Italian and European research projects.

In future work, we want also to address other interesting issues. A challenge
is the one of cooperative activities: they may involve many knowledge workers
at a time, and it can happen that a task, say DoIt, that Mr A. Bloggs demands
to Mrs B. Doe, is in turn redirected to Mr C. Smith. Thus, Mr C. Smith fulfills a
series of tasks, in collaboration with Mrs B. Doe, which Mr A. Bloggs is unaware
of. It could be interesting, then, to investigate on how to relate these activities
that are traced by separated e-mail sets (one belonging to Mr A. Bloggs, the
other to Mrs B. Doe), so to unify them under a single workflow model.

Another point to cope with is the question of privacy: e-mail messages may
contain sensible private information that the single knowledge worker, or the
company, might not want to be processed. At this initial stage of our research,
we are supposing that treated data are public at least to the company that the
knowledge worker works for, since we consider just the company mailbox and
not her personal one, and the inferred information would not be presented to
other people than who the company wants to involve. But how to include privacy
concerns is surely a challenge to be addressed in future work.

References

1. C. Hill, R. Yates, C. Jones, and S. L. Kogan, “Beyond predictable workflows: En-
hancing productivity in artful business processes,” IBM Systems Journal, vol. 45,
no. 4, pp. 663–682, 2006.

2. P. Warren, N. Kings, I. Thurlow, J. Davies, T. Buerger, E. Simperl, C. Ruiz,
J. M. Gomez-Perez, V. Ermolayev, R. Ghani, M. Tilly, T. Bösser, and A. Imtiaz,
“Improving knowledge worker productivity - the active integrated approach,” BT
Technology Journal, vol. 26, no. 2, pp. 165–176, 2009.

3. W. M. P. van der Aalst, “The application of petri nets to workflow management,”
Journal of Circuits, Systems, and Computers, vol. 8, no. 1, pp. 21–66, 1998.

4. R. Agrawal, D. Gunopulos, and F. Leymann, “Mining process models from
workflow logs,” in Advances in Database Technology – EDBT’98.

5. J. E. Cook and A. L. Wolf, “Discovering models of software processes from
event-based data,” ACM Trans. Softw. Eng. Methodol., vol. 7, no. 3, pp. 215–249,
1998.

6. W. M. P. van der Aalst, “Verification of workflow nets,” in ICATPN, ser. Lecture
Notes in Computer Science, P. Azéma and G. Balbo, Eds., vol. 1248. Springer,
1997, pp. 407–426.

7. W. M. P. van der Aalst, T. Weijters, and L. Maruster, “Workflow mining:
Discovering process models from event logs,” IEEE Trans. Knowl. Data Eng.,
vol. 16, no. 9, pp. 1128–1142, 2004.

401

8. L. Wen, W. M. P. van der Aalst, J. Wang, and J. Sun, “Mining process models
with non-free-choice constructs,” Data Min. Knowl. Discov., vol. 15, no. 2, pp.
145–180, 2007.

9. A. Weijters and W. van der Aalst, “Rediscovering workflow models from
event-based data using little thumb,” Integrated Computer-Aided Engineering,
vol. 10, p. 2003, 2001.

10. A. K. Medeiros, A. J. Weijters, and W. M. Aalst, “Genetic process mining: an
experimental evaluation,” Data Min. Knowl. Discov., vol. 14, no. 2, pp. 245–304,
2007.

11. W. van der Aalst, V. Rubin, H. Verbeek, B. van Dongen, E. Kindler, and
C. Günther, “Process mining: a two-step approach to balance between underfitting
and overfitting,” Software and Systems Modeling, vol. 9, pp. 87–111, 2010.

12. J. Cortadella, M. Kishinevsky, L. Lavagno, and A. Yakovlev, “Synthesizing petri
nets from state-based models,” in Computer-Aided Design, 1995. ICCAD-95. Di-
gest of Technical Papers, 1995 IEEE/ACM International Conference on, nov. 1995,
pp. 164 –171.

13. ——, “Deriving petri nets from finite transition systems,” Computers, IEEE Trans-
actions on, vol. 47, no. 8, pp. 859 –882, aug. 1998.

14. J. Desel and W. Reisig, “The synthesis problem of petri nets,” Acta Informatica,
vol. 33, pp. 297–315, 1996.

15. X. Dong, A. Y. Halevy, and J. Madhavan, “Reference reconciliation in complex
information spaces,” in SIGMOD Conference, ACM, 2005, pp. 85–96.

16. A. K. Elmagarmid, P. G. Ipeirotis, and V. S. Verykios, “Duplicate record detection:
A survey,” IEEE Transactions on Knowledge and Data Engineering, vol. 19, pp.
1–16, 2007.

17. S. Chaudhuri, V. Ganti, and R. Motwani, “Robust identification of fuzzy dupli-
cates,” in Data Engineering, 2005. ICDE 2005. Proceedings. 21st International
Conference on, apr. 2005, pp. 865 – 876.

18. S. Guha, N. Koudas, A. Marathe, and D. Srivastava, “Merging the results of ap-
proximate match operations,” in VLDB ’04: Proceedings of the Thirtieth interna-
tional conference on Very large data bases, pp. 636–647.

19. N. Sarkas, A. Angel, N. Koudas, and D. Srivastava, “Efficient identification of
coupled entities in document collections,” in ICDE 2010, pp. 769–772.

20. D. Zardetto, M. Scannapieco, and T. Catarci, “Effective automated object match-
ing,” in ICDE 2010, pp. 757–768.

21. Z. Michalewicz, Genetic algorithms + data structures = evolution programs (2nd,
extended ed.). New York, NY, USA: Springer-Verlag New York, Inc., 1994.

22. A. Hotho, A. Nürnberger, and G. Paaß, “A brief survey of text mining,” LDV
Forum - GLDV Journal for Computational Linguistics and Language Technology,
vol. 20, no. 1, pp. 19–62, May 2005.

23. M. W. Berry and M. Castellanos, Survey of Text Mining II: Clustering, Classifica-
tion, and Retrieval, M. W. Berry and M. Castellanos, Eds. Springer, September
2007.

24. F. Sebastiani, “Machine learning in automated text categorization,” ACM Comput.
Surv., vol. 34, no. 1, pp. 1–47, 2002.

25. S. Sakurai and A. Suyama, “An e-mail analysis method based on text mining
techniques,” Appl. Soft Comput., vol. 6, no. 1, pp. 62–71, 2005.

26. S. Sakurai, Y. Ichimura, A. Suyama, and R. Orihara, “Acquisition of a knowledge
dictionary for a text mining system using an inductive learning method,” in Pro-
ceedings of IJCAI 2001 Workshop on Text Learning: Beyond Supervision, 2001,
pp. 45–52.

 402

Computing Privacy Preserving OLAP Aggregations on

Data Cubes: A Constraint-Based Approach

Alfredo Cuzzocrea1, Domenico Saccà
2
, Vincenzo Rodinò

2

1 ICAR-CNR and University of Calabria

87036 Cosenza, Italy

cuzzocrea@si.deis.unical.it
2 DEIS Dept, University of Calabria

87036 Cosenza, Italy

{sacca, vrodino}@deis.unical.it

Abstract. A constraint-based framework for computing privacy preserving OLAP aggregations

on data cubes is proposed and experimentally assessed in this paper. Our framework introduces a

novel privacy OLAP notion, which, following consolidated paradigms of OLAP research, looks
at the privacy of aggregate patterns defined on multidimensional ranges rather than the privacy

of individual tuples/data-cells, like similar efforts in privacy preserving database and data-cube

research. We complete our main theoretical contribution by means of an experimental evaluation
and analysis of the effectiveness of our proposed framework on synthetic, benchmark and real-

life data cubes.

1 Introduction

Given a multidimensional range R of an OLAP data cube A [5], an aggregate pattern over R is

defined as an aggregate value extracted from R vjcv"ku"cdng"qh"rtqxkfkpi"c"ÐfguetkrvkqpÑ"qh"fcvc"uvqtgf"
in R. In order to capture the privacy of aggregate patterns, in this paper we introduce a novel notion of

privacy OLAP. According to this novel notion, given a data cube A the privacy preservation of A is

modeled in terms of the privacy preservation of aggregate patterns defined on multidimensional data

stored in A. Therefore, we say that a data cube A is privacy preserving iff aggregate patterns extracted

from A are privacy preserving. Contrary to our innovative privacy OLAP notion above, previous

privacy preserving OLAP proposals (e.g., [1,6,9]) totally neglect this even-relevant theoretical aspect,

and, inspired by well-established techniques that focus on the privacy preservation of relational tuples

[10,7], mostly focus on the privacy preservation of data cells (e.g., [9]) accordingly. Despite this,

OLAP deals with aggregate data, and neglects individual information. Therefore, it makes more sense

to deal with the privacy preservation of aggregate patterns rather than the privacy preservation of data

cube cells.

In this paper we propose an innovative framework based on flexible sampling-based data cube

compression techniques for computing privacy preserving OLAP aggregations on data cubes while

allowing approximate answers to be efficiently evaluated over such aggregations. This framework

addresses an application scenario where, given a multidimensional data cube A stored in a producer

Data Warehouse server, a collection of multidimensional portions of A defined by a given (range)

query-workload QWL of interest must be published online for consumer OLAP client applications.

Moreover, after published, the collection of multidimensional portions is no longer connected to the

Data Warehouse server, and updates are handled from the scratch at each new online data delivery.

The query-workload QWL is cooperatively determined by the Data Warehouse server and OLAP

client applications, mostly depending on OLAP analysis goals of client applications, and other

parameters such as business processes and requirements, frequency of accesses, and locality. OLAP

client applications wish for retrieving summarized knowledge from A via adopting a complex multi-

resolution query model whose components are (i) queries of QWL and, for each query Q of QWL, (ii)

sub-queries of Q (i.e., in a multi-resolution fashion). To this end, for each query Q of QWL, an

accuracy grid I(Q), whose cells model sub-queries of interest, is defined. While aggregations of

(authorized) queries and (authorized) sub-queries in QWL are disclosed to OLAP client applications,

it must be avoided that, by meaningfully combining aggregate patterns extracted from

multidimensional ranges associated to queries and sub-queries in QWL, malicious users could infer

sensitive knowledge about other multidimensional portions of A that, due to privacy reasons, are

hidden to unauthorized users. Furthermore, in our reference application scenario, target data cubes are

also massive in size, so that data compression techniques are needed in order to efficiently evaluate

queries, yet introducing approximate answers having a certain degree of approximation that,

however, is perfectly tolerable for OLAP analysis goals [2]. In our proposal, the described application

scenario with accuracy and privacy features is accomplished by means of the so-called

accuracy/privacy contract, which determines the accuracy/privacy constraint under which client

applications must access and process multidimensional data. In this contract, the Data Warehouse

server and client OLAP applications play the role of mutual subscribers, respectively.

2 Constraint-Based Formalization of the Privacy Preserving OLAP Problem

2.1. Fundamentals. A data cube A defined over a relational data source U is a tuple A = ½D,H,J,OÏ,
such that: (i) D is the data domain of A containing (OLAP) data cells, which are the basic

aggregations of A computed over relational tuples stored in U; (ii) H is the set of dimensions of A; (iii)

J is the set of hierarchies related to the dimensions of A; (iv) O is the set of measures of A.

Given an |H|-dimensional data cube A, an m-dimensional range-query Q against A, with m ~ |H|, is

a tuple Ï½?
/
C,,...,,

110 mkkk RRRQ , such that: (i)
ikR denotes a contiguous range defined on the

dimension
ikd of A, with ki belonging to the range [0, |H|Î1], and (ii) C is a SQL aggregation

operator.

Given a query Q against a data cube A, the query region of Q, denoted by R(Q), is defined as the

sub-domain of A bounded by the ranges
110

,...,,
/mkkk RRR of Q.

Given an m-dimensional query Q, the accuracy grid I(Q) of Q is a tuple

ÏFFF½?
/110

,...,,)(
mkkkQ AAAI , such that

ikAF denotes the range partitioning Q along the dimension

ikd of A, with ki belonging to [0, |H|Î1], in a
ikAF -based (one-dimensional) partition. By combining

the one-dimensional partitions along all the dimensions of Q, we finally obtain I(Q) as a regular

multidimensional partition of R(Q). From Section 1, recall that the elementary cell of the accuracy

grid I(Q) is implicitly defined by sub-queries of Q belonging to the query-workload QWL against the

target data cube.

Based on the latter definitions, in our framework we consider the broader concept of extended

range-query Q+, defined as a tuple Q+ = ½Q, I(Q)Ï, such that (i) Q ku" c" ÐencuukecnÑ" tcpig-query,

Ï½?
/
C,,...,,

110 mkkk RRRQ , and (ii) I(Q) is the accuracy grid associated to Q,

ÏFFF½?
/110

,...,,)(
mkkkQ AAAI , with the condition that each interval

ikAF is defined on the

corresponding range
ikR of the dimension

ikd of Q. For the sake of simplicity, we assume Q » Q+.

Given an n-dimensional data domain D, we introduce the volume of D, denoted by D , as

follows: |||||| 110 /···? ndddD 4 , such that |di| is the cardinality of the dimension di of D. This

definition can also be extended to a multidimensional data cube A, thus introducing the volume of A,

A , and to a multidimensional range-query Q, thus introducing the volume of Q, Q .

Given a data cube A, a range query-workload QWL against A is defined as a collection of (range)

queries against A, as follows: },...,,{ 1||10 /? QWLQQQQWL , with R(Qk) Ø R(A) $ Qk Œ QWL.

 404

Given a query-workload QWL = {Q0, Q1."È." Q|QWL|-1}, we say that QWL is non-overlapping if

there not exist two queries Qi and Qj belonging to QWL such that R(Qi) ̨ R(Qj+"Œ"̋. Given a query-

workload QWL = {Q0, Q1."È."Q|QWL|-1}, we say that QWL is overlapping if there exist two queries Qi

and Qj belonging to QWL such that R(Qi) ̨ R(Qj+"Œ"̋. Given a query-workload QWL = {Q0, Q1."È."
Q|QWL|-1}, the region set of QWL, denoted by R(QWL), is defined as the collection of regions of

queries belonging to QWL, as follows: R(QWL) = {R(Q0), R(Q1+."È."R(Q|QWL|-1)}.

2.2. Accuracy Metrics. As accuracy metrics for answers to queries of the target query-workload

QWL, we make use of the relative query error between exact and approximate answers, which is a

well-recognized-in-literature measure of quality for approximate query answering techniques in

OLAP (e.g., see [2]).

Formally, given a query Qk of QWL, we denote as A(Qk) the exact answer to Qk (i.e., the answer to

Qk evaluated over the original data cube A), and as)(
~

kQA the approximate answer to Qk (i.e., the

answer to Qk evaluated over the synopsis data cube CÓ). Therefore, the relative query error EQ(Qk)

between A(Qk) and)(
~

kQA is defined as follows:

}1),(max{

|)(
~

)(|
)(

k

kk

kQ
QA

QAQA
QE

/
? .

EQ(Qk) can be extended to the whole query-workload QWL, thus introducing the average relative

query error)(QWLEQ
 that takes into account the contributions of relative query errors of all the

queries Qk in QWL, each of them weighted by the volume of the query,
kQ , with respect to the

whole volume of queries in QWL, i.e. the volume of QWL, QWL . QWL is defined as follows:

QWLQQQWL k

QWL

k

k Œ? Â
/

?

,
1|'|

0

.

Based on the previous definition of QWL , the average relative query error)(QWLEQ

for a given query-workload QWL can be expressed as a weighted linear combination of

relative query errors EQ(Qk) of all the queries Qk in QWL, as follows:

Â
/

?

©?
1||

0

)()(
QWL

k

kQ

k

Q QE
QWL

Q
QWLE , i.e.: Â

Â

/

?
/

?

/
©?

1||

0
1||

0

}1),(max{

|)(
~

)(|
)(

QWL

k k

kk

QWL

j

j

k

Q
QA

QAQA

Q

Q
QWLE

.

2.3 Privacy Metrics. Since we deal with the problem of ensuring the privacy preservation of OLAP

aggregations, our privacy metrics takes into consideration how sensitive knowledge can be discovered

from aggregate data, and tries to limit this possibility. On a theoretical plane, this is modeled by the

privacy OLAP notion introduced in Section 1.

To this end, we first study how sensitive aggregations can be discovered from the target data cube

A. Starting from the knowledge about A (e.g., range sizes, OLAP hierarchies etc), and the knowledge

about a given query Qk belonging to the query-workload QWL (i.e., the volume of Qk, kQ , and the

exact answer to Qk, A(Qk)), it is possible to infer knowledge about sensitive ranges of data contained

within R(Qk). For instance, it is possible to derive the average value of the contribution throughout

which each basic data cell of A within R(Qk) contributes to A(Qk), which we name as singleton

aggregation I(Qk). I(Qk) is defined as follows:

k

k

k
Q

QA
QI

)(
)(? .

It is easy to understand that, starting from the knowledge about I(Qk), it is possible to progressively

discover aggregations of larger range of data within R(Qk), rather than the one stored within the basic

data cell, thus inferring even-more-useful sensitive knowledge. Also, by exploiting OLAP hierarchies

and the well-known roll-up operator, it is possible to discover aggregations of ranges of data at higher

degrees of such hierarchies.

 405

Secondly, we study how OLAP client applications can discover sensitive aggregations from the

knowledge about approximate answers, and, similarly to the previous case, from the knowledge about

data cube and query metadata. Starting from the knowledge about the synopsis data cube CÓ, and the

knowledge about the answer to a given query Qk belonging to the query-workload QWL, it is possible

to derive an estimation on I(Qk), denoted by)(
~

kQI , as follows:

)(

)(
~

)(
~

k

k

k
QS

QA
QI ? , such that S(Qk) is

the number of samples effectively extracted from R(Qk) to compute CÓ (note that S(Qk) >
kQ). The

relative difference between I(Qk) and)(
~

kQI , named as relative inference error and denoted by

EI(Qk), gives us a metrics for the privacy of)(
~

kQA , which is defined as follows:

}1),(max{

|)(
~

)(|
)(

k

kk

kI
QI

QIQI
QE

/
? .

Similarly to what done for the average relative query error)(QWLEQ
, we model)(QWLEI

 as

follows: Â
/

?

©?
1||

0

)()(
QWL

k

kI

k

I QE
QWL

Q
QWLE , i.e.: Â

Â

/

?
/

?

/
©?

1||

0
1||

0

}1),(max{

|)(
~

)(|
)(

QWL

k k

kUk

QWL

j

j

k

I
QI

QIQI

Q

Q
QWLE

2.4 Thresholds. Similarly to related proposals appeared in literature recently [9], in our framework

we introduce the accuracy threshold HQ and the privacy threshold HI. HQ and HI give us an upper

bound for the average relative query error)(QWLEQ
 and a lower bound for the average relative

inference error)(QWLEI
 of a given query-workload QWL against the synopsis data cube CÓ,

respectively. As stated in Section 1, HQ and HI allow us to meaningfully model and treat the

accuracy/privacy constraint by means of rigorous mathematical/statistical models. In our application

scenario, HQ and HI are cooperatively negotiated by the Data Warehouse server and OLAP client

applications, based on specific applicative requirements and constraints, by following a best-effort

approach.

3 Computing Privacy Preserving OLAP Data Cubes via Constrained-based

Sampling

3.1. Accuracy-Grid-Constrained Sampling of OLAP Data Cubes. Computing the synopsis data

cube CÓ via sampling the input data cube A is the most relevant task of the privacy preserving OLAP

framework we propose. To this end, we adopt the strategy of sampling query regions according to the

partitioned representation defined by their accuracy grids. This strategy is named as accuracy-grid-

constrained sampling. On the basis of this strategy, samples are extracted from cells of accuracy

grids, according to a vision that considers the elementary cell of accuracy grids as the atomic unit of

our reasoning. This assumption is well-founded under the evidence of noticing that, given a query Qk

of QWL, and the collection of its sub-queries qk,0, qk,1."È."qk,m-1 defined by the accuracy grid I(Qk) of

Qk, sampling the (sub-)query regions R(qk,0), R(qk,1+."È."R(qk,m-1) of R(Qk) allows us to (i) efficiently

answer sub-queries qk,0, qk,1." È." qk,m-1, as sampling is accuracy-grid-constrained, and, at the same

time, (ii) efficiently answer the super-query Qk, being the answer to Qk given by the summation of the

answers to qk,0, qk,1."È."qk,m-1 (recall that we consider range-SUM queries). It is a matter of fact to

note that the alternative solution of sampling the super-query Qk directly, which we name as region-

constrained sampling, would expose us to the flaw of being unable to efficiently answer the sub-

queries qk,0, qk,1." È." qk,m-1 of Qk, since there could exist the risk of having (sub-)regions of Qk

characterized by high density of samples, and (sub-)regions of Qk characterized by low density of

samples.

 406

3.2. The Allocation Phase. Given the input data cube A, the target query-workload QWL, and the

storage space B, in order to compute the synopsis data cube CÓ the first issue to be considered is how

to allocate B across query regions of QWL. Given a query region R(Qk), allocating an amount of

storage space to R(Qk), denoted by B(Qk), corresponds to assign to R(Qk) a certain number of samples

that can be extracted from R(Qk), denoted by N(Qk). To this end, during the allocation phase of our

technique, we assign more samples to those query regions of QWL having skewed (i.e., irregular and

asymmetric) data distributions (e.g., Zipf), and less samples to those query regions having Uniform

data distributions. The idea underlying sucj"cp"crrtqcej"ku"vjcv"hgy"ucorngu"ctg"gpqwij"vq"ÐfguetkdgÑ"
Wpkhqto" swgt{" tgikqpu" cu" fcvc" fkuvtkdwvkqpu" qh" uwej" tgikqpu" ctg" ÐtgiwnctÑ." yjgtgcu" yg" pggf"oqtg"
ucorngu"vq"ÐfguetkdgÑ"umgygf"swgt{"tgikqpu"cu"fcvc"fkuvtkdwvkqpu"qh"uwej"tgikqpu"ctg."eqpvtct{"vq"vjg

rtgxkqwu"ecug."pqv"ÐtgiwnctÑ0"Urgekhkecnn{."yg"hceg-off the deriving allocation problem by means of a

proportional storage space allocation scheme, which allows us to efficiently allocate B across query

regions of QWL via assigning a fraction of B to each region. This allocation scheme has been

preliminarily proposed in [3] for the different context of approximate query answering techniques for

two-dimensional OLAP data cubes, and, in this work, it is extended as to deal with multidimensional

data cubes and (query) regions.

First, if QWL is overlapping (see Section 2.1), we compute its equivalent non-overlapping query-

workload, denoted by SYNÓ, by adequately projecting query ranges. Hence, in both cases (i.e., QWL

is overlapping or not) a set of regions R(QWL) = {R(Q0), R(Q1+."È."R(Q|QWL|-1)} is obtained. Let

R(Qk) be a region belonging to R(QWL), the amount of storage space allocated to R(Qk), B(Qk), is

determined according to a proportional approach that considers (i) the nature of the data distribution

of R(Qk) and geometrical issues of R(Qk), and (ii) the latter parameters of R(Qk) in proportional

comparison with the same parameters of all the regions in R(QWL), as follows:

Ù
Ù
Ù
Ù

Ú

Ù

È
È
È
È

É

È

©
©[-

©[-
?

ÂÂ
/

?

/

?

B

QRQRQR

QRQRQR
QB

WLQ

h

kk

WLQ

h

k

kkk

k 1||

0

1||

0

))(())(())((

))(())(())((
)(

zl

zl
, such that [3]: (i) [(R) is a Boolean characteristic

function that, given a region R, allows us to decide if data in R are Uniform or skewed; (ii) l(R) is a

factor that captures the skewness and the variance of R in a combined manner; (iii) z(R) is a factor

that provides the ratio between the skewness of R and its standard deviation, which, according to [8],

allows us to estimate the skewness degree of the data distribution of R. Previous formula can be

extended as to handle the overall allocation of B across regions of QWL, thus achieving the formal

definition of our proportional storage space allocation scheme, denoted by

Y(A,R(Q0),R(Q1+.È.R(Q|QWL|-1),B), via the following system:

Í
Í
Í
Í
Í
Í
Í

Ì

ÍÍ
Í
Í
Í
Í
Í

Ë

Ê

~

Ù
Ù
Ù
Ù

Ú

Ù

È
È
È
È

É

È

©
©[-

©[-
?

Ù
Ù
Ù
Ù

Ú

Ù

È
È
È
È

É

È

©
©[-

©[-
?

Â

ÂÂ

ÂÂ

/

?

/

?

/

?

///
/

/

?

/

?

1||

0

1||

0

1||

0

1||1||1||

1||

1||

0

1||

0

000

0

)(

))(())(())((

))(())(())((
)(

...

))(())(())((

))(())(())((
)(

QWL

k

k

QWL

k

kk

QWL

k

k

QWLQWLQWL

QWL

QWL

k

kk

QWL

k

k

BQB

B

QRQRQR

QRQRQR
QB

B

QRQRQR

QRQRQR
QB

zl

zl

zl

zl

(1)

3.3 The Sampling Phase. Given an instance of our proportional allocation scheme (1), Y, during the

second phase of our technique, we sample the input data cube A in order to obtain the synopsis data

cube CÓ, in such a way as to satisfy the accuracy/privacy constraint with respect to the target query-

workload QWL. To this end, we apply a different strategy in dependence on the fact that query

regions characterized by Uniform or skewed distributions are handled, according to similar insights

that have inspired our allocation technique (see Section 3.1). Specifically, for a skewed region R(qk,i),

 407

given the maximum number of samples that can be extracted from R(qk,i), N(qk,i), we sample the

N(qk,i) outliers of qk,i. It is worthy to notice that, for skewed regions, sum of outliers represents an

accurate estimation of the sum of all the data cells contained within such regions. Also, it should be

noted that this approach allows us to gain advantages with respect to approximate query answering as

well as the privacy preservation of sensitive ranges of multidimensional data of skewed regions.

Contrary to this, for a Uniform region R(qk,i), given the maximum number of samples that can be

extracted from R(qk,i), N(qk,i), let (i)
)(,ikqRC be the average of values of data cells contained within

R(qk,i), (ii) W(R(qk,i),)(,ikqRC) be the set of data cells C in R(qk,i) such that value(C) @
)(,ikqRC , where

value(C) denotes the value of C, and (iii) ‹
)(,ikqRC be the average of values of data cells in W(R(qi,k),

)(,ikqRC), we adopt the strategy of extracting N(qk,i) samples from R(qk,i) by selecting them as the

N(qk,i) closer-to- ‹
)(,ikqRC data cells C in R(qk,i) such that value(C) @

)(,ikqRC .

In order to satisfy the accuracy/privacy constraint, the sampling phase aims at accomplishing

(decomposed) accuracy and privacy constraints separately, based on a two-step approach Given a

query region R(Qk), we first sample R(Qk) in such a way as to satisfy the accuracy constraint, and,

then, we check if samples extracted from R(Qk) also satisfy, beyond the accuracy one, the privacy

constraint. Moreover, our sampling strategy aims at obtaining a tunable representation of the synopsis

data cube CÓ, which can be progressively refined until the accuracy/privacy constraint is satisfied as

much as possible. This means that, given the input data cube A, we first sample A in order to obtain

the current representation of CÓ. If such a representation satisfies the accuracy/privacy constraint, then

the final representation of CÓ is achieved, and used at query time to answer queries instead of A.

Otherwise, if the current representation of CÓ does not satisfy the accuracy/privacy constraint, then we

rgthqto"ÐeqttgevkqpuÑ"qp"vjg"ewttgpv"tgrtgugpvcvkqp"qh"CÓ, thus refining such representation in order to

obtain a final representation that satisfies the constraint, on the basis of a best-effort approach. What

we call the refinement process (described in Section 3.3) is based on a greedy approach that ÐoqxguÑ"
samples from regions of QWL whose queries satisfy the accuracy/privacy constraint to regions of

QWL whose queries do not satisfy the constraint, yet ensuring that the former do not violate the

constraint.

Given a query Qk of the target query-workload QWL, we say that Qk satisfies the accuracy/privacy

constraint iff the following inequalities simultaneously hold:

Ì
Ë
Ê

H‡
H~

IkI

QkQ

QE

QE

)(

)(.

In turn, given a query-workload QWL, we decide about its satisfiability with respect to the

accuracy/privacy constraint by inspecting the satisfiability of queries that compose QWL. Therefore,

we say that QWL satisfies the accuracy/privacy constraint iif the following inequalities

simultaneously hold:

Ì
Ë
Ê

H‡
H~

II

QQ

QWLE

QWLE

)(

)(.

Given the target query-workload QWL, the criterion of our greedy approach used during the

refinement process is the minimization of the average relative query error,)(QWLEQ
, and the

maximization of the average relative inference error,)(QWLEI
, within the minimum number of

movements that allows us to accomplish both the goals simultaneously (i.e., minimizing)(QWLEQ
,

and maximizing)(QWLEI
). Furthermore, the refinement process is bounded by a maximum

occupancy of samples moved across queries of QWL, which we name as total buffer size and denote

as NCÓ.SYN. NCÓ.SYN depends on several parameters such as the size of the buffer, the number of sample

pages moved at each iteration, the overall available swap-memory etc.

3.4 The Refinement Phase. In the refinement process, the third phase of our technique, given the

current representation of CÓ that does not satisfy the accuracy/privacy constraint with respect to the

target query-workload QWL, we try to obtain an alternative representation of CÓ that satisfies the

 408

constraint, according to a best-effort approach. To this end, the refinement process encompasses the

following steps: (i) sort queries in QWL ceeqtfkpi"vq"vjgkt"ÐfkuvcpegÑ"htqo"vjg"ucvkuhkcdknkv{"eqpfkvkqp."
thus obtaining the ordered query set QWLR; (ii) select from QWLR a pair of queries QV and QH such

that (ii.j) QV is the query of QWLR having the greater positive distance from the satisfiability

condition, i.e. QV is the query of QWLR that has the greater surplus of samples that can be moved

towards queries in QWLR that do not satisfy the satisfiability condition, and (ii.jj) QH is the query of

QWLR having the greater negative distance from the satisfiability condition, i.e. QH is the query of

QWLR that is in most need for new samples; (iii) move enough samples from QV to QH in such a way

as to satisfy the accuracy/privacy constraint on QH while, at the same time, ensuring that QV does not

violate the constraint; (iv) repeat steps (i), (ii), and (iii) until the current representation of CÓ satisfies,

as much as possible, the accuracy/privacy constraint with respect to QWL, within the maximum

number of iterations bounded by NCÓ.SYN. For what regards step (iii), moving t samples from QV to QH

means: (i) removing t samples from R(QV), thus obtaining an additional space, said B(t); (ii)

allocating B(t) to R(QH), (iii) re-sampling R(QH) by considering the additional number of samples that

have became available Î in practice, this means extracting from R(QH) further t samples.

4 Experimental Evaluation

In order to test the effectiveness of our framework throughout studying the performance of our

technique, we conducted an experimental evaluation where we tested how the relative query error

(similarly, the accuracy of answers) and the relative inference error (similarly, the privacy of answers)

due to the evaluation of populations of randomly-generated queries, which model query-workloads of

our framework, over the synopsis data cube range with respect to the volume of queries. The latter is

a relevant parameter costing computational requirements of any query processing algorithm (also

referred as selectivity Î e.g., see [4]). According to motivations given in Section 1, we considered the

Zero-Sum method [9] as the comparison technique, being [9] the state-of-the-art perturbation-based

privacy preserving OLAP technique available in literature. In our experimental assessment, we

engineered two classes of two-dimensional synthetic data cubes: the Uniform data cube, which has

been obtained by means of a Uniform distribution, and the skewed data cube, which has been

obtained by means of a Zipf distribution.

(a)

(b)

Fig. 1. Relative query errors of synopsis data cubes built from Uniform (a) and skewed (b) data cubes.

To simplify, we set the accuracy and privacy thresholds in such a way as not to trigger the

refinement process. This also because [9] fqgu" pqv" uwrrqtv" cp{" Ðf{pcokeÑ" eqorwvcvkqpcn" hgcvwtg"
(e.g., tuning of the quality of the random data distortion technique), so that it would have been

particularly difficult to compare the two techniques under completely-different experimental settings.

On the other hand, this aspect puts in evidence the innovative characteristics of our privacy preserving

OLAP technique with respect to [9], which is indeed a state-of-the-art proposal in perturbation-based

privacy preserving OLAP techniques.

 409

Figure 1 shows experimental results concerning relative query errors of synopsis data cubes built

from Uniform and skewed data, respectively, and for several values of the sparseness coefficient s [4].

Figure 2 shows instead the results concerning relative inference errors on the same data cubes. In both

Figures, our approach is labeled as G, whereas [9] is labeled as Z. Obtained experimental results

confirm the effectiveness of our algorithm, also in comparison with [9].

(a)

(b)

Fig. 2. Relative inference errors of synopsis data cubes built from Uniform (a) and skewed (b) data

cubes.

5 Conclusions and Future Work

A complete framework for efficiently supporting privacy preserving OLAP aggregations on data

cubes has been presented and experimentally assessed in this paper. We rigorously presented

theoretical foundations, as well as intelligent techniques for processing data cubes and queries, and

algorithms for computing the final synopsis data cube whose aggregations balance, according to a

best-effort approach, accuracy and privacy of retrieved answers. An experimental evaluation

conducted on synthetic data cubes has clearly demonstrated the benefits deriving from the privacy

preserving OLAP technique we propose, also in comparison with a state-of-the-art proposal. Future

work is mainly oriented towards extending the actual capabilities of our framework in order to

encompass intelligent update management techniques (e.g., what happens when query-yqtmnqcfÓu"
characteristics change dynamically over time?), perhaps inspired by well-known principles of self-

tuning databases.

References

[1] R. Agrawal gv"cn0."ÐRtkxce{-Rtgugtxkpi"QNCRÑ."ACM SIGMOD, 251Ï262, 2005.

[2_"C0"Ew¦¦qetgc."ÐQxgteqokpi"Nkokvcvkqpu"qh"Crrtqzkocvg"Swgt{"Cpuygtkpi" kp"QNCRÑ." IEEE IDEAS, 200Ï
209, 2005.

[3_" C0" Ew¦¦qetgc." ÐKortqxkpi" Tcpig-Sum Query Evaluation on Data Cubes via Polynomian" CrrtqzkocvkqpÑ."
Data & Knowledge Engineering, 56(2), 85Ï121, 2006.

[4] C0"Ew¦¦qetgc."ÐCeewtce{"Eqpvtqn"kp"Eqortguugf"Ownvkfkogpukqpcn"Fcvc"Ewdgu"hqt"Swcnkv{"qh"Cpuygt-based
QNCR"VqqnuÑ."IEEE SSDBM, 301Ï310, 2006.

[5] L0"Itc{"gv"cn0."ÐFcvc"Ewdg<"C"Tgncvkqnal Aggregation Operator Generalizing Group-By, Cross-Tab, and Sub-

VqvcnuÑ."Data Mining and Knowledge Discovery, 1(1), 29Ï54, 1997.
[6] O0"Jwc"gv"cn0."ÐHOE<"Cp"Crrtqcej"hqt"Rtkxce{"Rtgugtxkpi"QNCRÑ."DaWaK, 408Ï417, 2005.

[7] A. Machanavajjhala et al.."ÐL-diversity: Privacy beyond k-Cpqp{okv{Ñ."ACM Trans. on Knowledge Discovery

from Data, 1(1), art. no. 3, 2007.
[8] A. Stuart et al., MgpfcnnÓu" Cfxcpegf" Vjgqt{" qh" Uvcvkuvkeu." Xqn0" 3<" Fkuvtkdwvkqp" Vjgqt{, 6th ed., Oxford

University Press, New York City, NY, USA, 1998.

[9] U0[0"Uwpi"gv"cn0."ÐRtkxce{"Rtgugtxcvkqp"hqt"Fcvc"EwdguÑ."Knowledge and Information Systems, 9(1), 38Ï61,
2006.

[10] N0" Uyggpg{." Ðk-Cpqp{okv{<" C" Oqfgn" hqt" Rtqvgevkpi" Rtkxce{Ñ." International Journal on Uncertainty

Fuzziness and Knowledge-based Systems, 10(5), 557Ï570, 2002.

 410

 412

 413

 414

 415

 416

 417

 418

From service identification to service selection:
an interleaved perspective

(extended abstract)

Devis Bianchini*, Francesco Pagliarecci+ and Luca Spalazzi+

* Dipartimento di Ingegneria dell’Informazione
Universita’ degli Studi di Brescia, Via Branze, 38, 25123 Brescia

{bianchin}@ing.unibs.it

+ Dipartimento di Ingegneria Informatica, Gestionale e dell’Automazione
Universita’ Politecnica delle Marche, Via Brecce Bianche, 60131 Ancona

{pagliarecci|spalazzi}@univpm.it

Abstract. Business process implementation can be fastened by identi-
fying component services that can be used to implement one or more
process tasks and by selecting them from a repository of already imple-
mented services. In this paper, we propose an on-going work for the de-
sign of an iterative procedure to address this issue, by combining the two
macro-phases of service identification and service selection. Starting from
a workflow-based specification of the business process, service identifica-
tion is firstly executed. The result of this phase is a decomposition tree,
where basic process tasks are progressively organized into sub-processes
(the candidate services) by applying an agglomerative clustering algo-
rithm, based on cohesion and coupling metrics. Within the decomposi-
tion tree, a set of candidate services that minimize the coupling/cohesion
ratio for the overall process is chosen. The service selection phase works
on this decomposition and looks for available services. If the service se-
lection phase fails for some candidate services, a revised set of candidate
services is selected by leveraging on the decomposition tree.

1 Introduction

Business process implementation can be fastened by identifying component ser-
vices that can be used to implement one or more process tasks and by selecting
them from a repository of already implemented services. Service identification is
a debated topic in the recent literature. It is defined as a procedure which starts
from the business process specification and decomposes it into candidate com-
ponent services, that can be used to implement one or more process tasks [1, 2].
Candidate services can be either retrieved among existing ones or implemented
from scratch. According to this perspective, service identification comes before
service selection or service implementation and precedes service invocation and
deployment. Service identification and service selection are mainly considered as
distinct phases, sequentially executed.

2 Devis Bianchini*, Francesco Pagliarecci+ and Luca Spalazzi+

In this paper, we investigate a different perspective, where the service iden-
tification and selection phases are more interleaved. Starting from the method-
ology presented in [2], service identification is firstly executed. The result of this
phase is a decomposition tree, where basic process tasks are progressively orga-
nized into sub-processes (the candidate services) by applying an agglomerative
clustering algorithm, based on cohesion and coupling metrics already applied
in software engineering field. Within the decomposition tree, a set of candidate
services that minimize the coupling/cohesion ratio for the overall process is cho-
sen. The service selection phase starts from this decomposition and looks for
available services, by applying techniques already presented in [9]. If the service
selection phase fails for some candidate services, a feedback is propagated back
to the service decomposition phase, that proposes a revised set of candidate ser-
vices by relying on the decomposition tree. The feedback strategy constitutes
a step forwards with respect to work in [2] and [9]. In fact, the methodology
in [2] does not take into account the effective availability of existing component
services. On the other hand, the selection procedure described in [9] can take
advantage by relying on a preliminary identification of services to be searched
for. The result is a business process decomposition that takes into account both
given guidelines for service design, such as high cohesion and low coupling (to-be
perspective) and concrete services actually available and already implemented,
among which candidate services must be selected (as-is perspective).

The paper is organized as follows: in the next section some related work
are discussed; in Section 3 we present an application scenario and our vision;
Section 4 and Section 5 summarize the service identification and selection phases;
Section 6 describes their iterative combination; finally, Section 7 closes the paper.

2 Related Work

Service indentification. Ghosh et al. [5] listed three kinds of service iden-
tification procedures: top-down, bottom-up and meet-in-the-middle. Top-down
procedures focus on analysis of business domains and business process model-
ing to identify services, components and flows. In [11] authors guide the service
designer by suggesting the order through which the different techniques should
be used and providing some tips for the evaluation of the results; in [6] authors
define a set of heuristics to support service identification, but do not propose
any quantitative model to efficiently support the analysis. In [10] a bottom-up
approach is presented; authors introduce process templates, which are reusable
process skeletons devised to reach particular goals and made up of states and
transitions; a state corresponds to the execution of a service (called component
service) that is selected from a Web service community. In [5] a meet-in-the-
middle strategy is followed. Identified services are grouped according to some
kind of logical affinity. Subsequently, the SLT (rationalization) is applied as a
set of criteria to resolve whether a candidate service should be exposed.
Service selection. The increasing availability of Web services that offer similar
functionalities with different features increases the need for more sophisticated

 420

From service identification to service selection 3

selection processes to match user requests. Most of the existing techniques rely
on syntactic descriptions of service interfaces to find Web services with disre-
gard to non- functional service parameters. Previous research demonstrates how
this situation generates major problems [7, 8]. To solve some of them, Web ser-
vice descriptions are enhanced with annotations through ontological concepts
and semantic matching of functional and non-functional properties (NFPs) [3].
The service selection problem is also investigated in [13] by using a combina-
torial model and a graph model. In [12], a formal service model is defined and
a dynamic programming based approach is proposed to select the best service
providers.

3 Problem statement

Let consider a collaborative environment, where distinct partners contribute to-
gether to a business goal. Collaboration can be expressed as a business process
using a workflow-based notation (e.g., BPMN), independent from implementa-
tion technologies and platforms. A business process BP can be represented as
a set of simple tasks, combined through control flow structures (e.g., sequence,
choice, cycle or parallel) and specified through the performed operations and I/O
data flow between them. Collaborative business processes are designed as pro-
cesses spanning over partners, that interact each other as responsible of one or
more sub-processes. Beyond the platform-independent implementation of the col-
laborative business process BP , we consider a repository of implemented services
S, represented at the process level (based on BPEL) with a minimal semantic
annotations and a language that can express requirements on the behavior of the
service that has to be selected. The business process BP can be decomposed into
a set of subprocesses S, that can be totally or partially implemented by services
in the repository. Each partner provides one or more services in the repository.
Let’s denote with S′ the subprocesses which can be implemented through one
of the services in the repository. The problem we address in this paper is the
identification of the set S such that: S′⊆S, and it does not exist another S′′⊑S

such that S′⊑S′′ (that is, S′ is the decomposition that better exploits the set
of available services). In this way, given a new platform-independent business
process specification, the goal is to identify those partners that contribute to
the new business goals by implementing one or more subprocesses through their
services.

As a case study, we consider an application from the computer supplying
domain. A computer retailer receives computer orders and, after their approval,
generates the bill of materials (BOM) and sends orders for components to a
subset of his/her suppliers. The procedure to order components is different de-
pending on the type of the suppliers. In particular, for external ones, an invoice is
prepared and sent to the retailer. After receiving all the components, the retailer
assembles the computer, prepares the final invoice and ships the product to the
client. The workflow-based, platform-independent representation of the process
is shown in the upper part of Figure 1. We distinguish between the process level,

 421

4 Devis Bianchini*, Francesco Pagliarecci+ and Luca Spalazzi+

where the design of the collaborative business process is represented, and the se-
mantic service level, where semantic-enriched descriptions of component services
that implement one or more sub-processes are identified.

Fig. 1. Running example.

4 Service identification

The service identification methodology has been extensively described in [2].
The methodology is mainly based on the notion of component service as a par-
ticular kind of sub-process, where the following properties hold: (i) services are
self-contained and interact each other using decoupled message exchanges (high
cohesion, low coupling); (ii) each service is the minimal set of tasks that per-
formed together create an output that is a tangible value for one of the actors
involved in the overall process execution. In [2] a value has been defined as an
intermediary process output that is not used as input of another task of the
same partner in the collaborative process (for example, the invoice issued by the
external supplier is a value for the retailer).

The best set of candidate component services is identified, according to the
features listed above, through the following steps:

value-based identification of candidate services - value exchanges are iden-
tified throughout the process flow and the process is split into a preliminary
list of candidate services;

 422

From service identification to service selection 5

refinement of the process decomposition - the overall coupling/cohesion
ratio on the set of candidate services is evaluated and is minimized by aggre-
gating/splitting the preliminary set of candidate services (see [2] for details);

reconciliation of similar services - component services must be clustered on
the basis of the similarity of their tasks and I/O data, in order to identify
similar services represented at different granularity (that is, number of simple
tasks which compose the services) and enable the design of reusable compo-
nent services (for example, the {OrderComponent,ShipComponent} and the
SalesOrder subprocesses in the case study).

5 Service selection

The service selection phase detailed in [9] looks for semantic-enriched Web ser-
vices that satisfy the workflow-based representation of the required component
by means of a Semantic Model Checking. The service selection phase is therefore
based on the following key ideas:

requirement specification - the abstract workflow-based representation of
the required service to be searched for is expressed by means of a bpmn

diagram where tasks are semantically annotated; the ontological (seman-
tics) part of the specification is expressed by means of semantic annotations
written in swsal [4]; this language allows a user to specify which tasks
a service must implement and in which order they must be executed; this
representation is easily (automatically) translated into a temporal logic spec-
ification, using the Computation Tree Logic (ctl) enriched with (concept
and role) assertions of a Description Logic (assertions are used instead of
atomic propositions as in the traditional ctl); this logic is called Annotated
ctl (anctl);

service specification - behavior of available services is represented by means
of the bpel language where activities are semantically annotated; this rep-
resentation is easily (automatically) modeled as a state transition system
with semantic annotation; this model is called Annotated State Transition
Systems (asts);

Semantic Model Checking - the problem of verifying whether an implemented
service (modeled as an asts) satisfies an abstract specification (represented
by an anctlformula) can be solved by means of the algorithm of Semantic
Model Checking that has been defined in [9]; this algorithm has been proved
to be sound and complete; its complexity depends on the expressiveness of
the description logic that has been used and ranges from Ptime to coNP.

6 Interleaving service identification and selection phases

The service identification and selection phases have been combined as follows.
The first step is the construction of a decomposition tree by means of an ag-
glomerative clustering of tasks based on their coupling. The leaves of the three

 423

6 Devis Bianchini*, Francesco Pagliarecci+ and Luca Spalazzi+

are single tasks and intermediate nodes are subprocesses collecting tasks which
present high coupling. Tasks with higher coupling are grouped first. The root of
the tree represents the overall process. The decomposition tree for the running
example is shown in Figure 2. The nodes of the decomposition tree are all poten-
tial services that could be identified. The service identification phase is applied
to identify the best set of candidate component services which present the min-
imum ratio between their mutual coupling and their average internal cohesion
(see [2] for details). A weight is associated to each node to denote the variation
of the ratio. A negative weight means that the split of the node into its children
decreases the ratio. For example, if the mode S4567 is split into its children S45

and S67 the ratio is decreased by 0.25. A positive weigth means that the split
of the node into its children increases the ratio. In the running example, the
candidate component services identified are Σ = {S01, S2, S3, S45, S67, S89},
as shown in the tree in Figure 2 by means of the dashed line.

Fig. 2. Decomposition tree for the running example.

We use the bpmn workflow and the semantic annotations to generate seman-
tically annotated BPMN specifications of candidate component services, that
we use to check if there is an implemented service in the repository which satis-
fies each specification (by applying the selection procedure presented in Section
5). If the Semantic Model Checking fails for some specifications, the algorithm
proposed in Figure 3 is applied.

The algorithm implements two different strategies: decomposition and aggre-
gation. Given a candidate component service S that has no implementations in
the repository, according to the decomposition strategy, the selection procedure
is applied to S children (Children(S)) in order to find them. On the con-
trary, according to the aggregation strategy, the selection procedure is applied

 424

From service identification to service selection 7

Algorithm

input : ∆ = Σ − Φ /* Set of not found services */
output: Φ′ /* Set of found services */

(1) { Φ′ := Φ;
(2) while ∆ �= ∅ do
(3) { Υ := ∅; /* Set of services to be found */
(4) for each S ∈ ∆
(5) { Ψ(S) := ∅;/* Set of siblings of service S */
(6) Ω(S) := ∅; /* Set of not found siblings of service S */
(7) Ψ(S) := SIBLING(S);
(8) if (Ψ(S) �= ∅) ∧ (γp > γc) do
(9) { for each ψ ∈ Ψ(S)
(10) if ψ ∈ ∆ do Ω(S) := Ω(S)

⋃
{ψ};

(11) if (Ω(S) ≡ Ψ(S)) ∧ (Ω(S) ⊆ ∆) do
(12) { Υ := Υ

⋃
PARENT(S);

(13) ∆ := ∆ − Ω(S) }
(14) } else if ¬ LEAF(S) ∧ (γp < γc) do
(15) { Υ := Υ

⋃
CHILDREN(S); ∆ := ∆ − {S} }

(16) } SELECTION(Υ); { Φ′ := Φ′
⋃

Φ; ∆ := Υ − Φ }
(17) } return Φ′;
(18) }

Fig. 3. The algorithm.

to the parent node of S (Parent(S)). The choice among decomposition and
aggregation strategies is made taking into account the weights on the Weighted
Decomposition Tree. Let be Ψ(S) the set of siblings of S, among which Ω(S)
those siblings that have not been found (rows 5-7). The decomposition strategy
is applied if the variation of ratio associated to the split of S (γc) is smaller than
the variation of the ratio obtained by aggregating S and its siblings (γp) and S
is not a leaf node (rows 8-13). In all the other cases, if γp is smaller than γc or
S is a leaf node, we apply the aggregation strategy (rows 14-16). In our scenario
the service selection phase performed with Σ has found four services Φ = {S01,
S2, S3, S89} and has not found any service that accurately meet with processes
S45 and S67. We apply the algorithm and, according to aggregation strategy, the
output is Φ′ = {S01, S2, S3, S4567, S89}. The algorithm stops if all the candidate
component services have been found or the whole Weighted Decomposition Tree
has been inspected.

7 Conclusion

The methodology presented in this paper costitutes an on-going work on the
interleaved application of service identification and service selection phases. The

 425

8 Devis Bianchini*, Francesco Pagliarecci+ and Luca Spalazzi+

result is a business process decomposition that takes into account both given
guidelines for service design, such as high cohesion and low coupling and con-
crete services actually available and already implemented, among which candi-
date services must be selected. Current experimentation on a repository of Web
services and business process specifications taken from real case scenarios is un-
der development to demonstrate that the proposed approach ensures a coverage
of the business process through available services higher than the one obtained
by applying the service identification phase only. On the other hand, the decom-
position tree and the algorithm shown in Fig.3 enable less applications of the
service selection phase, thus ensuring better performances with respect to the
ones discussed in [9].

References

1. J. Amsden. Modeling SOA: Part 1. Service identification. Techni-
cal report, IBM, http://www.ibm.com/developerworks/rational/library/07/-
1002amsden/, 2007.

2. D. Bianchini, C. Cappiello, V. De Antonellis, and B. Pernici. P2S: a methodology
to enable inter-organizational process design through Web Services. In Proc. of the
29th International Conference on Advanced Information Systems, pages 334–348,
Amsterdam, The Netherlands, 2009.

3. Soon Ae Chun, Vijayalakshmi Atluri, Nabil, and R. Adam. Using semantics for
policy-based web service composition. Distributed and Parallel Databases, 18:37–
64, 2005.

4. I. Di Pietro, F. Pagliarecci, and L. Spalazzi. SWSAL: Semantic Web Service An-
notation Language. no. 2008004453, SIAE Sezione Opere Inedite, Roma, 2008.

5. S. Ghosh, A. Allam, T. Abdollah, S. Ganapathy, K. Holley, and A. Arsanjani.
SOMA: A method for developing service-oriented solutions. IBM Systems Journal,
47:377–396, 2008.

6. R.S. Kaabi, C. Souveyet, and C. Rolland. Eliciting service composition in a goal
driven manner. In Proc. of the 2nd Int. Conference on Service Oriented Computing
(ICSOC’04), pages 308–315, New York, NY, USA, 2004.

7. Kyriakos Kritikos and Dimitris Plexousakis. Semantic qos metric matching. In
ECOWS’06, pages 265–274, 2006.

8. E. Michael Maximilien and Munindar P. Singh. Toward autonomic web services
trust and selection. pages 212–221. ACM Press, 2004.

9. Ivan Di Pietro, Francesco Pagliarecci, and Luca Spalazzi. Model checking seman-
tically annotated services. IEEE Transactions on Software Engineering, 2011.

10. Q.Z. Sheng, B. Benatallah, Z. Maamar, M. Dumas, and A.H.H.Ngu. Enabling
Personalized Composition and Adaptive Provisioning of Web Services. In (CAiSE
2004), pages 322–337, 2004.

11. H.M. Shirazi, N. Fareghzadeh, and A. Seyyedi. A Combinational Approach to
Service Identification in SOA. Journal of Applied Sciences, 5(10):1390–1397, 2009.

12. Qi Yu and Athman Bouguettaya. Framework for web service query algebra and
optimization. ACM Trans. Web, 2:6:1–6:35, March 2008.

13. Tao Yu and Kwei-Jay Lin. Service selection algorithms for composing complex
services with multiple qos constraints. In ICSOC, pages 130–143, 2005.

 426

Preserving Unlikability against Covert Channels
in Multi-Party Security Protocols

(Extended Abstract)

Mikaël Ates1, Francesco Buccafurri2, Jacques Fayolle3, and Gianluca Lax2

1 Entr’ouvert, 169 rue du Château, 75014 Paris, France mates@entrouvert.com
2 DIMET, University of Reggio Calabria, via Graziella, Feo di Vito, 89122 Reggio

Calabria, Italy bucca@unirc.it, lax@unirc.it
3 DIOM, Université de Lyon, 23 rue Michelon, 42023 Saint-Etienne, France

jacques.fayolle@univ-st-etienne.fr

Abstract. Unlinkability is a privacy feature supported by those multi-
party security protocols allowing anonymous users’ credential exchanges
among different organizations. Proper signature schemes, based on dis-
crete logarithms, must be used in order to guarantee the above require-
ments as well as selective disclosure of information. In this paper, we
highlight that whenever a concrete architecture based on the above pro-
tocols is implemented, some aspects concerning how to manage the as-
sociation between bases of discrete logarithms and attributes used in at-
tribute certificates should be carefully considered, in order to guarantee
that unlinkability really holds. We show that the problem is concrete by
testing that the state-of-the-art implementation suffers from the above
problem.

1 Introduction

A credential is a powerful means to establish an identity, a role, or an attribute,
in order to control accesses to digital services over the Web. There exist many ap-
plication contexts in which users can be required to show a credential to access a
service. For example, a car renting company could deploy an on-line registration
process where users are asked to prove the possession of the driving license. How-
ever, there does not exist a standard credential exchange architecture, though
the main stakes and issues are now well-known [4]. One of the known issues is
that credentials exchanges can represent a threat on users’ privacy. Indeed, as
stated by [15], any information that distinguishes one person from another can
be used for re-identifying data. For instance, considering the use of the driving
license document, this one would induce the user to reveal unnecessary personal
information (name, date of birth, and so on). Thus, in order to protect user’s
privacy in digital information exchange processes, the credential exchange ar-
chitecture must permit users to perform a selective disclosure of their attributes
in credentials, like the proof that an attribute value lies in a given interval (for
example, a user could prove to be of age without revealing the date of birth).

2 Mikaël Ates, Francesco Buccafurri, Jacques Fayolle, and Gianluca Lax

Unfortunately, selective disclosure is not enough. Another important threat
on privacy arises from the fact that two organizations could exchange the cre-
dentials shown by users in order to infer more information about the users. This
is related to the issue of linkability of the user’s transaction records hosted by
multiple organizations [18]. Due to the grow of attention toward privacy con-
cerns, nowadays multi-party security protocols often deal with the above issue.
It is worth noting that the unlinkability property should be a feature aimed to
defend the individual from the privacy threats coming from every party, includ-
ing those whose position, role and dimension give them a strong control power
on users, and, at the same time, a seeming trustworthiness. As a consequence,
we cannot exclude in general that even authoritative entities (in principle, also a
government organization, for example) could be malicious as far as the privacy
issue is concerned.

In the literature, there are many results contributing to address the issue of
linkability of user transactions. This topic was introduced by Chaum in [12, 10].
He also presented a signature scheme based on a blind signature allowing un-
linkable certificate issuance and presentation [9, 11]. The certified data revealed
as a factor of linkability is also widely studied. Revealing information preserving
anonymity is usually unified under the wider topic of k-anonymity [13]. Two very
relevant signature schemes proposed in the literature to guarantee that the sig-
nature of attribute certificates is not a factor of linkability are the CL-Signature
signature schema [8] and the Secret Key Certificate signature schema [7]. Both
are based on discrete logarithms for representing values of attributes in order to
support also selective disclosure. The attribute certificates generated with the
above schemes are called anonymous credentials and private credentials, respec-
tively. Microsoft has recently implemented a multi-party security protocol called
U-Prove [20, 5], based on the scheme [7]. In fact, it represents the state-of-the art
implementation of this class of protocols. The design of privacy-preserving cryp-
tographic protocols is a hard task [3]. Especially when dealing with anonymity
since even cryptographic material can be the place for steganography [1]. In-
deed, covert channels can be set-up with X509 certificates [19] and also within
anonymity systems [14]. A credential exchange architecture is thus particularly
exposed.

In this paper, by extending a result originally presented in [2], we highlight
that the implementation of multi-party security protocols based on discrete log-
arithms for representing values of attributes should take care of some aspects
concerning the association between bases of discrete logarithms and attributes
used in attribute certificates. The above association is included into certificate
metadata. We show that, if the above issue is not correctly handled, then the
resulting system would allow adversarial organizations to break the unlinkabil-
ity of user transactions by establishing a covert channel based on certificate
metadata. In particular, it is possible to implement an attack which exploits
the possibility of choosing the associations between bases of logarithms and the
attributes they represent. The issuer could assign to a user, or to a set of users
(for example, female users), specific base/attribute associations, in such a way

 428

Title Suppressed Due to Excessive Length 3

that a colluding verifier could infer more information from the transactions. The
relevance of the problem highlighted in the paper is confirmed by the fact that
the U-Prove integration into the Identity Metasystem [16] suffers from the above
problem. Concerning this issue, we highlight that the problem does not regard
the cryptographic protocol itself [6]. Before submitting the paper, we contacted
the Microsoft’s U-Prove Team in order to inform them about our results. We re-
ceived a feedback both interesting and encouraging. Indeed, they agree that the
problem we have identified in the paper really exists in the current Community
Technology Preview release of U-Prove. They are experimenting different ways
to prevent this issue in the release version. Another contribution of the paper
is to present a practical solution to the above issue based on public certificate
metadata retrieved anonymously by the users. Importantly, this solution can be
applied to the system U-Prove basically preserving its architecture.

The rest of the paper is organized as follows.

In Section 2, we show how the certificate metadata can be used in order to
implement a covert channel breaking unlinkability. Then, we apply this attack
on the U-Prove Technology integrated into the Identity Metasystem V1.0. In
Section 3, we present a solution to handle certificate metadata for unlinkable
certificates. Finally, in Section 4, we draw our conclusions.

2 The Attack: Certificate Metadata as Covert Channel

In this section, we show that if no proper strategy is adopted in the manage-
ment of certificate metadata, an attack is possible allowing the issuer and the
colluding verifier to infer more information about the prover than that actu-
ally disclosed by the prover. This attack is based on the possibility of creating
a covert channel between the issuer and the verifier exploiting the certificate
metadata exchanged between the issuer and the prover and between the prover
and the verifier. A covert channel is a communication channel allowing a process
to transfer information in a manner that violates the system security policy [21].
We can adapt this definition to our case saying that certificate metadata of an
unlinkable attribute certificate are a covert channel if they allow the issuer to
transfer to the verifier information about the prover.

In order to be more concrete, consider the following example of covert chan-
nel. The malicious issuer can give the provers two different types of certificate
metadata, namely t1 and t2. The issuer and the colluding verifier agree that the
type t1 will be given only to a particular user u (or to a class of users, for ex-
ample, male users). For the other users, the type t2 will be exploited. It is clear
that whenever the verifier will receive an attribute certificate whose metadata
are of the type t1, it can deduce that the prover is u (or a male, if the association
t1/male has been adopted) without the prover can detect such an information
leak. Conversely, if the metadata type shown by the prover is t2, the verifier de-
duces that the prover is not u (or, that the prover is a female). As a consequence,
the certificate metadata are a covert channel since they reveal information about

 429

4 Mikaël Ates, Francesco Buccafurri, Jacques Fayolle, and Gianluca Lax

the prover, without the prover knowing. The question we have to address now
is: Is it possible to use certificate metadata as a covert channel?

Observe that it is not possible to have metadata that differ for the names (e.g.,
exploiting the case sensitiveness we could use ”Surname” and ”surname” for the
same attribute) or to use the numeric values of the bases for that purpose. Indeed,
the name space has to be case sensitive and common, and the values of the
bases are included in the public key of the issuer so that they are fixed and used
pervasively. The possibility we have found to create different types of certificate
metadata is exploiting the association between the attributes and the bases used
to represent them. This obviously has to be allowed by the implementation of the
protocol. Clearly, even though the protocol permits this, an honest issuer should
not provide provers with different certificate metadata. Conversely, the malicious
issuer and the colluding verifier can set up a covert channel against users which is
based on the fact that the issuer gives specific metadata for each user. Said a the
number of attributes, the issuer can create a! different associations between the
attributes and the bases, so that it can identify a subset of users with cardinality
a! − 1, leaving one association to deal with the rest of the population.

2.1 Proof of Concept

In order to demonstrate that the warning detailed in the previous section is
concretely relevant, we show that also the U-Prove integration into the Identity
Metasystem, specified in [16], is not immune from the attack. The specifica-
tion has been implemented under the U-Prove Community Technology Preview
(CTP) name. These implementations are presented in [17]. The implementation
of U-Prove is based on the extensions of Active Directory Federation Services 2.0,
Windows Identity Foundation and CardSpace 2.0. The test bench is composed
of:

– Two certificate issuers, called Token Issuers, one based on Active Directory
Federation Services 2.0 CTP and one based on Windows Identity Foundation
CTP, hosted by a Windows Server Enterprise 2008 SP2 station.

– A verifier, called Relying Party, based on Windows Identity Foundation CTP,
hosted by a Windows Server Enterprise 2008 SP2 station.

– Two user environments, one with a Web browser Internet Explorer 7.0 hosted
by a Windows Vista SP1 station and one with a Web browser Internet Ex-
plorer 8.0 hosted by a Windows Server Enterprise 2008 SP2 station, and
both provided with an application for token management, called Identity
Selector, which is CardSpace 2.0 CTP.

According to the specifications of [16], certificate metadata are called here
issuer parameters. The issuer parameters contain the association between bases
and attributes. The specifications indicate that during the first round of a token
issuance, if the identity selector does not give an identifier of up-to-date issuer
parameters, then the issuer provides a response containing the issuer parame-
ters. This response is preceded by a user request containing the user credentials

 430

Title Suppressed Due to Excessive Length 5

to authenticate to the issuer. The issuer parameters are thus here given when
the user is authenticated. Moreover, there is no other means specified in [16] to
provide the identity selector with the issuer parameters.

In our test, the user retrieves from the issuer an Information Card. Such
a document indicates to the identity selector the authentication mechanisms
required, applicative endpoints for issuance, and the attributes (called Claims)
the user can obtain. This document does not contain the issuer parameters.
The user adds this document to the identity selector. By a user action on the
relying party, the latter triggers a token request. The user Web browser forwards
this request to the identity selector. The identity selector asks the user which
issuer to request and the authentication credentials. We have observed with
both the issuers deployed that whenever the identity selector performs the first
token request, without indicating an identifier of up-to-date issuer parameters,
the issuer replies with a message response containing the tokens and the issuer
parameters.

Then, the tests confirm that the configuration options offered by CardSpace
2.0 CTP do not permit to add issuer parameters. As a consequence, before the
first token request, there is no way for the user to obtain the issuer parameters.
The user is then provided with the issuer parameters at the token issuance and
these issuer parameters are the ones used by the identity selector to verify the
token validity and to lead the proofs.

Finally, we have tested the system with multiple issuer parameters and ver-
ified that correct orders for associations between discrete logarithm bases and
attribute types are required for successful user proofs.

We conclude that this method is the unique way to provide users with issuer
parameters in the U-Prove implementation. Since the issuer parameters are given
to the user when the user is authenticated and the user has no means to check
the uniqueness of the issuer parameters in all the realm, the association of bases
and attributes can be user-specific and the attack can be operated.

3 The Solution

Recall that the covert channel underlying the attack is implemented by changing
the association between bases and attributes in the attribute certificates. As a
consequence, the first intuitive solution that one could identify is to have a third
trusted party (TTP) publishing the legal association which is included in the
trust chain, ensuring that the association is unique for all the users of a given
issuer. For instance, the user, before the certificate proving, might download
the certificate metadata for the considered issuer from TTP in order to check
whether the issuer is adopting the legal association. This solution clearly works,
but it is in practice little feasible, since it results in a strictly hierarchical ar-
chitecture strongly limiting the pervasiveness of the system (for example, think
of the management of join and leave of issuers). This is in fact coherent with
the choice done in the U-Prove architecture, which does not adopt any rigid

 431

6 Mikaël Ates, Francesco Buccafurri, Jacques Fayolle, and Gianluca Lax

hierarchy on top of the issuers. Moreover, our attack is based on the assumption
that even authoritative entities (in principle, also a government organization, for
example) could be malicious as far as the privacy issue is concerned. In fact the
unlinkability property should be a feature aimed to defend the individual from
the privacy threats coming from every party, including those whose position and
dimension give them a strong control power on users, and, at the same time, a
seeming trustworthiness. Under this assumption, it is difficult to identify in the
real case which entity could play the role of TTP.

Due to the above considerations, we have excluded the first intuitive solution.
On the contrary, we propose a solution preserving the architecture of U-Prove
and relying only on the autonomous ability of the user to check the trustworthi-
ness of the issuer.

The solution, which we call two-phase-issuance (2PI), consists in dividing
the issuance step into two distinct phases:

1. The user retrieves from the issuer the certificate metadata anonymously.
2. The user retrieves from the issuer the signature values on a set of attribute

values, without revealing any information about certificate metadata previ-
ously obtained.

The solution expects that time-correlation attacks are not applicable, but
this is typical in the context of unlinkability. Indeed, if this is not the case,
the time correlation between issuance and proving steps would reveal the user
identity.

Observe that, the above protocol can be obtained by using the features of
U-Prove, as we describe in Section ??. We next show that the above solution
works, in the sense that the probability that unlinkability is broken by means of
a malicious behavior of issuers and verifiers is the same as it happens whenever
the two parties guess (with no a-priori knowledge) this linking information. We
note that the unlinkability is broken if a pair issuer-verifier is able to distinguish
a subset of users.

Consider a pair issuer-verifier, say I and V . Let denote by U the set of all
users. Let u be a subset of users characterized by some values (or ranges) of the
attributes. Obviously, if V tries to distinguish the subset u just by guessing, the

success probability is |u|
|U | .

Consider now the case that I and V agree on a particular association bases-
attributes in order to identify u. For example, they want to distinguish male and
female users. The issuer generates two associations, say AM and AF , and the
expected goal is to assign AM to male users and AF to female users. Thanks
to 2PI, there is no way to deterministically know if the user retrieving anony-
mously certificate metadata (i.e., issuer parameter in U-Prove terminology) is
male or female. As a consequence, the only possibility is to guess this feature.
Clearly, if the guessing succeeds, then the user will not be able to detect the
malicious behavior since the certificate metadata obtained in the second phase
of the protocol 2PI coincides to those obtained before. In the general case, the
only possibility for I to implement a cover channel allowing V to link the subset

 432

Title Suppressed Due to Excessive Length 7

u is to guess that the user requiring certificate metadata in phase 1 of 2PI is
belonging to u. The attack succeeds only if this happens, thus with probability
|u|
|U | . The solution thus fully preserves unlinkability, since there is no higher prob-

ability for V to infer linking information thanks to the colluding issuer I w.r.t.
the case that V cannot rely on the cooperation of I.

4 Conclusion

In this paper, we have highlighted a possible risk of vulnerability arising from the
implementation of multi-party security protocols based on discrete logarithms
for representing attributes. In particular, we have shown that if the issuer is free
to manage maliciously the association between bases of discrete logarithms and
attributes used in attribute certificates, then a covert-channel-based attack is
possible allowing colluding issuers and verifiers to break unlinkability enforced
by the protocol. We have identified the problem by defining how the covert chan-
nel can be implemented and checked that this problem is not only an abstract
hypothesis, but a concrete issue. We have reached this conclusion by checking
that the most important existing system aimed to provide unlinkable multi-
party credential exchange, which is U-Prove, allows malicious organizations to
implement the above covert channel, thus potentially breaking unlinkability. The
paper addresses also the issue of the prevention of the above risk, by proposing
a solution easily applicable also to the concrete architecture of U-Prove. Even
though the paper includes some implementation issues which we have applied
to the case of U-Prove in order to incorporate in it our solution, it could be
interesting to implement a complete system prototype extending U-Prove in the
direction we have identified. This is a matter of our future work.

Acknowledgments

We are very grateful to Microsoft Corporation for the interest shown in our
work. This work was partially funded by the French Ministry of Economy and
Industry and by the Italian Ministry of Research through the PRIN Project
EASE (Entity Aware Search Engines).

References

1. L. V. Ahn. Public-key steganography. In In: Advances in Cryptology Proceedings
of Eurocrypt 04, pages 323–341. Springer-Verlag, 2004.

2. M. Ates. Digital Identities : User Centric and Privacy-Respectful Cross-
Organizational Identity Management. PhD thesis, Université de Lyon - SATIN
Team DIOM Laboratory Telecom Saint-Etienne University of Saint-Etienne,
2009.

3. T. Balopoulos, S. Gritzalis, and S. Katsikas. Specifying and implementing privacy-
preserving cryptographic protocols. International Journal of Information Security,
7:395–420, 2008. 10.1007/s10207-008-0057-y.

 433

8 Mikaël Ates, Francesco Buccafurri, Jacques Fayolle, and Gianluca Lax

4. A. Bhargav-Spantzel, J. Camenisch, T. Gross, and D. Sommer. User centricity: a
taxonomy and open issues. In DIM ’06: Proceedings of the second ACM workshop
on Digital identity management, pages 1–10, New York, NY, USA, 2006. ACM.

5. S. Brands. U-prove technology overview v1.0. Technical report, 2010.
6. S. Brands and C. Paquin. U-prove cryptographic specification v1.0. Technical

report, 2010.
7. S. A. Brands. Rethinking Public Key Infrastructures and Digital Certificates: Build-

ing in Privacy. MIT Press, Cambridge, MA, USA, 2000.
8. J. Camenisch and A. Lysyanskaya. A signature scheme with efficient protocols. In

International Conference on Security in Communication Networks - Lecture Notes
in Computer Science, volume 2576, pages 268–289, 2002.

9. D. Chaum. Blind signatures for untraceable payments. In International Cryptology
Conference on Advances in Cryptology, pages 199–203, 1983.

10. D. Chaum. Security without identification: transaction systems to make big brother
obsolete. Commun. ACM, 28(10):1030–1044, 1985.

11. D. Chaum, A. Fiat, and M. Naor. Untraceable electronic cash. In International
Cryptology Conference on Advances in Cryptology, pages 319–327, London, UK,
1990. Springer-Verlag.

12. D. L. Chaum. Untraceable electronic mail, return addresses, and digital
pseudonyms. Commun. ACM, 24(2):84–90, 1981.

13. V. Ciriani, S. De Capitani di Vimercati, S. Foresti, and P. Samarati. Theory of
privacy and anonymity. In M. Atallah and M. Blanton, editors, Algorithms and
Theory of Computation Handbook (2nd edition). CRC Press, 2009.

14. S. J. Murdoch. Covert channel vulnerabilities in anonymity systems. Technical
report, 2007.

15. A. Narayanan and V. Shmatikov. Myths and fallacies of personally identifiable
information. Commun. ACM, 53(6):24–26, 2010.

16. C. Paquin. U-prove technology integration into the identity metasystem v1.0.
Technical report, 2010.

17. C. Paquin and G. Thompson. U-prove ctp white paper. Technical report, 2010.
18. A. Pfitzmann and M. Kohntopp. Anonymity, unobservability, and pseudonymity - a

proposal for terminology. In Lecture Notes in Computer Science: Designing Privacy
Enhancing Technologies, volume 2009, pages 1–9. Springer Berlin / Heidelberg,
2001.

19. C. Scott. Network covert channels: Review of current state and analysis of viability
of the use of x.509 certificates for covert communications. Technical report, 2008.

20. U-Prove. Microsoft Corporation Technology, 2010. https://connect.microsoft.
com/content/content.aspx?contentid=12505\&siteid=642 [Online; accessed 1-
September-2010].

21. US-DoD. Trusted Computer System Evaluation. U.S. Department of Defense. The
Orange Book. Publication DoD 5200.28-STD, 1984.

 434

MediaPresenter, a web platform for multimedia
content management⋆

Sonia Bergamaschi1, Fabio Ferrari2, Matteo Interlandi1, and Maurizio Vincini1

1 DII, University of Modena and Reggio Emilia
via Vignolese 905, 41015 Modena, Italy

firstname.lastname@unimore.it

Addiction Creation Media Lab, Via Del Quaresimo 4,
2 42100 Codemondo (RE), Italy,

firstname@addiction.it

Abstract. The composition of multimedia presentations is a time and
resource consuming task if not afforded in a well defined manner. This is
particularly true for medium/big companies, where people having differ-
ent roles and following different high-level directives, collaborate in the
authoring and assembling of a final product. In this paper we present Me-
diaPresenter, the framework we developed to support companies in the
creation of multimedia communication means, providing an instrument
that users can exploit every time new communication channels have to
be created.

Keywords: digital asset, multimedia, presentation, tag cloud

1 Introduction

Nowadays companies use different software products for authoring and present-
ing their multimedia presentations. We define a multimedia presentation as a
composition of textual information and digital assets such as images, photos,
video and audio. In an enterprise context, applications such as Microsoft Power
Point or OpenOffice Impress have the advantage to be competitive from the
point of view of costs, but limits arise when the presentation creation process
becomes intensive and hence it requires agile dynamics and company-specific
logics.

Usually medium/big companies count on communication means developed
(1) in outsourcing (web sites, multimedia presentations, paper communica-
tions), or (2) internally developed and managed, with poor efficiency compared
with the potentiality provided by the used software tools.

These modi operandi have emphasize a series of issues. In the first case (1)
the company must be always followed by another external and specialized enter-
prise which will cover every communication demand. This scenario comport an

⋆ This work was partially supported by Lisea Laboratory (Italy, Emilia-Romagna Re-
gion, PRRRIITT Misura 3.4)

economic investment which, due to budget constraints, is often not feasible if new
communication products have to be created constantly. The major issue comes
when the workflow must be managed from inside to outside the company and
vice-versa. The demand to communicate its own services, products and brand
appeal, is not compatible with the outsourcing model, since, for every new activ-
ity, the company needs to invest time and resources in producing and approving
shared materials and therefore efforts are subtracted to activities which create
more added-value for the company.

In the second case (2) all the software packets do not contemplate the possi-
bility to natively share among users the collective multimedia assets such as the
enterprise logo, background images, internal photos, etc.. Moreover, since these
collective assets are local and personal, they have to be updated continuously.
This update process can be very resource consuming if the number of devices
and people is high.

Based on the extensive analysis of issues an enterprise can face during the cre-
ation of multimedia presentation, we adopted an extension of the SATP approach
[1]. This approach divides the process of creating a multimedia presentation into
four sequential phases: Select, Assemble, Transform, Present).

In this paper we introduce MediaPresenter, the framework we developed
to support companies in the creation of multimedia communication means, pro-
viding an online and centralized instrument (MediaBank) that users can exploit
every time new communication channels have to be created. In this way the
company can have a communication mean homogeneous and always on line with
the marketing directives.

The paper is structured as follow: Section 2 is an overview of MediaPresenter
and the Assemble, Transform, Present approach we followed for its design. Sec-
tion 3 outlines the architecture we developed, meanwhile Section 4 describes the
Data Cloud and the algorithm we use for the ranking of the entities and related
tags. The paper is closed by a short Conclusion.

2 MediaPresenter

MediaPresenter is developed by a join collaboration between the DBGroup at
University of Modena and Reggio Emilia (www.dbgroup.unimo.it) and Addiction
Creation Media Lab (www.addiction.it), an Italian SME Media Agency. Part of
the activity is founded by Italian Emilia Romagna region, within the LISEA lab.

MediaPresenter is an on-line cross-platform application, perfect incarnation
of the Software-as-a-Service (SaaS) paradigm for business enterprise. It offers a
large number of services for sharing and managing digital archives. Such services
include the concurrent access to data by multiple users with different roles,
import of multiple type of digital assets (3D object, video, images, etc), export
in various format (swf, pptx, png and pdf), and a keyword search engine for
retrieving contents that uses a tag cloud based approach to propose to the user
related digital content. Figure 1 shows a snapshot taken during the process of
series creation.

 436

Fig. 1. MediaPresenter slide creation

MediaPresenter has been designed as a collaborative framework, thus groups
of users can be created and policies can be set both on groups and single users.
We chose this approach because it allows to model in MediaPresenter the internal
hierarchy of an enterprise, so different people with different duties may contribute
to a presentation in different manners.

In MediaPresenter the authoring of new communication media follows the
Select, Assemble, Transform and Present creation chain approach whose schema
is depicted in Figure 2. The original schema has been maintained, but in our
approach we developed a different semantics for each phase, specifically tailored
for our purpose. In the followings we briefly describe each phase.

2.1 Select

In this phase, elements contained in the MediaBank are retrieved using the
keyword search and the tag cloud. We define as element, a digital assets, slides,
series of slides or already composed presentations. Starting from the assumption
that the simple file name is just an ID and it does not describe the element
content(s), each element is inserted in the repository and has associated a series
of tag which specify contents or properties that characterize such element.

In this way, elements can be retrieved using a keyword-base search engine
and the results visualized as tag cloud. The user is thus able to browse among
the various tags and retrieve the best suitable element. Policies are associated

437

Fig. 2. SATP raffiguration

to each user, based on the group the user belongs to. Search results, hence, may
depend on the policy settings for the user.

2.2 Assemble

In this phase, the user assembles the final or semifinal product (for example a
single slide, a series of slide or a presentation) starting from the single elements
already retrieved in the previous phase.

Users also assemble different types of elements depending on their role, for
example one user can be a slide-maker and therefore he/she can assemble just
slides, meanwhile a presentation-maker can assemble complete presentations.

2.3 Transform

Once the user has repeated iteratively the previous phases and therefore the
complete presentation has been created, the transform phase permits to save
the final product in different formats following the user needs.

Thanks to its ability to manage different formats without rely on a propri-
etary language, MediaPresenter is also able to integrate and make available to
the user presentations not initially designed with this framework. If, for example,
some legacy products, made with a third part software application, have to be
integrated with other presentations designed in other formats, MediaPresenter
seamlessly permits it.

2.4 Present

MediaPresenter client is a Flex3 application running on browser, hence a pre-
sentation can be potentially be shown on each device having a browser and an

3 http://www.adobe.com/products/flex/

 438

Fig. 3. Mediapresenter architecture

internet connection. But since a presentation can be transformed in different
formats, an user may also employ third part software products.

3 Architecture

MediaPresenter is a 3-tier web system for contents managing and its architecture
is shown in Figure 3.

The information that the storage layer (MediaBank) memorizes can be clas-
sified in two sets: presentations and digital assets. For digital assets are
considered all the digital elements such as images, photos, videos, audios an-
imations, etc.. which represent the company’s multimedia knowledge. Since a
medium/big enterprise can easily reach the number of 30 - 40.000 digital assets,
users can associate significative keywords to each single asset. Digital assets can
be easily accessed through a generic API and, since MediaPresenter has been
designed to be completely independent to a specific repository, they could be
stored directly in the MediaPresenter database or in specialized facilities called
Digital Assets Management (DAM) such as Celum4 and Xinet5.

Presentations represent the ”final products” created by the user with Me-
diaPresenter and they contain combinations of different digital assets together

4 http://www.celum.com
5 htpp://www.xinet.com

439

with textual contents. To facilitate the modularity and reuse, the user can create
a pieces of presentation, called series, that can be reused to compose multiple
presentations. Similarly to digital assets, presentations can be tagged to increase
the search accuracy.

Each presentation is saved in an open XML-compliant format and can be
exported in different formats (SWF, pdf, png and pptx so far).

On the client side the user develops his/her presentation using the MediaPre-
senter web application completely developed in Adobe Flex. Since all the slides,
series, presentations as well as digital assets are remotely stored, every time the
user needs to save or load data, a remote call to a java method is fired. The
remote call is serialized using the AMF3 binary format protocol and sent over
http to the application server where BlazeDs6 is able to capture, deserialize and
manage the request.

4 Data Cloud

The main goal of MediaPresenter is to produce multimedia communication chan-
nel for enterprise internal or external use. To reach this goal, the system provides
to the user all the available information which can be briefly summarized in pre-
sentations, unpacked slides or series of slides and digital assets already used in
the past or available as digital content of the enterprise.

During the creation process, the user has to retrieve an already available
presentation or a specific digital asset stored into the MediaBank. The typical
way to access these data are searching, e.g. based on name, dimension, type,
date of creation and so forth. The results are often unsatisfactory due to the
lack of knowledge and experience of the user.

To overcome these issues, our system permits to relate significative words to
each digital assets and series: we define these words as tags that can be directly
specified by the user either choosing among a predefined set, or created ex-
novo at run-time. The action of organize resources by adding metadata is called
”tagging” and it’s gaining popularity on the web in this years [2]. In this way,
users can perform a free keyword search over the MediaBank and the system
retrieves the entities related to the tags correspondent to the keywords.

In addition, using tags to label resources, allows the system to create a set
of tags starting from the results returned by the usual search by keyword. This
set of tags, called Tags Cloud, considers each terms as an hyperlink that can
be used to refine the search results, dynamically guiding users in the hidden
relationship among contents and eventually leading to serendipitous discoveries
of interesting results.

The objective is then to summarize keyword search results usingData Cloud,
which presents the most significant words (tags) associated with the search re-
sults. The advantage of this approach is to highlight the most significant concepts
and hidden complex relationship in the modeling context.

6 htpp://www.opensource.adobe.com/wiki/display/blazeds/BlazeDS

 440

4.1 Model for Data Cloud: ranking search entities and tags query

We consider a set C of object, i.e. digital assets, and the set T of all tags. These
tags are textual labels (words) assigned to objects, thus each object c ∈ C is
associated to a set of tags, denoted with Tc.

We assume, without loss of generality, that a keyword query q is only ex-
pressed in terms of tags t ∈ T . Given a query q, the set of result are denoted as
Cq ⊆ C, that contains the set of objects related at least to a tag contained in the
query.

We denote Tq the set of tags related to at least one object of Cq, and for each
tag t ∈ Tq we denote Aq(t) as the set of objects associated to the tag t.

We define two score functions, one for objects retrieved from the query and
one for the tags t ∈ Tq. Both are based on IR-standard ranking methods [3], i.e.,
tf ∗ idf for any tag of the query.

The term frequency of a tag t in the query related to an object c can be
computed as:

tft,c =
|Aq(t)|∑

ti∈τq

|Aq(ti)|
(1)

While the inverse document frequency idf for t is:

idft = ln

(
|C|

|Aq(t)|

)
(2)

Then, we consider the tf ∗ idf for each tag in the query and we define the
score for an object c w.r.t. a query q as [4]:

score(c, q) =
∑

t∈q

tft,c ∗ idft (3)

This function permits to MediaPresenter to show the retrieved digital assets
in an ordered way. Analogously, we can define the score for a tag t w.r.t. a query
q in the following way:

score(t, q) =
|Aq(t)|

|Cq|
∗ ln

(
|C|

|Aq(t)|

)
(4)

that permits to rank the tags in order to produce the suitable visual summary
of a collection of texts by visually depicting the tag score by font size [5]

In [6] was proved that the IF-IDF based algorithm for score computation is
the most suitable to maximize the metrics useful in Tag Cloud environment, i.e.
Coverage, Overlap, Cohesiveness, Balance, Relevance and Popularity; therefore

441

we are reasonably guarantee that our approach produce the best service for the
MediaPresenter users.

In addition, since the user creates tags in a context of a group, and each group
has a label identifying its generic topic, we can consider that given a certain
search result, the sum of all the groups’ labels is itself a Tag Cloud summarizing
the whole topics of the results. In order to sum up the tag clouds resulting from
the tags and the one resulting from the group labels, we use colors to identify for
each tag the group it belongs to, and an index showing all the groups related to
the search. In this way the user is able to perform a refinement over the results
using two different levels of granularity: by generic topic, selecting the group of
interest on the index, and one more detailed using the tags from the cloud.

5 Conclusion

In medium/big companies the creation of multimedia presentations can be a
heigh resource consuming task, especially if it needs collaboration among people
with different roles. In this paper we described the industrial requirements we
tried to fulfill and the approach we followed in the development of a framework
that enables users to collaborate in the creation of multimedia presentations.
We put particular focus on the design of the keyword search engine and the tag
cloud.

References

1. Ansgar Scherp, “Canonical processes for creating personalized semantically rich
multimedia presentations,” Multimedia Systems, vol. 14, pp. 415–425, 2008,
10.1007/s00530-008-0139-8.

2. Scott A. Golder and Bernardo A. Huberman, “The structure of collaborative tagging
systems,” CoRR, vol. abs/cs/0508082, 2005.

3. Vagelis Hristidis, Luis Gravano, and Yannis Papakonstantinou, “Efficient ir-style
keyword search over relational databases,” in Proceedings of the 29th international
conference on Very large data bases - Volume 29. 2003, VLDB ’2003, pp. 850–861,
VLDB Endowment.

4. Georgia Koutrika, Zahra Mohammadi Zadeh, and Hector Garcia-Molina, “Data
clouds: summarizing keyword search results over structured data,” in EDBT, 2009,
pp. 391–402.

5. Bongshin Lee, Nathalie Henry Riche, Amy K. Karlson, and M. Sheelagh T. Carpen-
dale, “Sparkclouds: Visualizing trends in tag clouds,” IEEE Trans. Vis. Comput.
Graph., vol. 16, no. 6, pp. 1182–1189, 2010.

6. Petros Venetis, Georgia Koutrika, and Hector Garcia-Molina, “On the selection of
tags for tag clouds,” in Proceedings of the fourth ACM international conference on
Web search and data mining, New York, NY, USA, 2011, WSDM ’11, pp. 835–844,
ACM.

 442

Author Index

Abid, Adnan, 155

Abu Helou, Mamoun, 195

Albano, Antonio, 203

Amato, Giuseppe, 334

Appice, Annalisa, 227

Ates, Mikaël, 429

Atzeni, Paolo, 318

Barbieri, Nicola, 239

Barilaro, Rosamaria, 295

Bartolini, Ilaria, 9

Batini, Carlo, 381

Beneventano, Domenico, 84, 175

Bergamaschi, Sonia, 103, 175, 437

Berlingerio, Michele, 350

Bertossi, Leo, 3

Bianchini, Devis, 342, 421

Bolettieri, Paolo, 334

Buccafurri, Francesco, 429

Calì, Andrea, 95

Camplani, Romolo, 111

Casati, Fabio, 203

Catarci, Tiziana, 21, 326

Cavalieri, Federico, 259

Ceci, Michelangelo, 57, 227

Ciaccia, Paolo, 9

Comerio, Marco, 381

Corni, Alberto, 175

Cuzzocrea, Alfredo, 57, 76, 405

D'Addario, Maddalena, 326

Daniel, Florian, 203

De Antonellis, Valeria, 342

De Francesco, Andrea, 163

De Meo, Pasquale, 389

Di Cerbo, Francesco, 373

Di Ciccio, Claudio, 397

Di Felice, Paolino, 358

Di Sciascio, Eugenio, 119

Diamantini, Claudia, 49

Dodero, Gabriella, 373

Domnori, Elton, 103

Erra, Ugo, 413

Fayolle, Jacques, 429

Felli, Paolo, 326

Ferrari, Fabio, 437

Ferro, Nicola, 275

Franceschetti, Laura, 326

Franconi, Enrico, 147

Gennaro, Claudio, 334

Giannotti, Fosca, 350

Greco, Gianluigi, 139

Guagliardo, Paolo, 147

Guerra, Francesco, 103

Guerrini, Giovanna, 259

Gunopulos, Dimitrios, 76

Guzzo, Antonella, 66

Imran, Muhammad, 203

Interlandi, Matteo, 437

Kazazi, Entela, 175

Lax, Gianluca, 429

Lembo, Domenico, 287, 326

Lenzerini, Maurizio, 287

Leone, Nicola, 295

Loglisci, Corrado, 227

Malerba, Donato, 57, 227

Manco, Giuseppe, 239

Manolescu, Ioana, 4

Manti, Saverio, 76

Marchese, Maurizio, 203

Martinenghi, Davide, 33, 131

Masciari, Elio, 41

Mazzeo, Giuseppe M., 41

Mecella, Massimo, 326, 397

Melchiori, Michele, 342

Mesiti, Marco, 259

Mirylenka, Daniil, 203

Missikoff, Michele, 303

Moccia, Luigi, 66

Nocera, Antonino, 389

Oro, Ermelinda, 267

Orsini, Matteo, 358

Orsini, Mirko, 175

Pagliarecci, Francesco, 421

Papotti, Paolo, 187

Parra, Cristhian, 203

Pasqua, Enrica, 381

Patella, Marco, 9

Pieris, Andreas, 95

Pipan, Tatiana, 326

Po, Laura, 175

Pollastri, Gianluca, 311

Polticelli, Fabio, 318

Potena, Domenico, 49

Proietti, Maurizio, 303

Quattrone, Giovanni, 389

Rahm, Erhard, 5

Rahman Dannoui, Abdul, 84

Rauseo, Angelo, 131

Reggio, Gianna, 373

Ricca, Filippo, 373

Ricca, Francesco, 295

Risi, Michele, 247

Ritacco, Ettore, 239

Rodinò, Vincenzo, 405

Rosati, Riccardo, 287

Rossetti, Giulio, 350

Ruffolo, Massimo, 267

Russo, Alessandro, 326

Ruta, Michele, 119

Ruzzi, Marco, 287

Saccà, Domenico, 66, 405

Sala, Antonio, 84

Savino, Pasquale, 334

Savo, Domenico Fabio, 287

Scannapieco, Monica, 21, 397

Scanniello, Giuseppe, 373

Scarcello, Francesco, 139

Schreiber, Fabio Alberto, 111

Scioscia, Floriano, 119

Senatore, Sabrina, 413

Serra, Edoardo, 66

Sessa, Maria I., 247

Silvello, Gianmaria, 275

Smith, Fabrizio, 303

Sorrentino, Serena, 175

Spalazzi, Luca, 421

Spezzano, Francesca, 163

Staab, Steffen, 267

Storti, Emanuele, 49

Subramahnian, VS, 6

Tagliasacchi, Marco, 155

Tanca, Letizia, 111, 131

Terracina, Giorgio, 295

Tinelli, Eufemia, 119

Torlone, Riccardo, 33

Tortora, Genoveffa, 247

Toti, Daniele, 318

Tradigo, Giuseppe, 311

Trillo Lado, Raquel, 103

Trubitsyna, Irina, 163

Tucci, Maurizio, 247

Ursino, Domenico, 389

Valentino, Luca, 21

Valisena, Ciro, 203

Velegrakis, Yannis, 103

Veltri, Pierangelo, 311

Vestri, Annarita, 326

Viganò, Diego, 111

Villari, Paolo, 326

Vincini, Maurizio, 437

Viscusi, Gianluigi, 381

Zaniolo, Carlo, 41

Zardetto, Diego, 21, 397

	Senza titolo

