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Outline

�Fast subgraph matching

�Social network optimization 

problems

�Competitive diffusion problems
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Fast subgraph matching
You have a graph 
database. You want to 

find all instances of 
some “pattern” in it.

query
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DOGMA: Disk Subgraph Matching

Iterative Coarsening

� Iteratively construct 

sequence G0,G1,…,Gn of 

graphs such that:

- Gi has half as many 

vertices as Gi-1.

- Gn fits on a disk page.

� When going from Gi to Gi-1, 

make sure you keep mappings 

describing which vertices in Gi-

1 are represented by a vertex 

in Gi.

Tree Construction

� Root of tree is Gn.

� For each unprocessed 

node:
- Use a graph partitioning 

algorithm to split Gj into two 

parts LEFT and RT.

- Expand LEFT and RT to 

double the number of 

vertices in each using the 

mappings.
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Fast subgraph matching

7

� Converted SN to a weighted graph.

� Our key theorem proved that the 

min-edge cuts of the weighted 

graph correspond to the best way 

of splitting the graph across a set 

of compute nodes.

� In 2010, our COSI system used this 

theorem to use a 16-node cloud to 

do the subgraph matching in under 

a second on a 1B+ edge Delicious 

data set. Confirmed with a second 

778M edge dataset from Flickr, 

Orkut, LiveJournal.

• More recent BudgetMatch algorithm 
does this on a single machine in under 

a second – assigns budget to each 
query vertex !
• Planned extension to $100B+ edge 
dataset.

• More recent PMATCH algorithm 
solves “probabilistic” subgraph
matches (where user does not know 

exactly what he is looking for) in < 1

second on two 1B+ edge data sets –

one from Delicious, one from 

FaceBook.



Competitive Diffusion

Outline

�Fast subgraph matching

�Social network optimization 

problems

�Competitive diffusion problems
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vaccine(X) & child(X,Y) & teen(Y) --> vaccine(Y) | 0.95

vaccine(X) & child(X,Y) & youngadult(Y) --> vaccine(Y)  | 0.35

vaccine(X) & friend(Y,X) & youngadult(Y) --> vaccine(Y) | 0.2

vaccine(X) & friend(Y,X) & old(Y) --> vaccine(Y) | 0.6

vaccine(X) & friend(Y,X) & adult(Y) --> vaccine(Y) | 0.4

vaccine(X) & colleague(Y,X) & rich(Y) --> vaccine(Y) | 0.5

vaccine(X) & colleague(Y,X) & poor(Y) --> vaccine(Y) | 0.2

vaccine(X) & colleague(Y,X) & average(Y) --> vaccine(Y) | 0.3

vaccine(X) & child(X,Y) & teen(Y) --> vaccine(Y) | 0.95

vaccine(X) & child(X,Y) & youngadult(Y) --> vaccine(Y)  | 0.35

vaccine(X) & friend(Y,X) & youngadult(Y) --> vaccine(Y) | 0.2

vaccine(X) & friend(Y,X) & old(Y) --> vaccine(Y) | 0.6

vaccine(X) & friend(Y,X) & adult(Y) --> vaccine(Y) | 0.4

vaccine(X) & colleague(Y,X) & rich(Y) --> vaccine(Y) | 0.5

vaccine(X) & colleague(Y,X) & poor(Y) --> vaccine(Y) | 0.2

vaccine(X) & colleague(Y,X) & average(Y) --> vaccine(Y) | 0.3
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average(X) � plan(X,"att”) | 0.1

rich(X) � plan(X,"att") | 0. 3

poor(X) � plan(X,"verizon") | 0. 5

old(X) � plan(X,"verizon") | 0. 2

teen(X) � plan(X,"att") | 0. 2

adult(X) � plan(X,"verizon") | 0. 3

youngadult(X) � plan(X,"att") | 0. 3

frequent(X,Y) & plan(Y,P) � plan(X,P)  | 0. 4

regular(X,Y) & plan(Y,P)   � plan(X,P) | 0. 2

sporadic(X,Y) & plan(Y,P) � plan(X,P) | 0. 1

Functional constraint on: plan(X,P)

average(X) � plan(X,"att”) | 0.1

rich(X) � plan(X,"att") | 0. 3

poor(X) � plan(X,"verizon") | 0. 5

old(X) � plan(X,"verizon") | 0. 2

teen(X) � plan(X,"att") | 0. 2

adult(X) � plan(X,"verizon") | 0. 3

youngadult(X) � plan(X,"att") | 0. 3

frequent(X,Y) & plan(Y,P) � plan(X,P)  | 0. 4

regular(X,Y) & plan(Y,P)   � plan(X,P) | 0. 2

sporadic(X,Y) & plan(Y,P) � plan(X,P) | 0. 1

Functional constraint on: plan(X,P)
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Technical Preliminaries
� Set V – the set of vertices in the network

� Two types of predicates:
- VP – Vertex Predicates

• Unary predicates that specify attributes of a vertex

• Vertex atoms: atoms consisting of a predicate in 
VP and a vertex

� i.e. attribute(v)

- EP – Edge Predicates
• Binary predicates that specify attributes of an edge 

• Edge atoms: atoms consisting of a predicate in EP 
and two vertices

� i.e. ep(v,v’)

19

Social Network Optimization Problems
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Technical Preliminaries

A social network is a 5-tuple:

20

Social Network Optimization Problems
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Cell Phone Example

Example social network of cell-

phone users

21

Social Network Optimization Problems

dashed/dotted/solid edges are email/instant 
message/cell phone relationships (resp.)
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Gen. Annotated Programs

� Annotated term:
- Variable symbol, number in [0,1], or function over 

[0,1] where the arguments are annotated terms

� Annotated atom:
- If x is an annotated term and A is a ground atom 

(i.e. a vertex or edge atom) then A:x is an 
annotated atom

� Annotated rule:
- Rule of the following form:

� Annotated program:
- Set of annotated rules

22

Social Network Optimization Problems

Kifer & VS, 1989, 1992.
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SNs can be embedded in GAPs

Every social network can be 

embedded into an annotated 

program:

-For all v ∈ V, add:

• vert_pred(v):1 ← TRUE | where 

vert_pred ∈lvert(v)

-For all (v,v’) ∈E, add:

• edge_pred(v,v’):w(v,v’,edge_pred) 

← TRUE |where ledge(v,v’) = 

edge_pred
23

Social Network Optimization Problems
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An Example
In addition to a social network, we 

can embed network diffusion rules in 

an annotated program as well

24

Social Network Optimization Problems



Competitive Diffusion

Linear GAPs

�We say an annotated program is 

“linear” if each ground rule is of 

the following form:

where A is the set of all ground 

atoms, each Xi is a variable 

symbol, and ΣΣΣΣ ci ∈∈∈∈ [0,1]

25

Social Network Optimization Problems
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Semantics of Annotated Programs

�An interpretation, I, is simply a 
mapping of ground atoms to [0,1]

�An interpretation, I, satisfies a rule
A:µ ← AA1 ∧ … ∧ AAn
iff µ ≤ I(A) or  for some i ∈ [1,n], I does not 

satisfy AAi

�An annotated program entails an 
annotated atom iff for every 
interpretation satisfying all rules in 
the program, that interpretation 
also satisfies the annotated atom

26

Social Network Optimization Problems
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The Fixed-Point Operator
� The T operator maps interpretations to 

interpretations, wrt annotated program Π and 
is defined as follows:
- TΠ (I)(A) = sup { µ | A:µ ← AA1 ∧ … ∧ AAn is a 

ground rule in Π and for all i ∈ [1,n], I |= AAi }

� Theorem (Kifer ‘92): The T operator is 
monotonic and has a least fixed point (lfp(TΠ 
))s.t. Π entails A:µ
iff µ ≤ lfp(TΠ )(A)

� Hence, for an annotated program consisting 
of a social network and diffusion rules, the 
least fixed point of T coincides with the 
maximum extent of the diffusion.

27

Social Network Optimization Problems
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Aggregates and Vertex Conditions

� An aggregate is simply a mapping of all finite 
multisets of real numbers in [0,1] to a real number
- SUM, COUNT, AVG are all examples of aggregates

� A Vertex Condition is a conjunction of annotated 
vertex atoms containing exactly one variable.  A 
vertex condition can be specified in two ways:
- A-Priori: a condition enforced before diffusion occurs 

(only on the embedding of the social network)
• In the remainder of this presentation, we shall assume an 

a-priori vertex condition

- A-Posteriori: enforced after diffusion occurs

28

Social Network Optimization Problems
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SNOP Query

� A SNOP query is a 4-tuple:
- agg: an aggregate

- VC: vertex condition

- k: natural number >0

- g(V): goal atom (a non-ground atom, g is one of 
the vertex predicates)

� For a given SNOP query, we define a pre-
answer as a set of vertices V’ ⊆ V s.t.
- |V’| ≤ k

- For all v’ ∈ V’
• {g(v’):1 | v’ in V’} U (the embedding of the social 

network + logic rules) entail  VC

29

Social Network Optimization Problems
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SNOP Query

For a given SNOP query and pre-
answer, V’, we define value(V’) to be 
a real number defined as follows:

- agg( { lfp(TΠ U {g(v’):1 ← TRUE | v’ ∈ V’})(g(V) | 
V ∈ V } )

- In other words, value(V’) is the 
aggregate of all annotations of goal 
atoms if every goal atom formed with a 
vertex in V’ is annotated with 1 and the 
diffusion process completes

30

Social Network Optimization Problems
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The Complexity of SNOP Queries

� An answer to a SNOP-query is a pre-answer V’ 
⊆ V s.t. value(V’) is maximized

� Theorem: Answering a SNOP-query is NP-hard.
- Associated decision problem is NP-complete 

provided annotation and aggregate functions are 
computable in PTIME

- NP-hardness shown by a reduction from MAX-K-
COVER

- NP-hardness holds even if:
• The annotated program is linear

• The aggregate is SUM

• value(∅) = 0

31

Social Network Optimization Problems
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Limits of Approximation for SNOP 

Queries
Theorem: A SNOP query cannot be 
approximated in PTIME within (e-1)/e –
b (where b > 0) unless P=NP.
- Follows directly from the previous 

complexity result and non-approximation 
result of MAX-K-COVER

- Still holds under the following conditions
• The annotated program is linear

• The aggregate is SUM

• value(∅) =0

� Recall e=2.718, so (e-1)/e = 0.63.

32

Social Network Optimization Problems
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SNOP Queries and Submodularity

�Theorem: For a given SNOP-query, 
if the annotated program is linear, 
VC is applied a-priori, and agg is a 
positive, weighted sum, then value 
is a sub-modular function.

- In other words, for sets V’ ⊆ V’’, 
and v ∉ V’’, the following holds:

value(V’ U  {v} )  – value(V’)  ≥≥≥≥
value(V’’ U  {v} )  – value(V’’)

33

Social Network Optimization Problems
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SNOPs: Key Approach

1. Given a GAP P, Kifer-
Subrahmanian defined a 
fixpoint operator TP(I)(A) = 
LUB { µ | A: µ <= B1: µ1 & … 
& Bn: µn is a ground instance 
of a rule in P and I(Bi) >= µi
for all i in {1,..,n} }.

2. Non-ground interpretation 
NGI maps atoms (not 
necessarily ground) to reals
in the [0,1] interval.

3. This paper defines a non-
ground fixpoint operator SP
such that grd(SP(NGI)) = 
TP(grd(NGI)).

4. Search algorithm to solve 
any SNOP based on the SP
operator. 

NGI grd(NGI)

SP(N
GI)

TP(grd(NG
I))

grd

grd
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SNOP-Mon Algorithm

Start with a 

GAP

Pick a GAP and see 

if it’s an answer

Expand GAP by 

adding new atoms.

Process the highest

value GAP next.
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Greedy SNOP
Find all v satisfying 

VC

Compute “marginal” diff 

for each possible v. 

Submodularity used here.

Expand SOL greedily Expand SOL greedily 

with best v.
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Greedy SNOP

� Theorem. Greedy SNOP runs in time 

O(k*|V|*F(|V|) where F(|V|) is the time 

to compute value(-).

� Theorem. When the GAP is linear, VC is a 

priori, agg is positive linear and value is 

zero-starting, then GREEDY-SNOP is an 

(e/e-1)-approximation algorithm for the 

query. (best possible unless P=NP)

� Developed several additional 

approximations and heuristics.
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Three classes of diffusion models

� Tipping models (Granovetter, Schelling). 

Vertex adopts behavior based on number 

of neighbors that do.

� Cascading models. Vertex adopts 

behavior based on the strength of 

relationships with neighbors.

� Homophilic models. Vertex adopts 

behavior on the basis of similarity (in 

terms of properties) of other vertices.

38
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Tipping: Jackson-Yariv Product 

Adoption Model
� Node vi switches to behavior B iff (bi/ci)*g(di)*pi

≥ 1 where:

- bi is benefit to vi to adopt behavior B.

- ci is cost to vi to adopt behavior B.

- pi is the percentage of vi‘s neighbors that 

adopted behavior B.

- g(di)describes how the number of neighbors 

of vi adopting behavior B affects benefits to vi  

39
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Cascade Model: SIR Model of 

Disease Spread

40

� SIR model says each vertex is either
- Susceptible (not had the disease, but 

can get it)

- Infected (has had the disease for less 
than trec time units)

- Removed (vertex cannot catch or 
transmit the disease)

� An infected vertex v can infect a 
neighbor v’ with a probability Pv,v’.

� GAPs can express the SIR model and 
many other models. 
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Cascade Model: SIR Model of 

Disease Spread

41

� SIR model says each vertex is either

- Susceptible (not had the disease, but can get it)

- Infected (has had the disease for less than trec time 

units)

- Removed (vertex cannot catch or transmit the 

disease)

� An infected vertex v can infect a neighbor v’ with a

probability Pv,v’.

� GAPs can express the SIR model and many other models. 
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Experiments
� Wikipedia allows admins and eligible users to vote for new 

admins.

� Social network consists of admins/eligible users.

� Edge from j to i if an admin/elig user j voted for an eligible 

user i.

� Looked at just under 2800 elections.

� SN has 7K nodes and over 103K edges.

� Parameter α specifies level of influence of a candidate on 

voters. Higher α => more influence.

� Queries tested looks to find set of K users who jointly wield 

the most influence (i.e. yield the highest expected number 

of influenced voters).

� Tipping model based on Flickr photo diffusion.

� Cascade model based on Jackson-Yariv.

42
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Experiments

43

α specifies level of influence of a candidate on voters. specifies level of influence of a candidate on voters. specifies level of influence of a candidate on voters. specifies level of influence of a candidate on voters. 
Higher Higher Higher Higher αααα => more influence.=> more influence.=> more influence.=> more influence.
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45

α specifies level of influence of a candidate on voters. 
Higher α => more influence.
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Outline

�Fast subgraph matching

�Social network optimization 

problems

�Competitive diffusion problems

46
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Weighted GAP Rules

Ground Rule

B1:X1 ∧ .. Bn:Xn � H:f(Xi) | w

Given Interpretation I:

Satisfaction:      

I(H) ≥ f(I(B1),…,I(Bn))

Weighted Distance from Satisfaction: 

w * max(0, f(I(B1),…,I(Bn)))-I(H) ) 

47
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Competition

�Hard competition expressed as constraints

- Example: A person has only one vote

vote(A,Dem) + vote(A,Republican) ≤ 1

� Soft competition expressed by rule weights 

which represent the relative probability that 

the described diffusion will happen
- Example: If person B votes democratic, then B’s husband 

is likely to vote democrats as well (but not necessarily):

vote(B,Dem):X ∧ wife(A,B):1 � vote(A,Dem):X | 0.8

48
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Probabilistic Model Semantics
� We use the rules and their weights to define a 

probability distribution over the space of “possible 

unfoldings of the diffusion process”

- i.e. interpretations or confidence assignments

- Exponential family distribution (as used e.g. in p* 

models)

� d(P,I) =  d(R,I) x = 

� PPPP( I | P) = 1/Z exp (- d(P,I))

� z = ∫I’ exp(-d(P U IC,I))
49

d(R1,I)

d(Rn,I)
x

All ground 
rules. Compute 
norm of vector.

P = set of rules

Ri = ground rule
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Most Probable Interpretation

� Finding the most probable interpretation 

(MPI) is an optimization problem
- Find I which has the highest probability of explaining P

argmaxI PPPP( I | P) = argminI d(P,I)

� Restricting the GAP annotations to be 

convex makes the problem tractable
- We currently focus on conic annotations which give 

O(n3.5) complexity (i.e. SOCP)

- n=number of ground rules

50
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Some standard stuff

� Use fixpoint operator to determine the minimal non-

ground interpretation

- Keep the number of ground atoms small

- Intuition: If there is no evidence for it, we don’t 

consider it

• If John and Jane aren’t married, don’t need to 

consider rules with wife(John,Jane)

- Implementation: 

• Ground out rules iteratively as needed until no 

further ground atoms are added to the 

interpretation. 

• Split based on dependency graph analysis.

51
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Approximate Algorithm

1. Ground out dependency graph as needed 

with fixpoint operator

2. Partition dependency graph using a 

modularity maximizing clustering alg

- Inspired by Blondel et al [06]

- Aggregate rule weights

3. Compute MPI on each cluster fixing 

confidence values of outside atoms

4. Go to 1 until change in I < Θ

52
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Experiments

�Synthetically generated scale free, 

labeled social networks

�6 edge types, 7 rules

�Used different parameter settings for 

convergence condition

�Executed on single 16 core machine 

with 256 GB of memory.
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Scalability
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Accuracy
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Runtime
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Accuracy on large SN
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Runtime on large SN
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Conclusions

�Solving optimization problems on 

very large graphs is hard.

�First steps have been taken.

�Future steps need to focus on 

scalability. Developing 

- cloud-based heuristic algorithms 

plus

- Smart partitioning/hierarchical 

clustering approaches.
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