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Competitive Diffusion

Outline

» Fast subgraph matching

= Social network optimization
problems

» Competitive diffusion problems
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Competitive Diffusion

Fast subgraph matching

You have a graph
s @@ database. You want to
find all instances of
@ some “pattern” in it.

w“w
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DOGMA: Disk Subgraph Matching

Iterative Coarsening Tree Construction
= |teratively construct = Root of tree is G,..
sequence Gg,Gy,...,G, of = For each unprocessed
graphs such that: node:
- G; has half as many - Use a graph partitioning
vertices as G, ;. algorithm to split G; into two
- G, fits on a disk page. parts LEFT and RT.
: - Expand LEFT and RT to
" When going from G; to .Gi-1’ double the number of
make sure you keep mappings vertices in each using the
describing which vertices in G;. mappings.

, are represented by a vertex
in G;.
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= Converted SN to a weighted graph.
= Qur key theorem proved that the

mi

graph correspond to the best way

of
of

= |n 2010, our COSI system used this
theorem to use a 16-node cloud to

do

a second on a 1B+ edge Delicious
data set. Confirmed with a second
778M edge dataset from Flickr,
Orkut. LiveJournal.

Queryl (5E)
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Fast subgraph matchin

n-edge cuts of the weighted

splitting the graph across a set
compute nodes.

the subgraph matching in under

¥ 1) assignBudget4, A=100 ®2) assignBudget4, A=500 B3) assignBudget4, A=2000
0 4) assignBudget4, A=15000 W5) assignBudget4, A=100, statistics ®6) assignBudget2, A=500
"7) assignBudget3, A=500 8) assignBudget1, A=500 B19) SN-3: DOGMA+statistics

Query2 (7€) Querys3 (6E) Query4 (9€) Querys5 (9E) Query6 (7€) Query7 (12E) Query8 (12E) mayilf) |
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Outline

= Fast subgraph matching

= Social network optimization
problems

» Competitive diffusion problems
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frequent(X,Y) & plan(Y,P) - plan(X,P)

1 0. 4
; regular(X,Y) & plan(Y,P) - plan(X,P) | 0. 2
| 0. 1

sporadic(X,Y) & plan(Y,P) - plan(X,P)

Functional constraint on: plan(X,P)

s

—>| Luis ], ‘ Lea |
["Joe average(X) - plan(X,"att”) | 0.1
rich(X) - plan(X,"att") | 0. 3
poor(X) - plan(X,"verizon") | 0.5
old(X) - plan(X,"verizon") | 0. 2
Edna teen(X) > plan(X,"att") | 0. 2
adult(X) - plan(X,"verizon") | 0. 3
youngadult(X) -> plan(X,"att”) | 0. 3
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Technical Preliminaries

= Set V - the set of vertices in the network

= Two types of predicates:

- VP - Vertex Predicates
* Unary predicates that specify attributes of a vertex

* Vertex atoms: atoms consisting of a predicate in
VP and a vertex

= j.e. attribute(v)

- EP - Edge Predicates
e Binary predicates that specify attributes of an edge

 Edge atoms: atoms consisting of a predicate in EP
and two vertices

" i.e. ep(v,V’)
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Technical Preliminaries

A social network is a 5-tuple:

(1) V is a set whose elements are called vertices.
(2) E CV xV is a multi-set whose elements are called edges.
(2) Loart NV — 2VP is a function, called vertex labeling function.

(4) Ledge : E — EP is a function, called edge labeling function.
(5) w: Ex EP— [0,1] is a function, called weight function.
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Cell Phone Example

Example social network of cell-
phone users

(shaded) female (unshaded) male ¢
Qadopter [Jtemp_adopter
< non_adptr

dashed/dotted/solid edges are email/instant
message/cell phone relationships (resp.)
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Gen. Annotated Programs

= Annotated term:

- Variable symbol, number in [0,1], or function over
[0,1] where the arguments are annotated terms

= Annotated atom:

- If x is an annotated term and A is a ground atom
(i.e. a vertex or edge atom) then A:x is an
annotated atom

= Annotated rule:
- Rule of the following form:

Ag:pog — Ar: 1 AN .. N Ay g

= Annotated program:

- Set of annotated rules Kifer & VS, 1989, 1992.
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SNs can be embedded in GAPs

Every social network can be
embedded into an annotated
program:

-For all v V, add:

e vert_pred(v):1 — TRUE | where
vert_pred LI, ..(V)
-For all (v,v’) LIE, add:
e edge_pred(v,v’):w(v,v’,edge_pred)
— TRUE |where Ly40(V,V’) =
edge_pred
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An Example

In addition to a social network, we
can embed network diffusion rules in
an annotated program as well

(1) will_adopt(V') : 0.8 x X + 0.2 — adopter(V) : 1 A male(V') : 1 A
IM(V,V"):0.3 A female(V'"): 1 A will_adopt(V') : X,

(2) will_adopt(V') : 0.9 x X + 0.1 «— adopter(V) : 1 AN male(V) : 1 A
IM(V,V"):0.3 A male(V') : 1 A\ will_adopt(V") : X.

(3) will_adopt(V') : 1 «— temp_adopter(V') : 1 A male(V) : 1 A email(V', V) : 1A
female(V'") : 1 A will_adopt(V') : 1.

Rule (1) says that if V' is a male adopter and V' is female and the weight of
V'’s instant messages to V' is 0.3 or more, and we previously thought that V' would
be an adopter with confidence X, then we can infer that V- will adopt the new plan
with confidence 0.8 x X + 0.2. The other rules may be similarly read.
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Linear GAPs

= We say an annotated program is
“linear” if each ground rule is of

the following form:
pred(V):co+c1 - X1 +...+¢ - X;+...+¢c, - X,, — /\ A; : X;
A;€A

where A is the set of all ground
atoms, each X; is a variable
symbol, and 2'¢; //[0,1]
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Semantics of Annotated Programs

* An interpretation, /, is simply a
mapping of ground atoms to [0, 1]
= An interpretation, I, satisfies a rule

A:u — AA, []... [JAA,
iff u<I(A) or forsomei [/[1,n], I does not

satisfy AA;

*= An annotated program entails an
annotated atom iff for every
interpretation satisfying all rules in
the program, that interpretation
also satisfies the annotated atom
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The Fixed-Point Operator

= The T operator maps interpretations to
interpretations, wrt annotated program /7 and
is defined as follows:
= To()A)=sup{ | A:u « AA; [J... [JAA is a
ground rule in /7and for all i [J[1, n], I/—AA }
= Theorem (Kifer ‘92): The T operator is
monotonic and has a least fixed point ({fp(T
))s.t. /7 entails A:u

iff 4 <lfp(T;)(A)

= Hence, for an annotated program consisting
of a social network and diffusion rules, the

least fixed point of T coincides with the

maximum extent of the diffusion.
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Aggregates and Vertex Conditions

* An aggregate is simply a mapping of all finite
multisets of real numbers in [0,1] to a real number
- SUM, COUNT, AVG are all examples of aggregates

= A Vertex Condition is a conjunction of annotated
vertex atoms containing exactly one variable. A
vertex condition can be specified in two ways:
- A-Priori: a condition enforced before diffusion occurs
(only on the embedding of the social network)

* |In the remainder of this presentation, we shall assume an
a-priori vertex condition

- A-Posteriori: enforced after diffusion occurs
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SNOP Query

= A SNOP query is a 4-tuple:
- agg: an aggregate
- VC: vertex condition
- k: natural number >0

- g(V): goal atom (a non-ground atom, g is one of
the vertex predicates)

» For a given SNOP query, we define a pre-
answer as a set of vertices V’ 11V s.t.
- |V’| <k
- Forallv’ JV’

e {g(v’):1]Vv’'inV’} U (the embedding of the social
network + logic rules) entail VC
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SNOP Query

For a given SNOP query and pre-
answer, V’, we define value(V’) to be
a real number defined as follows:

= 39%(‘/{‘}[];P(T/7U{g(v’):1 - 1rue | v ovp)(8(Y) |

- In other words, value(V’) is the
aggregate of all annotations of goal
atoms if every goal atom formed with a
vertex in V’ is annotated with 1 and the

diffusion process completes
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The Complexity of SNOP Queries

= An answer to a SNOP-query is a pre-answer V’
[1Vs.t. value(V’) is maximized

: Answering a SNOP-query is NP-hard.

- Associated decision problem is NP-complete
provided annotation and aggregate functions are
computable in PTIME

- NP-hardness shown by a reduction from MAX-K-
COVER

- NP-hardness holds even if:

 The annotated program is linear
* The aggregate is SUM

e value(J) =0
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Limits of Approximation for SNOP

Queries

A SNOP query cannot be
approximated in PTIME within (e-1)/e -
b (where b > 0) unless P=NP.

- Follows directly from the previous
complexity result and non-approximation
result of MAX-K-COVER

- Still holds under the following conditions

 The annotated program is linear
 The aggregate is SUM
e value(l]) =0

" Recall e=2.718, so (e-1)/e = 0.63.
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SNOP Queries and Submodularity

: For a given SNOP-query,
if the annotated program is linear,
VC is applied a-priori, and agg is a
positive, weighted sum, then value
is a sub-modular function.

- |n other words, for sets V' 1 V’’,
and v //V’’, the following holds:

value(V’' U {v} ) - value(V’) =
value(V’’ U {v} ) - value(V’’)
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SNOPs: Key Approach

1.  Given a GAP P, Kifer-
Subrahmanian defined a
fixpoint operator To(1)(A) =
LUB{p | Aipu<=B;:py & ..

B.: K, is a groun mstance

&

of a rule in P and 1(B;) >= W

for alliin {1,. n}}

2. Non-ground mterpretatlon g
NGI maps atoms (not
necessarily ground) to reals

in the [0,1] interval.

3. This paper defines a non-
ground fixpoint operator S d
such that grd(Sp(NGI)) = gr

Tp(grd(NGI)).

4. Search algorithm to solve
any SNOP based on the S;
operator.
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SNOP-Mon Algorithm

SNOP-Mon(I1, agg, VC, k,g(V'))

(1) The variable C'urr is a tuple consisting of a GAP and natural number. We initi~'~
Curr.Prog = 1II; Curr.Count = 0. Start with a
(2) Todo is a set of tuples described in step 1. We initialize T'odo = {Curr} GAP
(3) Initialize the real number bestVal = 0 and GAP bestSOL = NIL
(4) while T'odo # () do .
| (a) Cand = first member of T'odo; Todo = Todo — {Cand} Pick a GAP and see
(b) if value(l fp(Scand.Prog)) = bestVal A Lfp(Scand.Prog) =V C then if it’s an answer
1. bestVal = value(lfp(Scand.Prog); bestSOL = GAP
(c) if Cand.Count < k then
1. For each ground atom g(V')60, s.t. AOtherCand € T'odo where
OtherCand.Prog O Cand.Prog, EXpand GAP by
|OtherCand.Prog| < |Cand.Prog| + 1, adding new atoms.
and [ fp(Sothercand.Prog) = g(V')0 : 1, do the following:
A. Create new tuple NewCand.
Set NewCand.Prog = Cand.ProgU {g(V )0 : 1 —}.
Set New.Count = Cand.Count + 1) Process the hlghest
B. Insert NewCand into Todo value GAP next.
ii. Sort the elements of FElement & Todo in descending order o
value(Element.Prog), where the first element, Top € Todo, has the
greatest such value (i.e. there does not exist another element Top’ s.t.
value(Top'.Prog) > value(Top.Prog))
(5) if bestSOL # NIL then return (bestSOL.Prog — 1) else return NIL.
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Greedy SNOP

GREEDY-SNOP(IT, agg, VC, k, g(V')) returns SOL C V Find all v satisfying
VC

prea\v) : 1) |=

(1) Initialize SOL = () and REM = {v € V| (g('v) B | /\/\predeevcrt(v)
)

(2) \T\Thll(’ |AS'()L| T ilﬁ a.nd REA[ 7é Q) Compute “margina[” diff
(a) vUpest = null, val = value(SOL), inc(®9) — ( for each possible v.
(b) For each v € REM, do the following submodularity used here.

1. Let incg-:gfu) = value(SOL U {v}) — val

u. If 'ifrz,cglelfg > incl¥) then incl®9) = incgﬁﬁ? and - Expand SOL greedily
(¢) SOL = SOL U {vpest}, REM = REM — {vpest } with best v.

(3) Return SOL




Competitive Diffusion

Greedy SNOP

* Theorem. Greedy SNOP runs in time
OkK*|VI*F(I1V]) where F(|V]) is the time
to compute value(-).

* Theorem. When the GAP is linear, VC is a
priori, agg is positive linear and value is
zero-starting, then GREEDY-SNOP is an
(e/e-1)-approximation algorithm for the
query. (best possible unless P=NP)

» Developed several additional
approximations and heuristics.
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Three classes of diffusion models

* Tipping models (Granovetter, Schelling).
Vertex adopts behavior based on number
of neighbors that do.

= Cascading models. Vertex adopts
behavior based on the strength of
relationships with neighbors.

= Homophilic models. Vertex adopts
behavior on the basis of similarity (in
terms of properties) of other vertices.




Tipping: Jackson-Yariv Product™”
Adoption Model

= Node v, switches to behavior B iff (b;/c;)*g(d;)*p;
> 1 where:

- b, is benefit to v; to adopt behavior B.
- C;is cost to v; to adopt behavior B.

- p; is the percentage of v;‘s neighbors that
adopted behavior B.

- g(d;)describes how the number of neighbors
of v. adopting behavior B affects benefits to v,

b X r
B(Vi): |=-9(3_Ej) SHA A (edge(Vi, Vi) : E; AB(V;) : X;)
$4 Vil(V;,Vi)eR”
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Cascade Model: SIR Model o

Disease Spread

= SIR model says each vertex is either
- Susceptible (not had the disease, but
can get it)

- Infected (has had the disease for less
than t . time units)

rec

- Removed (vertex cannot catch or
transmit the disease)

= An infected vertex v can infect a
neighbor v’ with a probability P, ..

= GAPs can express the SIR model and
many other models.
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Cascade Model: SIR Model o
Disease Spread

= SIR model says each vertex is either
- Susceptible (not had the disease, but can get it)

- Infected (has had the disease for less than ¢, time
units)

- Removed (vertex cannot catch or transmit the
disease)

* An infected vertex v can infect a neighbor v’ with a
probability P, .
» GAPs can express the SIR model and many other models.

Jor each 4 = 42,... jlyest - Slariing with tyq:

rec;(V) : R — reci_1(V) : R

rec;(V): R «— mf(lV): R
mf(V):(1—R)-Pyrv-(Pyr—R') « rect,, . (V):RA e(V',V): Pyry A
inf(V') : Pyr A recy,, (V') 1 R'.

y -
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Experiments

Wikipedia allows admins and eligible users to vote for new
admins.

Social network consists of admins/eligible users.

Edge from j to i if an admin/elig user j voted for an eligible
user i.

Looked at just under 2800 elections.
SN has 7K nodes and over 103K edges.

Parameter a specifies level of influence of a candidate on
voters. Higher a => more influence.

Queries tested looks to find set of K users who jointly wield
the most influence (i.e. yield the highest expected number
of influenced voters).

Tipping model based on Flickr photo diffusion.
Cascade model based on Jackson-Yariv.
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Experiments
Runtimes for different a values
30000
p—h ==Cascading Diffusion )

“*Tipping Diffusion
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Time to find Individuals

=@=Cascading Diffusion
=& Tipping Diffusion

= 10 15 20 25
Number of computed individuals
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Time per Individual

=@=Cascading Diffusion
=E=Tipping Diffusion

0 | | | 1 | | | | | | | | I I |
1 23 4567 8 9510111213141516171819202122232425

Index of Individual

1 |
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Outline

= Fast subgraph matching

= Social network optimization
problems

= Competitive diffusion problems
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Weighted GAP Rules

Ground Rule
B.:X; A .. B.:X, 2 H:f(X)

Given Interpretation |:
Satisfaction:
I(H) = £(1(B),...,1(B))
Weighted Distance from Satisfaction:
w * max(0, f(I(B,),...,I(By)))-1(H) )
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Competition

* Hard competition expressed as constraints

- Example: A person has only one vote
vote(A,Dem) + vote(A,Republican) < 1
= Soft competition expressed by rule weights
which represent the relative probability that

the described diffusion will happen

- Example: If person B votes democratic, then B’s husband
is likely to vote democrats as well (but not necessarily):

vote(B,Dem):X A wife(A,B):1 - vote(A,Dem):X | 0.8
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Probabilistic Model Semantics

= We use the rules and their weights to define a
probability distribution over the space of “possible
unfoldings of the diffusion process”

- i.e. interpretations or confidence assignments

- Exponential family distribution (as used e.g. in p*
models) I |

‘d(R. ) ] All ground
( ! ) rules. Compute

norm of vector.

“d(P,l) = dR,) x5

_d(RmI) _ P = set of rules
«P(1|P)=1/,exp (-d(P,1)) "~ R. = ground rule
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Most Probable Interpretation

= Finding the most probable interpretation

(MPI) is an optimization problem
- Find | which has the highest probability of explaining P

argmax, P( | | P) = argmin, d(P,l)

» Restricting the GAP annotations to be

convex makes the problem tractable

- We currently focus on conic annotations which give
O(n3->) complexity (i.e. SOCP)

- n=number of ground rules
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Some standard stuff

= Use fixpoint operator to determine the minimal non-
ground interpretation

- Keep the number of ground atoms small

- Intuition: If there is no evidence for it, we don’t
consider it

 If John and Jane aren’t married, don’t need to
consider rules with wife(John,Jane)

- Implementation:

e Ground out rules iteratively as needed until no
further ground atoms are added to the
interpretation.

 Split based on dependency graph analysis.
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Approximate Algorithm

1. Ground out dependency graph as needed
with fixpoint operator

2. Partition dependency graph using a
modularity maximizing clustering alg
Inspired by Blondel et al [06]
Aggregate rule weights

3. Compute MPI on each cluster fixing
confidence values of outside atoms

4. Go to 1 until change in| <0




()

b e\l
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Experiments

= Synthetically generated scale free,
labeled social networks

"6 edge types, 7 rules

» Used different parameter settings for
convergence condition

» Executed on single 16 core machine
with 256 GB of memory.
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Scalability

16000

L4000 Exact vs Approximate Algorithm Running Times

12000

=@=Exact Algorithm
10000

=B=Approximate Algorithm with Parameters
8000 A

6000

Time in Seconds

4000

2000

O 7 T T T I I 1
0 10000 20000 30000 40000 50000 60000 70000 80000
# Edges in Graph
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Relative Error compared to Exact Inference
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Runtime

Running Time Comparison of Approximate

500 Algorithm
450
=$=Parameters B
400
=l=Parameters A
n
'g 350 -t=Parameters C
8300 —=@=Parameters D
[43)
) 250 Paramete
=
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£
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Accuracy on large SN

Relative Error on Large Networks
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Runtime on large SN

Runtime Comparison on Large Networks
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Conclusions

= Solving optimization problems on
very large graphs is hard.

= First steps have been taken.

= Future steps need to focus on
scalability. Developing

- cloud-based heuristic algorithms
plus

- Smart partitioning/hierarchical
clustering approaches.
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