
Rewriting Ontology-Based Mappings

Giansalvatore Mecca1, Guillem Rull2, Donatello Santoro1, Ernest Teniente3
1Università della Basilicata — Potenza, Italy
2Universitat de Barcelona — Barcelona, Spain

3Universitat Politècnica de Catalunya — Barcelona, Spain

Technical Report TR-02-2015
Department of Mathematics, Computer Science and Economics

University of Basilicata

Abstract

Data translation consists of the task of moving data from a source database to a target database. This task is
usually performed by developing mappings, i.e. executable transformations from the source to the target schema.
However, a richer description of the target database semantics may be available in the form of an ontology. This
is typically defined as a set of views over the base tables that provides a unified conceptual view of the underlying
data. We investigate how the mapping process changes when such a rich conceptualization of the target database
is available. We develop a translation algorithm that automatically rewrites a mapping from the source schema
to the target ontology into an equivalent mapping from the source to the target databases. Then, we show how
to handle this problem when an ontology is available also for the source. Differently from previous approaches,
the language we use in view definitions has the full power of non-recursive Datalog with negation. In the paper,
we study the implications of adopting such an expressive language. Experiments are conducted to illustrate the
trade-off between expressibility of the view language and efficiency of the chase engine used to perform the data
exchange.

1 Introduction

Integrating data coming from disparate sources is a crucial task in many applications. An essential requirement of
any data integration task is that of manipulating mappings between sources. Mappings are executable transforma-
tions that define how an instance of a source repository can be translated into an instance of a target repository.
Traditionally, mappings are developed to exchange data between two relational database schemas [19]. A rich body
of research has been devoted to the study of this subject. This includes the development of algorithms to simplify
the specification of the mapping [22], the formalization of the semantics of the translation process [8], and various
notions of quality of the results [26, 16, 15].

This paper investigates how the mapping process changes in the presence of richer ontology schemas of the two
data sources. Studying this variant of the problem is important for several reasons.

(i) First, the emergence of the Semantic Web has increased the number of data sources on top of which ontology-like
descriptions are developed.

(ii) Second, ontologies play a key role in information integration since they are used to give clients a global
conceptual view of the underlying data, which in turn may come from external, independent, heterogeneous, multiple
information systems [14]. On the contrary, the global unified view given by the ontology is constructed independently
from the representation adopted for the data stored at the sources.

(iii) Finally, many of the base transactional repositories used in complex organizations by the various processes and
applications often undergo modifications during the years, and may lose their original design. The new schema can
often be seen as a set of views over the original one. It is important to be able to run the existing mappings against
a view over the new schema that does not change, thus keeping these modifications of the sources transparent to
the users.

It is therefore important to study how the mapping process changes in this setting.

1

1.1 Contributions

In this paper, we assume that an ontology is provided for the target and, possibly, for the source data repository.
The relationship between the domain concepts in this ontology schema and the data sources is given by a set of
views that define the ontology constructs in terms of the logical database tables using a relational language of
conjunctive queries, comparisons and negations.

We develop a number of techniques to solve this kind of ontology-based mapping problem. More specifically:

• we develop rewriting algorithms to automatically translate mappings over the ontology schema into mappings
over the underlying databases; we first discuss the case in which an ontology schema is available for the target
database only; then we extend the algorithm to the case in which an ontology schema is available both for
the source and the target;

• the algorithm that rewrites a source-to-ontology mapping into a classical and executable source-to-target
mapping is based on the idea of unfolding views in mapping conclusions; in our setting this unfolding is far
from being straightforward; in the paper, we show that the problem is made significantly more complex by
the expressibility of the view-definition language, and more precisely, by the presence of negated atoms in the
body of view definitions;

• we study the implications of adopting such an expressive language; to handle negation in view definitions we
adopt a very expressive mapping language, namely, that of disjunctive embedded dependencies (deds) [3]. Deds
are mapping dependencies that may contain disjunctions in their heads, and are therefore more expressive
than standard embedded dependencies (tgds and egds);

• this increased expressive power makes the data-exchange step significantly more complex. As a consequence,
we investigate restrictions to the view-definition language that may be handled using standard embedded
dependencies, for which efficient execution strategies exist. In the paper, we identify a restricted view language
that still allows for a limited form of negation, but represents a good compromise between expressibility and
complexity; we prove that under this language, our rewriting algorithm always returns standard embedded
dependencies;

• the classical approach to executing a source-to-target exchange consists of running the given mappings using a
chase engine [8]. We build on the Llunatic chase engine [11, 12], and extend it to execute not only standard
tgds and egds, but also deds. We discuss the main technical challenges related to the implementation of deds.
Then, using the prototype, we conduct several experiments on large databases and mapping scenarios to show
the trade-offs between expressibility of the view language, and efficiency of the chase. To the best of our
knowledge, this is the first practical effort to implement execution strategies for deds, and may pave the way
for further studies on the subject.

This paper represents a significant step forward towards the goal of incorporating richer ontology schemas into the
data translation process. Given the evolution of the Semantic Web, and the increased adoption of ontologies, this
represents an important problem that may lead to further research directions.

This paper extends our prior research [18], where we first studied the problem of rewriting ontology-based
mappings. We make several important advancements, as follows:

(i) First, previous papers only discussed rewritings based on standard embedded dependencies for a rather limited
form on negation. In this paper, we extend our algorithms to handle arbitrary non-recursive Datalog with negation
using deds, thus considerably extending the reach of our rewriting algorithm.

(ii) At the same time, we make the sufficient conditions under which the rewriting only contains embedded depen-
dencies more precise, and extend the limited case discussed in previous papers.

(iii) In addition, we present the first chase technique for deds, and a comprehensive experimental evaluation based
on scenarios with and without deds. As we mentioned above, this is the first practical study of the scalability of
the chase of high-complexity dependencies, an important problem in data exchange.

(iv) Finally, we provide full proofs of all theorems (in A).

1.2 Outline

The paper is organized as follows. Our motivating example is given in Section 2. Section 3 recalls some basic notions
and definitions. Section 4 introduces the ontology-based mapping problem. Section 5 defines disjunctive embedded

2

dependencies which are required by the rewriting when the views that define the mapping are beyond conjunctive
queries. Section 6 provides the definition of a correct rewriting. The rewriting algorithm and formal results are in
Section 7. Section 8 identifies a view-definition language that is more expressive than plain conjunctive queries but
such that it computes correct rewritings only in terms of embedded dependencies. The chase engine is described in
Section 9. Experiments are in Section 10. We discuss related work in Section 11.

2 Motivating Example

Assume we have the two relational schemas below and we need to translate data from the source to the target.

Source schema: S-WorkerGrades(WorkerId,Year,Grade,SalaryInc)
S-Stats(WorkerId,WorkerName,MinGrade,MaxGrade)

Target schema: Employees(Id,Name)
Evaluations(EmployeeId,Year)
PositiveEvals(EmployeeId,Year,SalaryInc)
Penalized(EmployeeId,Year)
Warned(EmployeeId,Date)

Both schemas rely on the same domain, which includes data about employees and the evaluations they receive
during the years. The source database stores grades within the S-WorkerGrades table, and statistical data in the
form of minimum and maximum grades of workers in table Stats. The target database, on the contrary, stores data
about employees and their positive evaluations, but also records warnings and penalties for those employees.

Due to these different organizations, it is not evident how to define the source-to-target mapping. In particular,
it is difficult to relate information stored in table S-Stats from the source schema to the contents of the tables
Penalized and Warned in the target schema.

Year

Number: integer

Worker

Id: integer

Name: string

Evaluation

PositiveEval NegativeEval

* *

{disjoint, complete}

Problematic Average Outstanding

{disjoint, complete}

SalaryInc: real

Figure 1: A Simple Target Ontology.

Suppose now that a richer ontology has been defined over the target relational schema, as shown in Figure 1.
The ontology distinguishes among problematic, average, and outstanding workers, and it records whether the yearly
evaluation of each worker is negative or positive, storing also the salary increase to apply to the worker for positive
evaluations.

Each class and association in the ontology is defined in terms of the database tables by means of a set of views,
as follows (to simplify the reading, from now on we use different fonts for ontology classes and relational tables; in
addition, source tables have a S-prefix in their name to be distinguished from base target tables): 1

1The rules we use to specify views in our example are not safe in the sense that they contain variables appearing in negative literals
that do not appear in a positive one. This is done for the sake of readability since it is well-known that there is an equivalent safe
rewriting for such rules.

3

View definitions for the target ontology.
v1 : Worker(id, name)⇐ Employees(id,name)
v2 : Evaluation(employeeId, year)⇐ Evaluations(employeeId, year)
v3 : PositiveEval(employeeId, year, salaryInc)⇐ Evaluation(employeeId, year),

PositiveEvals(employeeId, year, salaryInc)
v4 : NegativeEval(employeeId, year)⇐ Evaluation(employeeId, year),

¬PositiveEval(employeeId, year, sinc)
v5 : Problematic(id, name)⇐Worker(id, name),Penalized(id, year)
v6 : Problematic(id, name)⇐Worker(id, name),¬PositiveEval(id, year, sinc)
v7 : Outstanding(id, name)⇐Worker(id, name),¬NegativeEval(id, year),

¬Warned(id, date)
v8 : Average(id, name)⇐Worker(id, name),¬Outstanding(id, name),

¬Problematic(id, name)

The process of defining semantic abstractions over databases can bring benefits to data architects only as long as
the view-definition language is expressive enough. To this end, the view-definition language adopted in this paper
goes far beyond plain conjunctive queries, and has the full power of non-recursive Datalog [6] with negation. In
fact:

(i) we allow for negated atoms in view definitions; these may either correspond to negated base tables, as happens
in view v7 (table Warned), or even to negated views, as in v4 (view PositiveEval), v6 (PositiveEval), v7 (NegativeEval)
and v8 (Outstanding and Problematic);

(ii) views can be defined as unions of queries; in our example, Problematic workers are the ones that either have
been penalized or have received no positive evaluations at all.

The semantics of this ontology is closer to the way the information is stored in the source schema than the one
provided by the physical target tables (notice how the ontology hides tables Penalized and Warned). Therefore,
the mapping designer will find it easier to define a mapping from the source schema to the target ontology. For
instance, s/he could realize that the classification of workers as Average, Outstanding and Problematic in the ontology
corresponds to a ranking of workers based on their grades in the source schema. In this way, employees with grades
consistently above 9 (out of 10) are outstanding, those always graded less than 4 are considered to be problematic,
and the rest are average.

As is common [8], we use tuple generating dependencies (tgds) and equality-generating dependencies (egds) [3]
to express the mapping. In our case, the translation of source tuples into the Average, Outstanding and Problematic
target concepts can be expressed by using the following tgds with comparison atoms:

m0 : ∀id, yr, gr, sinc,name,maxgr,mingr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9→ Average(id, name)
m1 : ∀id, yr, gr, sinc,name,maxgr,mingr :

S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
mingr ≥ 9→ Outstanding(id, name)

m2 : ∀id, yr, gr, sinc,name,maxgr,mingr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr ≤ 4→ Problematic(id, name)
m3 : ∀id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr ≥ 5→ PositiveEval(id, yr, sinc)
m4 : ∀id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr < 5→ NegativeEval(id, yr)

Intuitively, tgd m0 specifies that, for each pair of tuples in the source tables S-WorkerGrades and S-Stats that
have the same value for the id attribute and have a maxgrade attribute greater than 4 and a mingrade attribute
lower than 9, there should be a worker ranked as average in the ontology. Similarly for m1 and m2 for Outstanding
and Problematic, respectively.

Mappings m3 and m4 relate the workers’ evaluation data in S-WorkerGrades to the instances PositiveEval and
NegativeEval, respectively, using the grade to discriminate between the two subclasses of Evaluation.

Notice that mappings m0,m1 and m2 do not completely encode the semantics of the desired transformation.
In fact, an important part of the mapping process is to generate solutions, i.e. instances of the target that comply
with the integrity constraints imposed over the database. To do this, it is necessary to incorporate the specification
of these constraints into the mapping itself. This can be done easily using additional dependencies. The mapping

4

literature [22] usually treats target dependencies in a different way. In fact, it is customary to embed foreign-key
constraints into the source-to-target tgds that express the mapping. In contrast, egds require special care [15], and
therefore must be expressed as separate dependencies.

Mapping e0 below is an example of an egd used to express the key constraint on Worker: it states that whenever
two workers have the same id, their names must also be the same:

e0 : ∀id,name1,name2 : Worker(id, name1),Worker(id, name2)→ name1 = name2

We want to emphasize the benefits of designing the mappings wrt the richer target ontology rather than wrt to
the base tables. By taking advantage of the semantics of the ontology, the mapping designer does not need to care
about the physical structure of the data in the target schema. As an example, s/he does not need to explicitly state
in m0, m1, m2 that average, outstanding, and problematic workers are also workers, nor that a positive or negative
evaluation is also an evaluation in m3, m4. The class-subclass relationships are encoded within the ontology schema,
and we expect their semantics to carry on into the mappings.

However, this increased flexibility comes at a cost. For example, mappings m0 to m4 above are not directly
executable, since they refer to virtual entities — the constructs in the ontology schema — and not to the actual
tables in the target. We therefore need to devise a way to translate such a source-to-ontology mapping into a classical
source-to-target mapping, in order to execute the latter and move data from the source to the target database.

The main technical problem addressed in this paper can therefore be stated as follows: given a source-to-ontology
mapping, a target ontology schema, and the views defining this ontology schema in terms of the underlying database
tables, we want to obtain the corresponding executable source-to-target mapping.

3 Preliminary Notions

In this paper, we deal with mapping scenarios that involve two levels: the ontology and the database level. This
section first introduces the basic concepts of these two levels, and then elaborates on the language of dependencies
used to express mapping scenarios.

3.1 Databases and Ontologies

Databases We focus on the relational setting. A schema S is a set of relation symbols {R1, . . . , Rn}, each with an
associated relation schema R(A1, . . . , Am). Given schemas S,T with disjoint relations symbols, 〈S,T〉 denotes the
schema corresponding to the union of S and T. An instance of a schema is a set of tuples in the form R(v1, . . . , vm),
where each vi denotes either a constant, typically denoted by a, b, c, . . ., or a labeled null, denoted by N1, N2,
Constants and labeled nulls form two disjoint sets. Given instances I and J , a homomorphism h : I → J is a
mapping from dom(I) to dom(J) such that for every c ∈ const, h(c) = c, and for all tuples t = R(v1, . . . , vn) in I,
it is the case that h(t) = R(h(v1), . . . , h(vn)) belongs to J . Homomorphisms immediately extend to formulas, since
atoms in formulas can be seen as tuples whose values correspond to variables.

Ontologies In this paper, we focus on ontologies that deal with static aspects. In particular, we consider ontologies
that consist of a taxonomy of entity types (which may have attributes), a taxonomy of relationship types (defined
among entity types), and a set of integrity constraints (which affect the state of the domain). The integrity
constraints are expressed by means of dependencies (see Section 3.2).

Views To bridge the gap between the ontology schema and the underlying database, we assume that a set of
GAV views (Global-As-View) is given for each entity and relationship type, which defines this type in terms of the
underlying database. A view V is a derived relation defined over a schema S. The view definition for V over S is
a non-recursive rule of the form:

v : V (x)⇐ R1(x1), . . . , Rp(xp),¬Rp+1(xp+1), . . . ,¬Rp+g(xp+g)

with p ≥ 1 and g ≥ 0, where the variables in x are taken from x1, . . . , xp. Atoms in a view definition can be
either base or derived. An atom V (x) is a derived atom if V denotes a view; otherwise it is a base atom. A view
definition specifies how the extension of the view is computed from a given instance of the underlying schema, that
is, given a homomorphism h from the definition of V to an instance I, h(V (x)) belongs to the extension of V iff
h(R1(x)) ∧ . . . ∧ ¬h(Rp+g(xp+g)) is true on I.

5

3.2 Dependencies and Mapping Scenarios

Dependencies A tuple-generating dependency (tgd) over S is a formula of the form ∀x, z
(
φ(x, z) → ∃ yψ(x, y)

)
,

where φ(x, z) and ψ(x, y) are conjunctions of atoms. We allow two kinds of atoms in the premise: (a) relational
atoms over S; (b) comparison atoms of the form v op c, where op is a comparison operator (=, >,<,≥,≤), v is a
variable that also appears as part of a relational atom, and c is a constant. Only relational atoms are allowed in
the conclusion.

An equality generating dependency (egd) over S is a formula of the form ∀x(φ(x) → xi = xj) where φ(x) is a
conjunction of relational atoms over S and comparison atoms as defined above, and xi and xj occur in x. A denial
constraint is a special form of egd of the form ∀x

(
φ(x) → ⊥), in which the conclusion only contains the ⊥ atom,

which cannot be made true. Tgds and egds [3] form the language of embedded dependencies.

Mapping Scenarios A mapping scenario [8], M = {S,T,ΣST ,ΣT }, is a quadruple consisting of:

• a source schema S;

• a target schema T;

• a set of source-to-target (s-t) tgds ΣST , i.e. tgds such that the premise is a formula over S and the conclusion
a formula over T;

• a set ΣT of target tgds — tgds over T — and target egds — egds over T.

Given a source instance I, a solution for I under M is a target instance J such that I and J satisfy ΣST , and J
satisfies ΣT . A solution J for I andM is called a universal solution if, for all other solutions J ′ for I andM, there
is a homomorphism from J to J ′. The chase is a well-known algorithm for computing universal solutions [8]. We
denote by Sol(M, I) the set of solutions for M and I, and by USol(M, I) the set of universal solutions for M and
I.

4 The Ontology-Based Mapping Problem

The goal of this section is to introduce our mapping problem. Let us first assume that an ontology schema is only
available for the target database (case a). Then, we discuss how things can be extended to handle a source ontology
as well (case b).

4.1 Case a: Source-to-Ontology Mappings

The inputs to our source-to-ontology mapping problem are:

1. a source relational schema, S, and a target relational schema T;

2. a target ontology schema, V, defined by means of a set of view definitions, ΥTV , over T. View definitions
may involve negations over derived atoms, as discussed in Section 3;

3. a set of target constraints, ΣV , i.e. target egds to encode key constraints and functional dependencies over
the ontology schema;

4. finally, a source-to-ontology mapping, ΣSV , defined as a set of s-t tgds over S and V.

Based on these, our intention is to rewrite the dependencies in ΣSV ∪ΣV as a new set of source-to-target dependencies
ΣST ∪ΣT , from the source to the target database. The process is illustrated in Figure 2a, where solid lines refer to
inputs, and dashed lines to outputs produced by the rewriting.

4.2 Case b: Ontology-to-Ontology Mappings

The following sections are devoted to the development of the mapping rewriting algorithm. Before we turn to that,
let us discuss what happens when also an ontology schema over the source is given, as shown in 2b. In this case,
we assume that in addition to the target-ontology view-definitions, ΥV , view definitions for the source ontology
schema, ΥV ′ , are also given, with the respective egds. We also assume that the mapping, ΣV ′V , is designed between
the two ontologies.

6

view
definitions

V

TS

V
V’V

source

target
ontologyontology-to-ontology

mapping

targetsource-to-target
mapping

ST

T

view
definitions

source
ontology

V’

V

ΥV

T

S
V

SV

source
target

ontologysource-to-
ontology mapping

integrity constraints

targetsource-to-target
mapping

ST

T

target constraints

a) Source-to-Ontology Mapping b) Ontology-to-Ontology Mapping

integrity constraints

target constraints

view
definitions

YVYSV’

Figure 2: Ontology Mapping Scenarios.

It can be seen that this case can be reduced to the one above. We can see the problem as the composition of
two steps:

(i) applying the source view definitions in ΥV ′ to the source instance, I, to materialize the extent of the source
ontology, ΥV ′(I);

(b) consider this materialized instance as a new source database, and solve the source-to-ontology mapping problem
as in Figure 2a.

In light of this, in the following we concentrate on the scenario in Figure 2a only.

5 Disjunctive Embedded Dependencies

Mappings with views have been addressed in previous papers (e.g. [16, 26]). As is obvious, the complexity of the
problem depends quite a lot on the expressibility of the view-definition language allowed in our scenarios. Previous
works have made almost exclusive reference to views defined using the language of conjunctive queries. In this case,
the rewriting consists of an application of the standard view unfolding algorithm [25].

To give an example, consider mapping m3 (from now on, we omit universal quantifiers), and recall the definition
of views PositiveEval, and Evaluation:

m3 : S-WorkerGrades(id, yr, gr, sinc), gr ≥ 5→ PositiveEval(id, yr, sinc)
v2 : Evaluation(employeeId, year)⇐ Evaluations(employeeId, year)
v3 : PositiveEval(employeeId, year, sinc)⇐ Evaluation(employeeId, year),

PositiveEvals(employeeId, year, sinc)

Standard view unfolding replaces the view symbols of tgd conclusions by their definitions, while appropriately
renaming the variables. In our example, this yields the following s-t tgd:

m′
3 : S-WorkerGrades(id, yr, gr, sinc), gr ≥ 5→ Evaluations(id, yr),

PositiveEvals(id, year, sinc)

However, the main purpose of having a semantic description of the target database stands in its richer nature with
respect to the power of the pure selection-projection-join paradigm. In this paper we allow for a more expressive
language than conjunctive queries, i.e, non-recursive Datalog with negation.

It is known [4] that the language of embedded dependencies (tgds and egds) is closed wrt unfolding conjunctive
views, i.e. the result of unfolding a set of conjunctive view definitions within a set of tgds and egds is still a
set of tgds and egds. A natural question is if this is also true for our more expressive view-definition language.
Unfortunately, we can provide a negative answer to this question.

7

Theorem 1 There exists a source-to-ontology mapping scenario MSV = {S, V, ΣSV ,ΣV } with view definition
ΥV , and an instance I, such that MSV and I admit a universal solution JV ∈ USol(MSV , I), and there exists no
source-to-target scenario MST composed of embedded dependencies (tgds and egds) such that MST and I admit a
solution JT , and JV = Υ(JT).

The proof of the theorem is in A. Regardless of the technical details, it is quite easy to get the intuition that
stands behind this negative result: in essence, we are doomed to fail in some cases because of the limited expressive
power of our mapping language. In essence, we are trying to capture the semantics of a view-definition language
that allows for non-recursive negation, by means of a mapping language based on embedded dependencies, that
does not use negation.

This justifies two important choices wrt the algorithm:

(i) To start, we follow a best-effort approach. We design an algorithm that is sound, i.e. given MSV , it generates
a rewritten source-to-target scenarioMST such that, wheneverMST admits a universal solution JT , then also the
original source-to-ontology MSV admits universal solutions on I, and it is the case that ΥV (JT) is a solution for
MSV and I. In other terms, we give up completeness, and say nothing about the cases in which MST fails. This
notion will be made more precise in the following.

(ii) To better simulate the effects of negation in view definitions, we choose a very expressive mapping language,
i.e. we extend the language of embedded dependencies (tgds and egds), by introducing disjunctions in conclusions.
This gives us the more expressive mapping language of disjunctive embedded dependencies (deds), that we use as a
target language for our rewritings, formalized as follows.

Definition 1 (Ded) A disjunctive embedded dependency (ded) is a first-order formula of the form:

∀x, z
(
ϕ(x, z)→

n∨
l=1

(∃ ylψl(x, yl))
)

where ϕ(x, z) and each ψl(x, yl) are conjunctions of atoms. Atoms in each conjunct ψl(x, yl) may be either relational
atoms, or comparison atoms of the form (xi = xj), or the special unsatisfiable atom ⊥.

A ded is called a source-to-target ded if ϕ(x, z) is a conjunction of relational atoms over S, and each ψl(x, yl) is
a conjunction of relational atoms over T. It is called a target ded if ϕ(x, z) is a conjunction of relational atoms over
T, and each ψl(x, yl) is either a comparison atom, or a conjunction of relational atoms over T, or the unsatisfiable
atom.

In essence, the conclusion of a ded is the disjunction of various conjunctions, as in the following examples, where
Si are source symbols, and Tj are target symbols:

md1 : ∀x : S1(x)→ (∃y : T1(x, y)) ∨ T2(x, x)
md2 : ∀x, y : S2(x, y)→ T3(x, y) ∨ (∃z : T3(x, z),T4(z, y))
md3

: ∀x, y, z, y′, z′ : T1(x, y, z),T1(x, y′, z′)→ (y = y′) ∨ (z = z′)
md4

: ∀x, y, z, y′, z′ : T1(x, y, z)→ (y = z) ∨ T3(x, y)
md5

: ∀x, y, z, y′, z′ : T1(x, y, z),T1(x, y′, z′)→ ⊥

Here, md1 and md2 are source-to-target deds, while md3 , md4 and md5 are target deds. The semantics is easily
explained: md1

is satisfied by instances I, J of S, T if, whenever there exists in I a tuple of the form S1(c), where
c is a constant, then J either contains a tuple of the form T1(c, v) (where v is a constant or a labeled null), or it
contains a tuple of the form T2(c, c). Similarly for md2

.
Based on this, it is easy to see that ded md3

states that table T1 is such that, for any pair of tuples, whenever
the first attributes are equal, then either the second ones, or the third ones must be equal too. In this respect, this
is a generalization of an egd. It is also interesting to note that deds may freely mix equalities and relational atoms
in their conclusions, as happens with md4

.
Ded md5

states what is called a denial constraint : since its conclusion only contains the unsatisfiable atom, then
it will fail whenever the premise is satisfied, since there is no way to satisfy the constraint. It is a way to state failure
conditions for the mappings, i.e. configurations of the source and target instances for which there is no solution.

Clearly the definition of deds contains, for l = 1, that of the classical embedded dependencies. A mapping
scenario with deds is a quadruple Mded = {S,T,ΣST ,ΣT } where ΣST is a set of source-to-target deds and ΣT is a
set of target deds.

There are a few important differences between ordinary mapping scenarios with embedded dependencies, and
their counterpart with deds. Recall from Section 3 that the semantics of ordinary mapping scenarios is centered

8

around the notion of a universal solution. Given a scenario Memb and a source instance I, in most cases there are
countably many solutions, i.e. target instances that satisfy the dependencies. Consider for example:

m1 : ∀x : S1(x)→ ∃y : T1(x, y)

Given I = {S1(a)}, all of the following are solutions for m1 (in the following, a, b, c, . . . are constants and Ni denotes
a labeled null, i.e. a null value with an explicit label introduced to satisfy existential quantifiers):

J1 = {T1(a,N)} J3 = {T1(a, b),T1(a,N)}
J2 = {T1(a, b)} J4 = {T1(a, b),T2(b, c)}

A solution forMemb and I is called a universal solution if it has a homomorphism in every other solution forMemb

and I. Universal solutions are considered as “good” solutions, preferable to non universal ones. The intuition behind
the formal definition is that a universal solution does not introduce any unnecessary and unjustified information
within the target. In fact, any unjustified tuples would not be mappable via homomorphisms in every other solution.
In our example, only J1 is universal; every other solution in the example contains extra information that is not
strictly necessary to enforce the tgd, either in the form of constants in place of nulls, or extra tuples.

As soon as we introduce deds, the theoretical framework changes quite significantly. Deutsch and others have
shown [7] that the definition of a universal solution is no longer sufficient for ded-based scenarios, and that the more
appropriate notion of universal model set is needed.

Definition 2 (Universal Model Set) Given an instance I under a scenarioMded, a universal model set is a set
of target instances J = {J0, . . . , Jn} such that:

• every Ji ∈ J is a solution form Mded;

• for every other solution J ′, there exists a Ji ∈ J such that there is a homomorphism from Ji to J ′.

It is not difficult to understand why a set of different solutions is needed. Consider our ded md1
above. On

source instance I = {S1(a)}, it has two completely different solutions, namely J1 = {T1(a,N)}, J2 = {T2(a, a)}.
Neither is universal in the ordinary sense, since they cannot be mapped into one another; on the contrary, both
contribute to describe the “good” ways to satisfy md1

.
In the following, we introduce our rewriting algorithm with deds. Before turning to it, it is important to

emphasize another crucial difference wrt standard embedded dependency in terms of the complexity of generating
solutions. The chase [8] is a well known, polynomial-time procedure to generate universal solutions for standard
tgds and egds. It is possible, as we discuss in the following sections, to extend it to generate universal model sets
for deds, but at a price in terms of complexity. Universal model sets, in fact, are usually of exponential size wrt to
the size of the source instance, I.

To see this, consider a simple example composed of ded md1 above:

md1
: ∀x : S1(x)→ (∃y : T1(x, y)) ∨ T2(x, x)

Given I = {S1(a), S1(b), S1(c)}, the universal model set for the ded contains eight different solutions, each one
corresponding to one way to choose among the branches in the conclusions of md1 for a tuple in S1:

J = { {T1(a,N1),T1(b,N2),T1(c,N3)}, {T1(a,N1),T1(b,N2),T2(c, c)}
{T1(a,N1),T2(b, b),T1(c,N3)}, {T1(a,N1),T2(b, b),T2(c, c)}
{T2(a, a),T1(b,N2),T1(c,N3)}, {T2(a, a),T1(b,N2),T2(c, c)}
{T2(a, a),T2(b, b),T1(c,N3)}, {T2(a, a),T2(b, b),T2(c, c)} }

In the general case, for source instances of size n we may have universal model sets of O(kn), where k depends on
the number of disjunctions in ded conclusions. Therefore, one of the technical challenges posed by this problem is
to tame this exponential complexity.

6 Correctness

We need to introduce a few preliminary notions. A crucial requirement about our rewriting algorithm is that the
result of executing the source-to-target mapping is “the same” as the one that we would obtain if the source-
to-ontology mapping were to be executed. Intuitively, we mean that a solution produced by the source-to-target
mapping induces a solution for the source-to-ontology mapping when applying the view definitions.

9

To be more precise, consider the source-to-ontology mapping scenario: MSV = {S, V,ΣSV ,ΣV }. For each
source instance I, assume there exists a solution JV for I and MSV that complies with the view definitions in ΣV

(i.e. there exists an instance JT of schema T such that JV = ΥV (JT)). Figure 3a and 3b show one example of I
and JV .

a. Source instance I
S-WorkerGrades(1 , 2012 , 7 , 100) S-Stats(1 , John, 7 , 8)
S-WorkerGrades(1 , 2013 , 8 , 200)

b. Ontology instance JT ′

Average(1, John) Worker(1, John)
Evaluation(1, 2012) Evaluation(1, 2013)
PositiveEval(1, 2012, 100) PositiveEval(1, 2013, 200)
Year(2012) Year(2013)

c. Target instance JT

Employees(1 , John) Evaluations(1 , 2012) Evaluations(1 , 2013)
PositiveEvals(1 , 2012 , 100) PositiveEvals(1 , 2013 , 200) Warned(1 , N1)

Figure 3: Source, ontology, and target instances.

We compute our rewriting, and obtain a new source-to-target scenario: MST = {S,T, ΣST ,ΣT }, where we
assume that ΣST and ΣT are sets of deds. We may run MST on I to obtain solutions under the form of target
instances. To any target instance JT of this kind, we may apply the view definitions in ΥV in order to obtain an
instance of V, JV = ΥV (JT).

Our first intuition about the correctness of the algorithm is that the rewritten source-to-target scenario, MST ,
should generate solutions, i.e. target instances that are guaranteed to generate views that, in turn, are solutions
for the original source-to-ontology scenario, MSV . More precisely:

Definition 3 (Correct Rewriting) Given a source-to-ontology scenario MSV = {S, V,ΣSV ,ΣV } with view
definitions ΥV , we say that the source-to-target rewritten scenario MST = {S,T, ΣST ,ΣT } with deds is a correct
rewriting of MSV if, for each instance I of the source database, whenever a universal model set J = {J0, . . . , Jn}
for I and MST exists, then for each Ji ∈ J, ΥV (Ji) is also a solution for I and the original scenario MSV .

The meaning of this definition is illustrated in Figure 4.

view
definitions

ΥV

I

MSV : SV U V

source
instance

source-to-
ontology mapping

source-to-target
mapping

Sol(MSV, I)
solutions

MST : ST U T

J = {J1, J2, … , Jk}
universal model set

Figure 4: Correctness Diagram.

Figure 3c reports a correct target solution for I (N1 is a labeled null). Note that ΣV (JT) is exactly the ontology
instance JT ′ in Figure 3b. A different font is used for entity and relationship types in the ontology instance.

10

7 The Rewriting Algorithm

In the following, we always assume that the input mapping captures all of the semantics from the ontology level.
This means that all referential constraints implicit in the ontology (i.e. ontology tgds) have to be made explicit and
properly encoded into the mapping dependencies [9]. In particular, whenever a relational atom V (x̄) appears in the
conclusion of a mapping dependency m and there is an ontology tgd e : V (x̄)→ ψ(x̄), we replace V (x̄) by ψ(x̄) in
m. We restrict the textual integrity constraints to be key constraints and functional dependencies, and assume they
are expressed as logical dependencies (i.e. egds) over the views (an automatic OCL-to-logic translation is proposed
in [23]). Figure 5 shows the complete set of mapping dependencies ΣSV for our running example.

m0 : ∀id, yr, gr, sinc,name,maxgr,mingr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9→ Average(id, name),Worker(id, name)
m1 : ∀id, yr, gr, sinc,name,maxgr,mingr :

S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
mingr ≥ 9→ Outstanding(id, name),Worker(id, name)

m2 : ∀id, yr, gr, sinc,name,maxgr,mingr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr ≤ 4→ Problematic(id, name),Worker(id, name)
m3 : ∀id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr ≥ 5→ ∃name : PositiveEval(id, yr, sinc),
Evaluation(id, yr),Worker(id, name),Year(yr)

m4 : ∀id, yr, gr, sinc :
S-WorkerGrades(id, yr, gr, sinc), gr < 5→ ∃name : NegativeEval(id, yr),

Evaluation(id, yr),Worker(id, name),Year(yr)
Figure 5: Source-to-ontology mapping.

Our algorithm generates:

(a) a new set of source-to-target tgds, ΣST ;

(b) a set of target dependencies, ΣT . This latter set will contain:

(b1) a set of target deds that model egds over the ontology schema. However, it may also incorporate other
constraints that were not in the input. More precisely:

(b2) a set of target deds, i.e. deds defined over the symbols in the target only;

(b3) a set of denial constraints.

Denial constraints are crucial in our approach. Recall from Section 3 that a denial constraint is a dependency
of the form ∀x

(
ϕ(x) → ⊥). We use these to express the fact that some tuple configurations in the target are not

compatible with the view definitions, and therefore should cause a failure in the mapping process. In other words,
we are expressing part of the semantics of negations that comes with view definitions, in the form of failures of the
data exchange process. This prevents our algorithm from being complete, as stated in Theorem 1, but guarantees
that it is sound.

Given our input source-to-ontology mapping scenario,MSV = {S, V,ΣSV ,ΣV }, our approach is to progressively
rewrite dependencies in ΣSV and ΣV in order to remove view symbols, and replace them with target relations. To
do this, we apply a number of transformations that guarantee that the rewritten mapping yields equivalent results
wrt to input one, in the sense discussed in Section 4.

Algorithm 1 reports the pseudocode of our unfolding algorithm UnfoldDependencies. To define the algorithm,
we use the standard unfolding algorithm for (positive) conjunctive views, unfoldView [25], as a building block.

The main intuition behind the algorithm is easily stated: it works with a set of dependencies, called Σ, initialized
as ΣSV ∪ΣV , and progressively transforms this set until a fixpoint is reached. Note that it always terminates, since
we assume the view definitions are not recursive. The algorithm employs four main transformations in order to
remove derived atoms from the dependencies of Σ:

Transformation 1: First, whenever a positive derived atom L(x̄i) is found in a dependency d, the algorithm uses
the standard view unfolding algorithm as a building block in order to replace L(x̄i) by its view definitions. The
alternative definitions that may exist for a single view are handled in parallel. Therefore, the unfolding algorithm

11

Algorithm 1 UnfoldDependencies(ΣSV ,ΣV ,ΥV)

Σ := ΣSV ∪ ΣV

repeat
for all d ∈ Σ do

// Transformation 1.
if d contains a positive derived atom L then

for all view definition vi of L in ΥV do
Σ := Σ ∪ {unfoldView(L, d, vi)}

end for
Σ := Σ− {d}

end if
// Transformation 2.
if d is a ded containing a negative derived atom ¬L(x̄i, ȳi) in ψj(x̄, ȳj) then

let TGDk be a new relation symbol
d := φ(x̄)→ . . . ∨ (ψj(x̄, ȳj)− {¬L(x̄i, ȳi)}) ∪ {TGDk(x̄i, ȳi)} ∨ . . .
d1 := TGDk(x̄i, ȳi) ∧ L(x̄i, ȳi)→ ⊥
Σ := Σ ∪ {d1}

end if
// Transformation 3.
if d is a denial φ(x̄)→ ⊥ containing a negative atom ¬L(x̄i) in φ(x̄) then
d := φ(x̄)− {¬L(x̄i)} → L(x̄i)

end if
// Transformation 4.
if d is a ded containing a negative atom ¬L(x̄i) in φ(x̄) then
d := φ(x̄)− {¬L(x̄i)} → ψ1(x̄, ȳ1) ∨ . . . ∨ ψn(x̄, ȳn) ∨ L(x̄i)

end if
end for

until fixpoint
ΣST := the set of s-t deds in Σ
ΣT := the set of target deds and denials in Σ

12

replaces dependency d with a set of dependencies {d′1, d′2, . . .}, where each d′i is like d after replacing L(x̄i) by one
of its definitions. To see an example, consider tgds m0 and m2, and views Average and Problematic:

m0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr > 4,mingr < 9→ Average(id, name),Worker(id, name)

m2 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr ≤ 4→ Problematic(id, name),Worker(id, name)

v5 : Problematic(id, name)⇐Worker(id, name),Penalized(id, year)
v6 : Problematic(id, name)⇐Worker(id, name),¬PositiveEval(id, year, sinc)
v8 : Average(id, name)⇐Worker(id, name),¬Outstanding(id, name),

¬Problematic(id, name)

Standard unfolding with v8 changes m0 as follows:

m0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr > 4,mingr < 9→Worker(id, name),¬Outstanding(id, name),

¬Problematic(id, name)

Standard unfolding with v5 and v6, respectively, changes m2 as follows:

m2a : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr ≤ 4→ ∃year′ : Worker(id, name),Penalized(id, year′)

m2b : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr ≤ 4→ ∃year′, sinc′ : Worker(id, name),¬PositiveEval(id, year′, sinc′)

Note that a single unfolding step might not be enough to fully remove all positive derived atoms, so successive
applications of this first transformation may be required. In the example above, unfolding m0, m2a and m2b with
view Worker yields:

m0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr > 4,mingr < 9→ Employees(id,name),¬Outstanding(id, name),

¬Problematic(id, name)
m2a : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr ≤ 4→ ∃year′ : Employees(id,name),Penalized(id, year′)
m2b : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr ≤ 4→ ∃year′, sinc′ : Employees(id,name),¬PositiveEval(id, year′, sinc′)

Transformation 2: The second, and most important transformation, handles negated view atoms ¬L(x̄i, ȳi) in
tgd conclusions, e.g. Outstanding and Problematic in m0 and PositiveEval in m2b; we cannot directly unfold a negated
derived atom of the conclusion in order to have an equivalent tgd; we need a way to express more appropriately the
intended semantics, i.e, the fact that the tgd should be fired only if it is not possible to satisfy L(x̄i, ȳi); to express
this, we replace the negated atom from the conclusion (let us focus on m0 and Outstanding for now) with a new
relation symbol TGDi(x̄i, ȳi)

m1
0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9→ Employees(id,name),TGD0(id,name),
¬Problematic(id, name)

and introduce a new dependency d1, which states that d should fire only if it is not possible to satisfy L(x̄i, ȳi), by
means of a denial constraint:

m2
0 : TGD0(id,name),Outstanding(id, name)→ ⊥

Note that since a tgd may have more than one negated atom in the conclusion, the second transformation may
have to be applied multiple times. The full result of the transformation when successively applied to m0, m2a and
m2b is the following:

m1
0 : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9→ Employees(id,name),TGD0(id,name)
m2

0 : TGD0(id,name),Outstanding(id, name)→ ⊥
m3

0 : TGD0(id,name),Problematic(id, name)→ ⊥
m1

2a : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr ≤ 4→ ∃year′ : Employees(id,name),Penalized(id, year′)

m1
2b : S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr ≤ 4→ ∃year′, sinc′ : Employees(id,name),TGD1(id, year′, sinc′)
m2

2b : TGD1(id, year, sinc),PositiveEval(id, year, sinc)→ ⊥

13

Transformation 3: The third transformation consists of moving negated atoms of the form ¬L(x̄i) in the premise
of a denial constraint d to its conclusion, in order to remove the negation. To see an example of this, we advance
in the rewriting of m2

0; transformation 1 needs to be applied again in order to unfold the Outstanding atom:

m2
0 : TGD0(id,name),Worker(id, name),¬NegativeEval(id, year),

¬Warned(id, date)→ ⊥

However, the negative atoms may be moved easily to the conclusion, to yield a target dtgd:

m2
0 : TGD0(id,name),Worker(id, name)→ ∃year, date : NegativeEval(id, year)

∨Warned(id, date)

To complete the rewriting of m2
0, the unfolding algorithm would keep on applying transformations 1 and 2.

Transformation 4: The fourth and final transformation is a variation of transformation 3 that is applied to deds.
The only difference is that the atoms being moved from the premise are disjuncted to the current contents of the
conclusion instead of replacing it.

The complete rewriting of the running example is reported in B.

7.1 Correctness Result

We are now ready to state our main result about the correctness of the rewriting algorithm. Before we do that,
we should make more precise the schemas that are involved in the translation. We start with a target schema, T,
but during the rewriting we enrich it with new relation symbols, TGD0, TGD1, . . ., in order to be able to correctly
specify denials. We call the resulting schema T′.

Theorem 2 (Correctness) Given a source-to-ontology scenario MSV = {S, V, ΣSV ,ΣV } with non-recursive
view definitions ΥV , then:

(a) algorithm UnfoldDependencies always terminates;

(b) when it does not fail, it computes a correct source-to-target rewritten scenario with deds MST ′ = {S,T′,
ΣST ′ ,ΣT ′}, where T′ is obtained from T by enriching it with a finite set of new relation symbols TGD0, TGD1,

8 A Restricted Case

Theorem 2 shows that Algorithm 1 is correct. However, we also know that it may incur significant scalability issues,
that we discuss in Section 9. This leaves us with a crucial question: is it possible to find a view-definition language
that is at the same time more expressive than plain conjunctive queries, and computes correct rewritings in terms
of embedded dependencies, i.e. tgds, egds, and standard denial constraints only?

In this section, we show that such a view-definition language exists, and corresponds to non-recursive Datalog
with a limited negation. To be more precise, we limit negation in such a way that: (i) we disallow some pathological
patterns within view definitions with negations; (ii) keys and functional dependencies — i.e. egds — are defined
only for views whose definition does not depend on negated atoms.

Definition 4 (Negation-Safe View Language) Given a set of non-recursive view definitions, ΥV , we say that
these are negation-safe if the following occur:

1. there is no view Vi that negatively depends on a view Vj that in turn negatively depends on two negated atoms;

2. keys and functional dependencies are defined only for views whose definitions do not contain negated atoms.

In essence, item 1 above disallows very specific view-definition patterns, like the one below:

v1 : V1(x, y)⇐ T1(x, y),¬V2(x, y)
v2 : V2(x, y)⇐ T2(x, y),¬V3(x, y),¬V4(x, y)
...

Item 1 prohibits the definition of keys on views V1,V2 that contain negated views in their definitions. We can
show that the condition in Definition 4 is a sufficient condition that guarantees that Algorithm 1 returns a set of
embedded dependencies, and does not generate deds.

14

Theorem 3 (Restriction) Given a source-to-ontology scenario MSV = {S, V, ΣSV ,ΣV } with view definition
ΥV , assume ΥV conforms to the restrictions in Definition 4. Call Memb

ST ′ = {S,T′, ΣST ′ ,ΣT ′}, the source-to-target
rewritten scenario computed by algorithm UnfoldDependencies, where T′ is obtained from T by enriching it with a
finite set of new relation symbols TGD0, TGD1, Then Memb

ST ′ only contains embedded dependencies (i.e. tgds,
egds, and denial constraints).

Theorem 3 guarantees that, under the conditions of Definition 4, the rewritten source-to-target mapping is
a set of standard tgds, egds, and denial constraints. This has important implications on the scalability of the
data-exchange process, as we discuss in the next section.

9 The Chase Engine

Once we have computed our source-to-target mapping, we can concretely attempt the actual data exchange, and
move data from the source database to the target. The standard way to do this corresponds to running the well
known chase [8] procedure, i.e. an operational semantics for embedded dependencies that we discuss in the following.

9.1 The Chase

Given a vector of variables v, an assignment for v is a mapping a : v → const ∪ nulls that associates with each
universal variable a constant in const, and with each existential variable either a constant or a labeled null. Given
a formula φ(x) with free variables x, and an instance I , we say that I satisfies φ(a(x)) if I |= φ(a(x)), according to
the standard notion of logical entailment.

Of the many variants of the chase, we consider the naive chase [26]. We first introduce the notions of chase
steps for tgds, egds, and denial constraints, and then the notions of a chase sequence and of a chase result.

Chase Step for Tgds: Given instances I , J , a tgd φ(x) → ∃y(ψ(x, y)) is fired for all assignments a such that
I |= φ(a(x)); to fire the tgd, a is extended to y by injectively assigning to each yi ∈ y a fresh null, and then adding
the facts in ψ(a(x), a(y)) to J . To give an example, consider the following tgd:

m.Driver(name, plate)→ ∃Bdate,CarId : Person(name,BDate,CarId),
Car(CarId, plate)

During the chase, the source tuple Driver(Jim, abc123) will generate the two target tuples Person(Jim,N1, C1),
and Car(C1, abc123), where N1, C1 are fresh labeled nulls.

Chase Step for Egds: To chase an egd ∀x̄ : φ(x̄) → xi = xj over an instance J , for each assignment a such that
J |= φ(a(x)), if a(xi) 6= a(xj), the chase tries to equate the two values. We distinguish two cases: (i) both a(xi)
a(xj) are constants; in this case, the chase procedure fails, since it attempts to identify two different constants; (ii)
at least one of a(xi), a(xj) is a null, say a(xi); in this case chasing the egd generates a new instance J ′ obtained
from J by replacing all occurrences of a(xi) by a(xj). To give an example, consider egd e1:

e1.Person(name, b, c),Person(name, b’, c’)→ (b = b′) ∧ (c = c′)

Assume two tuples have been generated by chasing the tgds, Person (Jim, 1980, N4), Person (Jim,N5, N6), chasing
the egd has two different effects: (i) it replaces nulls by constants; in our example, it equates N5 to the constant
1980, based on the same value for the key attribute, Jim; (ii) on the other side, the chase might equate nulls; in
our example, it equates N4 to N6, to generate a single tuple Person(Jim, 1980, N4).

Chase Step for Denial Constraints: Denial constraints can only generate failures. More specifically, the chase
of a denial constraint ∀x̄ : φ(x̄) → ⊥ over an instance J fails whenever there exists an assignment a such that
J |= φ(a(x))

Given a mapping scenario M = (S,T,ΣST ,ΣT) and instance I, a chase sequence is a sequence of instances
J0 = I, J1, . . . , Jk . . ., such that each Ji is generated by a chase step with ΣST ∪ ΣT over Ji−1. The chase of
ΣST ∪ ΣT is an instance Jm such that no chase step is applicable. Notice that the chase may not terminate [8].
This may happen, for example, in the case of recursive target tgds. However, if it terminates, then Jm is a solution
for M and I, called a canonical solution.

Any canonical solution is a universal solution [8]. Since all solutions obtained by using the naive chase are equal
up to the renaming of nulls, we often speak of the canonical universal solution.

15

9.2 A Greedy Chase

For the purpose of this work, we adopt the chase engine developed within the Llunatic project [12, 13], that is
freely available.2 The chase engine was developed to guarantee high scalability, even for large sets of embedded
dependencies, and large source instances.

Therefore, we expect that the data-exchange step can be completed quite efficiently under the conditions of
Definition 4 and Theorem 3, i.e. when the rewriting algorithm returns a set of standard embedded dependencies.

Things change quite dramatically when the rewriting algorithm returns a set of deds. As we noticed in Section
5, deds have a perverse effect on the complexity of computing solutions. Given an instance I, a set of deds may
have a number of solutions over I that is exponential in the size of I.

Intuitively, the chase also changes. In fact, the chase of deds generates chase trees, not chase sequences. Consider
the following example, where we are given two deds:

md1
: ∀x : S1(x)→ (∃y : T1(x, y)) ∨ (T2(x, x))

md2 : ∀x : S2(x)→ (∃y : T3(x, y),T3(y, x)) ∨ (∃z : T4(x, z))

We start chasing these on source instance I = {S1(a), S2(b)}. A first assignment a(x) = ‘a’ such that I |= S1(a(x))
is found, and therefore we may fire md1

. However, two alternative target instances may be generated, namely
J1 = {T1(a,N1)} and J2 = {T2(a, a)}. These need to be considered in parallel, and therefore a chase tree rooted
at J0 = ∅, i.e. the empty target instance, with children J1, J2 is built. To proceed with the chase, we need to
inspect every leaf, and apply successive chase steps. This happens with assignment a(x) = ‘b’, according to which
the premise of the second ded is satisfied by I. It is easy to see that we have two different ways to satisfy the ded,
and therefore we end up with a chase tree with four leaves, each of which is a solution for this simple scenario.
These, together, form a universal model set for the deds, as follows:

J = { {T1(a,N1),T3(b,N2),T3(N2, b)}, {T2(a, a),T3(b,N2),T3(N2, b)},
{T1(a,N1),T4(b,N4)}, {T2(a, a),T4(b,N5)} }

Recall that there are cases in which the size of the chase tree is exponential in the size of the input instance I. As
a consequence, there is little hope that we are able to perform this parallel chase in a scalable way.

Recall, however, that our rewriting algorithm follows a best-effort approach. Along the same lines, we may
consider giving up the idea of generating the entire tree, and rather concentrate on some of its branches, following
a greedy strategy. To be more precise, we notice that the four leaves of the chase tree correspond each to the
canonical solution of one of the following four sets of (standard) tgds:

Σ11 : m11 : ∀x : S1(x)→ (∃y : T1(x, y))
m21 : ∀x : S2(x)→ (∃y : T3(x, y),T3(y, x))

Σ12 : m11 : ∀x : S1(x)→ (∃y : T1(x, y))
m22 : ∀x : S2(x)→ (∃z : T4(x, z))

Σ21 : m12 : ∀x : S1(x)→ T2(x, x)
m21 : ∀x : S2(x)→ (∃y : T3(x, y),T3(y, x))

Σ22 : m12 : ∀x : S1(x)→ T2(x, x)
m22 : ∀x : S2(x)→ (∃z : T4(x, z))

For example, Σ11 generates those solutions that were generated by the chase of md1
,md2

along those branches of
the chase tree in which the first conjunct of both deds was always chosen. Similarly for the others.

We call these the greedy scenarios associated with a mapping scenario with deds. Greedy scenarios do not
generate all of the canonical solutions associated with a mapping scenario with ded. In fact, they are not able
to capture the chase strategies in which the same ded is fired according to the first conjunct at some step, and
according to another conjunct at a following step. However, their canonical solutions can be computed in a scalable
way.

This justifies our chase strategy with deds:

(i) given a mapping scenarioMded with a set of deds Σded, we generate the associated greedy scenarios,Memb
0 ,Memb

1 , . . . ,Memb
n ;

each is obtained by picking a different combination of the conjuncts that are present in ded conclusions;

(ii) given an instance I, we start chasing the greedy scenarios, one by one, on I; as soon as we get a canonical
solution Ji for greedy scenario Memb

i and I, we return Ji and stop;

2http://db.unibas.it/projects/llunatic

16

(iii) if every greedy scenario fails on I, we fail and return no solution.

In the following section, we study the scalability of this approach.

10 Experiments

We implemented a prototype of our rewriting algorithm in Java. In order to execute the mappings, we used the
free and highly scalable chase engine Llunatic [13]. We performed our experiments on an Intel core i7 machine
with a 2.6 GHz processor, 8 GB of RAM, and running MacOSX. We used PostgreSQL 9.2.1 (x64 version) as the
DBMS.

Scenarios We used three different datasets from which we derived a number of different scenarios:

(a) Workers is obtained by applying the unfolding algorithm to the source-to-ontology mapping scenario described
in the B. This is a ded-based scenario with 3 source and 15 target tables. It contains 23 deds that generate 20
different greedy scenarios.

(b) Recall that scenarios with deds are chased by successively chasing their greedy versions. Since we are also
interested in studying how each of these greedy scenarios (without deds) impacts performance, in our tests we also
consider the first greedy scenario generated for Workers, and denote it by Workers-Greedy-1. This has 10
st-tgds, 4 target tgds, 3 target egds, and 7 denial constraints.

(c) Employees is a traditional schema mapping scenario based on the example proposed in [18]. It contains 2
source and 10 target tables, 9 st-tgds, 5 target tgds, 2 target egds, and 2 denial constraints.

(d) To study the impact of egds on the rewriting algorithm and on the chase, we also consider an egd-free version
of Employees, called Employees No-Egd.

(e) Finally, we want to test the scalability of the rewriting algorithm. For this purpose, we take a fully synthetic
dataset, called Synthetic. Based on this, we generated seven different scenarios, with a number of dependencies
ranging from 50 to 30K dependencies.

Effectiveness To measure the effectiveness of our approach, we compared the size of the source-to-ontology
mapping that users need to specify for the various scenarios, to the size of the actual source-to-target scenario
generated by our rewriting. As a measure of the size of a scenario, we took the number of nodes and edges of the
dependency graph [8], i.e. the graph in which each atom of a dependency is a node, and there is an edge from node n1
to node n2 whenever the corresponding atoms share a variable. Intuitively, the higher the complexity of this graph,
the more complicated it is to express the mapping. Figure 6a reports the results for 5 scenarios. In all scenarios
there was a considerable increase in the size of the dependency graph (up to 70%). This is a clear indication that
in many cases our approach is more effective with respect to manually developing the source-to-target mapping.

Scalability of the Rewriting Algorithm The second set of experiments tests the scalability of our unfolding
algorithm on mapping scenarios of a large size. Figure 6b summarizes results of these experiments on scenarios of
increasing size. All source-to-ontology tgds in these scenarios have two source relations in the premise and two views
in the conclusion. Each view definition has two positive target relational symbols and (if the view has negation)
two negated view symbols. For each mapping scenario, 20% of the tgds have no negated atoms, the next 20% have
1 level of negation (i.e. negated atoms that do not depend in turn on other negations), the next 20% have 2 levels
of negation, and so on, up to 4 levels of negations. The number of source relations in the mapping scenarios ranges
from 10k to 60k, the number of view definitions ranges from 238k to 1428k, and the number of target relations
ranges from 228k to 1368k. The reported times are the running times of the unfolding algorithm running in main
memory, and do not include disk read and write times. The rewriting algorithm scales nicely to large scenarios.

Scalability of the Chase Our final goal is to study the scalability of the chase engine, i.e. how expensive it is
to execute the source-to-target rewritten mapping. To do this, we first study the performance of the chase engine
on schema mapping scenarios with no deds. This is important, since previous research [16, 17, 15] have shown
that some of the existing chase engines hardly scale to large datasets. Figure 6c and 6d report the time needed to
compute a solution for four of our scenarios. As expected, scenarios with no egds required lower computing times.
However, in the case of egds the chase engine also scaled nicely to databases of 1 million tuples.

To test scenarios with deds, we developed the greedy-chase algorithm described in Section 9.2 on top of Llu-
natic. Recall that, given a mapping scenario with deds, we generate a set of greedy scenarios with embedded
dependencies only. The first experiment in this context was to test how many of the 20 greedy scenarios associated
to the Workers scenario do return a solution.

We first generated four different random source instances and in Figure 6e we report the results. The greedy
algorithm generated a solution in all of the four cases. Then, we studied the possible failure conditions, and manually

17

crafted an instance with a high probability of triggering the denial constraints. With this fifth source instance, all of
the 20 greedy scenarios failed. Notice that a solution still exists. However, this is not captured by the combinations
of atoms in greedy scenarios, and would require the generation of the entire chase tree to be found.

Finally in Figure 6f we report scalability results for the greedy chase algorithm. For each execution we also
report the number of greedy scenarios that the chase engine needed to run in order to reach a solution. As can be
seen, the chase scales nicely, even with databases of 1 million of tuples. Spikes in computing times are due to the
need to execute fewer scenarios before a solution is found. To the best of our knowledge, this is the first scalability
result for the chase of disjunctive embedded dependencies.

11 Related Work

The standard view unfolding algorithm [25] has been used extensively in data integration as a tool for query
answering. In such a setting, users pose queries over a set of heterogeneous sources through a single global schema,
which provides a uniform view of all the sources. Mappings between the sources and the global schema are used to
rewrite the users’ queries in terms of the sources. One way to define these mappings is the so-called global-as-view
approach (GAV), in which the global schema is defined as a view over the sources. With this kind of mapping,
answering a query posed on the global schema usually reduces to unfolding the view definitions [14] (unless integrity
constraints are present in the global schema, which makes answering harder [4]).

Another similar problem is that of accessing data through ontologies, in which users pose queries on an ontology
that is defined on top of a set of databases; the ontology plays the role of global schema, and the databases play
the role of data sources [21, 5]. The problem we address in this paper, however, is not about using view unfolding
to answer queries, but to copy data into a target. As we have discussed in Section 7, standard view unfolding
suffices only when the views that define the target conceptual schema in terms of the underlying database are plain
conjunctive queries. In the presence of negation, copying data into the target gets more complicated, as negated
atoms in mapping conclusions introduce new integrity constraints that standard view unfolding does not handle
(intuitively, negated atoms must be kept false during all the process of copying data into the target).

A problem that relates to our use of view unfolding in mappings is that of mapping composition [10, 20].
Composing a mapping between schemas A and B with a mapping between schemas B and C produces a new
mapping between A and C. In a sense, our application of view unfolding to the conclusion of a mapping can be
seen as a kind of mapping composition; one in which the mapping between the source and the conceptual schema is
composed with a second mapping that relates the conceptual schema with the underlying database (i.e. the views).
However, mapping composition techniques take into account the direction of the mapping, that is, one can compose
a mapping from A to B only with another mapping that goes from B to some C in order to get a mapping that
goes from A to C. In our case, we have a mapping from the source to the conceptual schema and another one from
the database to the conceptual schema, which cannot be directly composed.

The introduction of conceptual schemas into the mapping process has also been investigated in [1] with respect
to a different problem, i.e. that of generating mappings between databases. Since we assume that source-to-ontology
mappings are given as inputs, the techniques developed in [1] can be used as a preliminary step to simplify the
mapping specification phase.

Another context where mappings involving conceptual schemas have been studied is that of Semantic Web
ontologies; in particular, [24] proposes a technique that translates a set of correspondences between source and
target ontologies into a set of SPARQL queries that can then be run against the data source to produce the target’s
data. Comparing with our approach, we assume that the given mapping is not just a set of correspondences, but a
complete declarative mapping expressed as tgds, and we also take into account that the target’s conceptual schema
is a view of the underlying database.

Mappings between conceptual schemas have also been studied in [2], where the authors propose an approach for
finding “semantically similar” associations between two conceptual schemas. These similar associations are then
used to generate a mapping. This approach is complementary to ours in the sense that it could be used to generate
a semantic-based mapping, which would then be rewritten using the algorithm we present in this paper.

12 Conclusion

This paper studies the problem of mapping data in the presence of ontology-based descriptions of the source and
target data sources. It shows that employing an expressive view-definition language for the purpose of defining
ontologies makes the rewriting process much more complicated than in the case of positive conjunctive views. The

18

paper develops an algorithm to automatically perform the rewriting when views are defined by means of non-
recursive Datalog rules with negation. This, in turn, required the adoption of a very expressive mapping language
involving disjunctive embedded dependencies.

To handle the increased complexity of this mapping language, we investigated restrictions to the view-definition
language that may be handled using standard embedded dependencies (i.e. tgds and egds) for which efficient
execution strategies exist. We conducted experiments on large databases and mapping scenarios to show the trade-
off between expressibility of the view language and the efficiency of the data exchange step.

As future work, we plan to investigate the use of other execution strategies to perform the actual data-exchange
to move data from the source to the target database rather than the greedy chase considered here. We would
also like to analyze the applicability of our techniques to ontology based updating, seen as a parallel notion to the
classical problem of ontology based querying.

References

[1] Y. An, A. Borgida, R.J. Miller, and J. Mylopoulos. A Semantic Approach to Discovering Schema Mapping
Expressions. In ICDE, pages 206–215, 2007.

[2] Yuan An and Il-Yeol Song. Discovering semantically similar associations (sesa) for complex mappings between
conceptual models. In ER, pages 369–382, 2008.

[3] C. Beeri and M.Y. Vardi. A Proof Procedure for Data Dependencies. J.ACM, 31(4):718–741, 1984.

[4] A. Cal̀ı, D. Calvanese, G. De Giacomo, and M. Lenzerini. Data integration under integrity constraints. Inf.
Syst, 29(2):147–163, 2004.

[5] Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo Rosati. View-based query answering
in description logics: Semantics and complexity. J. Comput. Syst. Sci., 78(1):26–46, 2012.

[6] S. Ceri, G. Gottlob, and L. Tanca. What you Always Wanted to Know About Datalog (And Never Dared to
Ask). IEEE TKDE, 1(1):146–166, 1989.

[7] Alin Deutsch, Alan Nash, and Jeff Remmel. The chase revisited. In PODS ’08, pages 149–158, 2008.

[8] R. Fagin, P.G. Kolaitis, R.J. Miller, and L. Popa. Data Exchange: Semantics and Query Answering. TCS,
336(1):89–124, 2005.

[9] R. Fagin, P.G. Kolaitis, A. Nash, and L. Popa. Towards a Theory of Schema-Mapping Optimization. In PODS,
pages 33–42, 2008.

[10] Ronald Fagin, Phokion G. Kolaitis, Lucian Popa, and Wang Chiew Tan. Composing schema mappings: Second-
order dependencies to the rescue. ACM TODS, 30(4):994–1055, 2005.

[11] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. The Llunatic Data-Cleaning Framework. PVLDB, 6(9):625–
636, 2013.

[12] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. Mapping and Cleaning. In ICDE, pages 232–243, 2014.

[13] F. Geerts, G. Mecca, P. Papotti, and D. Santoro. That’s All Folks! LLUNATIC Goes Open Source. PVLDB,
7(13):1565–1568, 2014.

[14] M. Lenzerini. Data integration: a Theoretical Perspective. In PODS, 2002.

[15] Bruno Marnette, Giansalvatore Mecca, Paolo Papotti, Salvatore Raunich, and Donatello Santoro. ++Spicy:
an opensource tool for second-generation schema mapping and data exchange. PVLDB, 4(11):1438–1441, 2011.

[16] G. Mecca, P. Papotti, and S. Raunich. Core Schema Mappings: Scalable Core Computations in Data Exchange.
Inf. Syst, 37(7):677–711, 2012.

[17] G. Mecca, P. Papotti, S. Raunich, and M. Buoncristiano. Concise and Expressive Mappings with +Spicy.
PVLDB, 2(2):1582–1585, 2009.

[18] G. Mecca, G. Rull, D. Santoro, and E. Teniente. Semantic-Based Mappings. In ER, pages 255–269, 2013.

19

[19] R. J. Miller, L. M. Haas, and M. A. Hernandez. Schema Mapping as Query Discovery. In VLDB, pages 77–99,
2000.

[20] Alan Nash, Philip A. Bernstein, and Sergey Melnik. Composition of mappings given by embedded dependencies.
ACM Trans. Database Syst., 32(1):4, 2007.

[21] Antonella Poggi, Domenico Lembo, Diego Calvanese, Giuseppe De Giacomo, Maurizio Lenzerini, and Riccardo
Rosati. Linking data to ontologies. J. Data Semantics, 10:133–173, 2008.

[22] L. Popa, Y. Velegrakis, R. J. Miller, M. A. Hernandez, and R. Fagin. Translating Web Data. In VLDB, pages
598–609, 2002.

[23] Anna Queralt and Ernest Teniente. Reasoning on uml class diagrams with ocl constraints. In ER, pages
497–512, 2006.

[24] Carlos R. Rivero, Inma Hernández, David Ruiz, and Rafael Corchuelo. Generating sparql executable mappings
to integrate ontologies. In ER, pages 118–131, 2011.

[25] L. Sterling and E. Y. Shapiro. The Art of Prolog: Advanced Programming Techniques. MIT Press, 1994.

[26] B. ten Cate, L. Chiticariu, P. Kolaitis, and W. C. Tan. Laconic Schema Mappings: Computing Core Universal
Solutions by Means of SQL Queries. PVLDB, 2(1):1006–1017, 2009.

20

(a) Effectiveness	
 (b) Scalability of the rewriting algorithm	

(c) Scalability of the chase algorithm	
 (d) Scalability of the chase for EGDs	

(e) Results of the greedy scenarios	
 (f) Scalability of the chase for DEDs	

0.0	

0.5	

1.0	

1.5	

2.0	

2.5	

3.0	

3.5	

4.0	

5k	
 10k	
 15k	
 20k	
 25k	
 30k	

Synthe'c	

0	

15	

30	

45	

60	

75	

90	

200k	
 400k	
 600k	
 800k	
 1M	

Synthetic 50	

Employees (NO-EGD)	

0	

150	

300	

450	

600	

750	

900	

200k	
 400k	
 600k	
 800k	
 1M	

Workers-Greedy-1	

Employees	

0	

5	

10	

15	

20	

Inst. 1	
 Inst. 2	
 Inst. 3	
 Inst. 4	
 Inst. 5	

Failures	
 Solutions	

3	

6	

5	

2	

1	

1	

2	

3	

2	

3	

0	

500	

1000	

1500	

2000	

2500	

200k	
 400k	
 600k	
 800k	
 1M	

Workers	

0%	

20%	

40%	

60%	

80%	

100%	

Employees	
 Employees
NO-EGD	

Workers	
 Synthetic
50	

Synthetic
5k	

Edges	
 Nodes	

sec.	

sec.	
sec.	

sec.	

Figure 6: Results of Experiments.

21

A Proofs of the Theorems

Theorem 1 There exist a source-to-ontology mapping scenario MSV = {S, V, ΣSV ,ΣV } with view definition
ΥV , and an instance I, such that MSV and I admit a universal solution JV ∈ USol(MSV , I), and there exists no
source-to-target scenario MST composed of embedded dependencies (tgds and egds) such that MST and I admit a
solution JT , and JV = Υ(JT).

Proof: Consider the following scenario. The source database contains a single table, S(A), the target database a
single table, T(A), and we have two views, V1(A),V2(A), defined as follows:

ΥV = { V1(x)⇐ T(x)
V2(x)⇐ T(x),¬V1(x) }

The source-to-ontology mappings are the following (ΣV is empty):

ΣSV = { S(x)→ V1(x)
S(x)→ V2(x) }

On instance I = {S(a)}, ΣSV has a universal solution JV = {V1(a),V2(a)}.
We now prove that there exists no target instance JT such that ΥV (JT) = JV . The view definitions in ΥV are

such that, for any target instance J , ΥV (J) will not contain tuples V1(c),V2(c) for some constant c.
Since JT does not exist, there is no source-to-target rewritingMST that may generate it as a universal solution

for I, and the claim is proven. �

Theorem 2 Given a source-to-ontology scenario MSV = {S, V, ΣSV ,ΣV } with non-recursive view definitions
ΥV , then:

(a) algorithm UnfoldDependencies always terminates;

(b) when it does not fail, it computes a correct source-to-target rewritten scenario with deds MST ′ = {S,T′,
ΣST ′ ,ΣT ′}, where T′ is obtained from T by enriching it with a finite set of new relation symbols TGD0, TGD1,

Proof: Let us first prove termination, and then correctness.

Termination — The proof of part a. depends on the fact that the view definitions in ΥV are non-recursive by
hypothesis. As a consequence, the set of view symbols, V1,V2, . . . ,Vk can be stratified, i.e. it can be partitioned in
a sequence of subsets called strata such that any view that belongs to stratum i only depends directly or indirectly
on those that appear in strata 1, 2, . . . i− 1.

Algorithm UnfoldDependencies is composed of a main loop, and 4 different transformations (Transformation 1.
to 4.) that are applied to all dependencies in the current set. The loop stops when a fixpoint is reached. The effects
of the various transformations are as follows:

• Transformation 1. unfolds view definition within a dependency d, i.e. it replaces a positively occurring view
symbol by its definition; therefore, it removes a view symbol in stratum i and replaces it with target symbols
or views that belong to strata up to i− 1;

• Transformation 2. removes negatively derived atoms from dependency conclusions, and adds new dependen-
cies;

• Transformations 3. and 4. move negated atoms from a dependency premise to its conclusion.

Given a set of dependencies, Σ, we assign an integer score to it, based on the following function: the score for Σ
is the sum of the scores for its dependencies. For each dependency, it is the sum of the scores of its atoms that
contain view symbols. With a positive atom V(x̄, ȳ) it is associated an integer score ki, where i is the stratum of V.
With a negative atom ¬V(x̄, ȳ) it is associated an integer score ki + 1, where i is again the stratum of V. It remains
to define the value of k. Call n the maximum number of view symbols that appear in the body of a view definition
of ΥV . Then k = n+ 1.

It is easy to see that the four transformations monotonically decrease the score of Σ. In fact:

• Transformation 1. replaces positive view atoms from stratum i by less than k view atoms that belong at most
to stratum i− 1;

22

• Transformation 2. removes a negated atom of stratum i from d, and introduces a new dependency d1 that
(only) contains a positive atom of the same stratum;

• Transformations 3. and 4. replace a negated atom of stratum i within d by a positive atom of the same
stratum in d1.

Since each iteration of the cycle monotonically reduces the score of Σ, and this is initially finite, then the number
of iterations is bounded, and the algorithm terminates.

Correctness — To prove part b., i.e. that the rewritten scenario is correct, we need to show that the rewriting
algorithm is sound wrt the view definitions. This guarantees that whenever we obtain a solution to the rewritten
source-to-target mapping, we can apply the view definitions to obtain an instance of the ontology that is a solution
to the source-to-ontology mapping. To prove soundness, we need to prove that the four transformations are sound
with respect to the view definitions.

We first notice that Transformation 1. corresponds to the standard view unfolding procedure, which is known
to be sound.

Transformation 3. and 4. generate dependencies that are logically equivalent to the original ones. In Tran-
formation 3., we turn φ(x̄) ∧ ¬L(x̄) → ⊥ into φ(x̄) → L(x̄). Call a the formula φ(x̄), b atom L(x̄), then we have
that:

a ∧ ¬b→ ⊥ ≡ ¬(a ∧ ¬b) ≡ ¬a ∨ b ≡ a→ b

Similarly, in Tranformation 4., we turn φ(x̄)∧¬L(x̄)→
∨
Li(x̄, ȳ) into φ(x̄)→

∨
Li(x̄, ȳ)∨L(x̄). Call a the formula

φ(x̄), b atom L(x̄), and c the formula
∨
Li(x̄, ȳ). Then we have that:

a ∧ ¬b→ c ≡ ¬(a ∧ ¬b) ∨ c ≡ ¬a ∨ b ∨ c ≡ ¬a ∨ (b ∨ c) ≡ a→ b ∨ c

We only need to discuss Transformation 2.. This takes a ded of this form:

d : ∀x : φ(x̄)→ ∃ȳ :
∨
ψi(x̄, ȳ) ∨ (R0(x̄, ȳ) ∧ . . . ∧ ¬L(x̄, ȳ) ∧ . . . Rk(x̄, ȳ))

with a negated ¬L(x̄, x̄) atom in one of its conjuncts, and replaces it by two dependencies. The first one is obtained
from d by replacing ¬L(x̄, ȳ) by a new atom TGDi(x̄, ȳ), where TGDk is a new relation symbol:

d′ : ∀x : φ(x̄)→ ∃ȳ :
∨
ψi(x̄, ȳ) ∨ (R0(x̄, ȳ) ∧ . . . ∧ TGDi(x̄, ȳ) ∧ . . . Rk(x̄, ȳ))

The second one has the form:
d1 : ∀x, y : L(x̄, ȳ), TGDi(x̄, ȳ)→ ⊥

It is easy to see that any solution for d′, d1 is also a solution for d. In fact, any solution for d′, d1 must be such
that, for any homomorphisms h, facts h(TGDi(x̄, ȳ)), h(L(x̄, ȳ)) are not present at the same time. This implies
that either the premise of d is true according to h, and h(L(x̄, ȳ)) is false, or the opposite. This proves that also
Transformation 2. is sound.

Since all transformations are sound, algorithm UnfoldDependencies is sound and the claim is proven. �

Theorem 3 Given a source-to-ontology scenario MSV = {S, V, ΣSV ,ΣV } with view definition ΥV , assume ΥV

conforms to the restrictions in Definition 4. CallMemb
ST ′ = {S,T′, ΣST ′ ,ΣT ′}, the source-to-target rewritten scenario

computed by algorithm UnfoldDependencies, where T′ is obtained from T by enriching it with a finite set of new
relation symbols TGD0, TGD1, Then Memb

ST ′ only contains embedded dependencies (i.e. tgds, egds, and denial
constraints).

Proof: Assume ΥV conforms to Definition 4. We now show that algorithm UnfoldDependencies does not introduce
any disjunction during the rewriting.

To start, we notice that the original source-to-ontology mapping only contains ordinary embedded dependencies,
and therefore no disjunction nor negation is present. Notice also that the premise of source-to-target tgds only
contains source symbols, and these are not rewritten.

By looking at algorithm UnfoldDependencies, we notice that a disjunction can only be introduced when a
dependency d : φ(x̄)→ ∃ȳ : ψ(x̄, ȳ) containing a negated atom ¬L(x̄) in the premise, and a non-empty conclusion,
is rewritten to yield d′ : φ(x̄)→ (∃ȳ : ψ(x̄, ȳ)) ∨ L(x̄).

23

To see in which cases this may happen, we now want to investigate how the negated atom in the premise of d
has appeared in the first place. Recall that the original tgds and egds do not contain negations. By reasoning on
the transformations, we notice that this may happen only in two cases:

(i) the first case is the one in which d was originally a denial constraint of the form di : φ(x̄)→ ⊥ with two different
negated atoms, L(x̄), L′(x̄) in the premise; in this case, di is initially rewritten to move L′(x̄) to the conclusion
according to Tranformation 3. to yield d : φ′(x̄) → L′(x̄), and then also L(x̄) according to Transformation 4., to
yield d′ as discussed above;

(ii) the second case is the one in which d was originally an egd of the form dj : φ(x̄)→ x = x′, and φ(x̄) contained
a negated atom that is then moved to the conclusion by introducing a disjunction.

Consider first case (i). Recall that denial constraints are introduced exclusively by Tranformation 2. when one
of the dependencies has a negated atom in its conclusion. Therefore, for case (i) to happen, we need:

• a tgd with a view symbol V in its conclusion, that is unfolded according to Tranformation 1. to introduce a
negated view atom V′(x̄, ȳ);

• atom V′(x̄, ȳ) is removed by Tranformation 2., to generate a new tgd d1 in which it appears positively in the
premise;

• atom V′(x̄, ȳ) in the premise of d1 is again unfolded according to Tranformation 1., to introduce two different
negated atoms ¬L(x̄),¬L′(x̄) in the premise of d1;

• these are rewritten according to Transformation 3. first, and then Tranformation 4., as discussed above, to
generate a ded.

We notice, however, that this is not possible by Definition 4, since it would require a view (V), that negatively
depends on another (V’), and this in turn depends on two negated atoms.

Let us now consider case (ii) above. This requires that one of the original egds contains a view symbol that is
unfolded to introduce a negated atom in the premise. This is, however, also prevented by Definition 4.

This proves that under the restrictions of Definition 4, no disjunction is introduced by the algorithm, and
therefore the resulting set of dependencies is a set of standard embedded dependencies (tgds, egds, and denial
constraints). �

B Complete Rewriting for the Running Example

Source schema: S-WorkerGrades(WorkerId,Year,Grade,SalaryInc)
S-Stats(WorkerId,WorkerName,MinGrade,MaxGrade)

Target schema: Employees(Id,Name)
Evaluations(EmployeeId,Year)
PositiveEvals(EmployeeId,Year,SalaryInc)
Penalized(EmployeeId,Year)
Warned(EmployeeId,Date)

View definitions for the target ontology:

Worker(id, name)⇐ Employees(id,name)
Evaluation(workerId, year)⇐ Evaluations(workerId, year)
PositiveEval(workerId, year, salaryInc)⇐ Evaluation(workerId, year),

PositiveEvals(workerId, year, salaryInc)
NegativeEval(workerId, year)⇐ Evaluation(workerId, year),

¬PositiveEval(workerId, year, salaryInc)
Problematic(id, name)⇐Worker(id, name),Penalized(id, year)
Problematic(id, name)⇐Worker(id, name),¬PositiveEval(id, year, salaryInc)
Outstanding(id, name)⇐Worker(id, name),¬NegativeEval(id, year),¬Warned(id, date)
Average(id, name)⇐Worker(id, name),¬Outstanding(id, name),¬Problematic(id, name)
Year(number)⇐ Evaluations(employeeId,number)

24

Year

Number: integer

Worker

Id: integer

Name: string

Evaluation

PositiveEval NegativeEval

* *

{disjoint, complete}

Problematic Average Outstanding

{disjoint, complete}

SalaryInc: real

Figure 7: Target Ontology.

Source-to-ontology mapping dependencies:

m0 : ∀id, yr, gr, sinc,name,mingr,maxgr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr > 4,mingr < 9→ Average(id, name),Worker(id, name)
m1 : ∀id, yr, gr, sinc,name,mingr,maxgr :

S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
mingr ≥ 9→ Outstanding(id, name),Worker(id, name)

m2 : ∀id, yr, gr, sinc,name,mingr,maxgr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr ≤ 4→ Problematic(id, name),Worker(id, name)
m3 : ∀id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr ≥ 5→ ∃name : PositiveEval(id, yr, sinc),
Evaluation(id, yr),Worker(id, name),Year(yr)

m4 : ∀id, yr, gr, sinc :
S-WorkerGrades(id, yr, gr, sinc), gr < 5→ ∃name : NegativeEval(id, yr),

Evaluation(id, yr),Worker(id, name),Year(yr)

Ontology egds:

e0 : ∀id, name1, name2 : Worker(id, name1),Worker(id, name2)→ name1 = name2
e1 : ∀id1, id2, name : Outstanding(id1, name),Outstanding(id2, name)→ id1 = id2

25

Rewriting of the mapping dependencies into source-to-target:

m1
0 : ∀id, yr, gr, sinc,name,mingr,maxgr :

S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),
maxgr > 4,mingr < 9→ Employees(id,name), TGD1(id,name)

m2
0 : ∀id,name : TGD1(id,name),Employees(id,name)→

∃yr : (Evaluations(id, yr), TGD2(id, yr))
∨∃date : Warned(id, date)

m3
0 : ∀id, yr : TGD2(id, yr),Evaluations(id, yr),PositiveEvals(id, yr, sinc)→ ⊥

m4
0 : ∀id,name, yr : TGD1(id,name),Employees(id,name),Penalized(id, yr)→ ⊥

m5
0 : ∀id,name : TGD1(id,name),Employees(id,name)→

∃yr, sinc : Evaluations(id, yr),PositiveEvals(id, yr, sinc)
m1

1 : ∀id, yr, gr, sinc,name,mingr,maxgr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

mingr ≥ 9→ Employees(id,name), TGD3(id)
m2

1 : ∀id, yr : TGD3(id),Penalized(id, yr)→ ⊥
m3

1 : ∀id, yr : TGD3(id),Evaluations(id, yr)→ ∃sinc : PositiveEvals(id, yr, sinc)
m1

2 : ∀id, yr, gr, sinc,name,mingr,maxgr :
S-WorkerGrades(id, yr, gr, sinc),S-Stats(id,name,mingr,maxgr),

maxgr ≤ 4→ ∃yr′ : (Employees(id,name),Penalized(id, yr′))
∨(Employees(id,name), TGD4(id))

m2
2 : ∀id, yr : TGD4(id),Evaluations(id, yr),PositiveEvals(id, yr, sinc)→ ⊥

m1
3 : ∀id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr ≥ 5→ Evaluations(id, yr),
PositiveEvals(id, yr, sinc)

m1
4 : ∀id, yr, gr, sinc :

S-WorkerGrades(id, yr, gr, sinc), gr < 5→ Evaluations(id, yr), TGD2(id, yr)

Rewriting of the ontology egds into target dependencies:

e10 : ∀id,name1,name2 : Employees(id,name1),Worker(id,name2)→ name1 = name2
e11 : ∀id1, id2,name : Worker(id1,name),Worker(id2,name)→ id1 = id2

∨∃year : (Evaluations(id1, year),TGD5(id1, year))
∨∃date′ : Warned(id1, date

′)
∨∃year : (Evaluations(id2, year),TGD5(id2, year))
∨∃date′ : Warned(id2, date

′)
e21 : ∀id, year : TGD5(id, year),Evaluations(id, year),

PositiveEvals(id, year, sinc)→ ⊥

The rewriting of mapping dependencies and ontology egds has been simplified (for readability sake): (1) removed
redundant atoms, (2) reused relational symbol TGD2 in m1

4 (instead of creating a new TGDi that would be identical
to TGD2), and similarly, (3) used symbol TGD5 twice in e11, instead of using TGD5 and another fresh symbol TGD6.

26

