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Abstract

We address the challenging and open problem of bringing together two cru-

cial activities in data integration and data quality, i.e., transforming data using

schema mappings, and fixing conflicts and inconsistencies using data repairing.

This problem is made complex by several factors. First, schema mappings and

data repairing have traditionally been considered as separate activities, and

research has progressed in a largely independent way in the two fields. Second,

the elegant formalizations and the algorithms that have been proposed for both

tasks have had mixed fortune in scaling to large databases. In the thesis, we

introduce a very general notion of a mapping and cleaning scenario that in-

corporates a wide variety of features, like, for example, user interventions. We

develop a new semantics for these scenarios that represents a conservative ex-

tension of previous semantics for schema mappings and data repairing. Based

on the semantics, we introduce a chase-based algorithm to compute solutions.

Appropriate care is devoted to developing a scalable implementation of the

chase algorithm. To the best of our knowledge, this is the first general and

scalable proposal in this direction.
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Preface

Given the increase in the number and variety of data sources, the develop-
ment of sophisticated techniques to correlate and integrate data is a crucial
requirement in modern data-driven applications. At the same time, it is also
well known that data often contain inconsistencies, and that dirty data incurs
economic loss and erroneous decisions.

For these reasons, data transformation and data cleaning are two very im-
portant research and application problems. Data transformation, or data ex-
change, relies on declarative schema mappings to translate and integrate data
coming from one or more source schemas into a different target schema. Data
cleaning, or data repairing, uses declarative data-quality rules in order to detect
and remove errors and inconsistencies from the data.

It is widely recognized that whenever mappings among different sources are
in place, there is a strong need to clean and repair data. Despite this need,
database research has so far investigated schema mappings and data repairing
essentially in isolation.

In this thesis we present the Llunatic mapping and cleaning system, the
first comprehensive proposal to handle schema mappings and data repairing
in a uniform way. Llunatic is based on the intuition that transforming and
cleaning data can be seen as different facets of the same problem, unified by
their declarative nature. This declarative approach that allowed us to incorpo-
rate unique features into the system and apply it to wide variety of application
scenarios.

We show that our proposal generalizes many previous approaches. To
the best of our knowledge, this is the first proposal that achieves the level
of generality needed to handle three different kinds of problems: traditional
mapping problems, traditional data repairing problems, and the new and more
articulated category of data translation problems with conflict resolution. We
believe that these contributions make a significant advancement with respect

xi
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xii PREFACE

to the state-of-the-art, and may bring new maturity to both schema mappings
and data repairing.

This thesis generalizes and extends results that were previously published in
conference papers [GMPS13, GMPS14]. We make several advancements with
respect to the conference versions:

(a) in Section 7 we present a comprehensive treatment of the semantics that ex-
tends and generalizes those that were presented earlier in a more synthetic form
due to space limitations; given the richness and complexity of the framework,
we felt that this was a needed extension;

(b) we provide a detailed development of two variants of the chase algorithm
(Sections 8 and 9), which stands at the foundations of our mapping and re-
pairing algorithms;

(c) we develop full proofs of all theorems (in the Appendix);

(d) we develop an in-depth comparison of our semantics to previous semantics
(Sections 7.6 and 10), both for data exchange and for data repairing, in order
to substantiate our statement that this work extends and unifies many of the
previous approaches.

(e) we develop these algorithms in a working prototype with a graphical user
interface to allow user interaction. We present the system and experimental
results in Section 12. We plan to release the prototype under an open-source
license on one of the major open-source repositories.
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Chapter 1

Introduction

This thesis discusses two important problems in database research, namely to
integrate and transform data coming from different repositories using schema
mappings, and to study the quality of the resulting database using declarative
constraints. Schema mappings are executable transformations that specify how
an instance of a source repository should be translated into an instance of a
target repository. A rich body of research has investigated mappings, both
with the goal of developing practical algorithms [PVM+02], and nice and el-
egant theoretical foundations [FKMP05]. However, it is also well known that
data often contain inconsistencies, and that dirty data incurs economic loss
and erroneous decisions [FG12]. The data-cleaning (or data-repairing) process
consists in removing inconsistencies with respect to some set of constraints over
the target database.

We may say that both schema-mappings and data repairing are long-
standing research issues in the database community. However, so far they have
been essentially studied in isolation. On the contrary, we notice that whenever
several possibly dirty databases are put together by schema mappings, there
is a very high probability that inconsistencies arise due to conflicts and errors
in the source data, and therefore there is even more need for cleaning. In fact,
bringing together schema mappings and data repairing is considered an open
problem [BFM07]. Solving this problem is far for trivial. To illustrate why, we
introduce next our motivating example.

Example 1: [Motivating Example] Consider the data scenario shown in Figure
1.1. Here we have several different hospital-related data sources that must be
correlated to one another. The first repository has information about Patients

1
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2 CHAPTER 1. INTRODUCTION

Source #2 

Source #3 – Master Data 

MEDTREATMENTS 

SSN Name Phone Str City

tm 222 F. Lennon 122-1876 Sky Dr. SF 

HOSPITALS MD 

Source #1 
CUSTOMERS 

SSN Name Phone Conf Str City CC#
t4 111 M. White 408-3334 0.8 Red Ave. NY 112321 

t5 222 L. Lennon 122-1876 0.9 null SF 781658 

t6 222 L. Lennon 000-0000 0.0 Fry Dr. SF 784659 

TREATMENTS 
SSN Salary Insur. Treat. Date

t7 111 10K Abx Dental 07/01/2012 

t8 111 25K Abx Cholest. 08/12/2012 

t9 222 30K Med Eye surg. 06/10/2012 

PATIENTS 
SSN Name Phone Conf Str City

t1 123 W. Smith 324-0000 0.5 Pico Blvd. LA 

SURGERIES 
SSN Insur. Treat. Date

t2 123 Med Eye surg. 12/01/2013 

   SSN Name Phone Conf Str City Insur. Treat. Date
t3 124 W. Smith 324-3455 0.7 Pico Blvd. LA Med Lapar. 03/11/2013 

Initial Target 

Figure 1.1: A Hospital Mapping and Cleaning Scenario.

and Surgeries. The second one about MedTreatments.
Our goal is to move data from the source database into a possibly non-empty

target database. The target database organizes data in terms of Customers
with their addresses and credit-card numbers, and medical Treatments paid by
insurance plans. Notice that the source databases may contain inconsistencies,
and possibly come with an associated confidence for attributes. The confidence
is not mandatory in our approach, i.e., all source attributes may be considered
as equally confident, but when present it may help to solve some of the conflicts
in the target. In our example, we assume that a confidence of 0.5 has been
estimated for the Phone attribute of the first data source, and 0.7 for the second.
Additional confidence attributes may also be present in the target database.
We also report confidences for the Phone attribute in the target.

A data architect facing this scenario must deal with two different tasks. On
the one side, s/he has to develop the mappings to exchange data from the source
databases to the target. On the other side, s/he has to devise appropriate
techniques to repair inconsistencies that may arise during the process.

Using Mapping to Exchange Data

Let us first discuss task 1, i.e., data exchange via mappings. The desired
transformation can be expressed as a set of tuple generating dependencies (tgds)
[FKMP05].

(1) S-t Tgds : We have two s-t tgds, as follows (as usual, universal quantifiers
in front of the tgds are omitted):
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m1.Pat(ssn, name, phn, conf, str, city), Surg(ssn, ins, treat, date)
→ ∃Y1, Y2 : Cust(ssn, name, phn, conf, str, city, Y1),Treat(ssn, Y2, ins, treat, date)

m2.MedTreat(ssn, name, phn, conf, str, city, ins, treat, date)
→ ∃Y3, Y4 : Cust(ssn, name, phn, conf, str, city, Y3),Treat(ssn, Y4, ins, treat, date)

Each tgd states a constraint over the target database. For example, tgd
m2 says that for each tuple in the MedTreatments source table, there must
be corresponding tuples in the Customers and Treatments target tables; Yi
are existential variables representing values that are not present in the source
database but must be present in the target. The appropriate confidence value
is copied into the conf attribute of the target tuples.

Target Constraints

Notice that besides deciding how to populate the target in order to satisfy the
s-t tgds above, we must also deal with the problem of generating target in-
stances that comply with target constraints. Traditionally [AHV95], database
architects have specified constraints of two forms: inclusion constraints and
functional dependencies. These are expressible in data exchange under the
form of target tgds and target equality generating dependencies (egds).

(2) Target Tgds: Target tgds are tgds in which only target symbols appear, and
express inclusion constraints that are typically associated with foreign keys. In
our example, we have that the SSN attribute in the Treatments table references
the SSN of a customer in Customers. This is expressed using the following
target tgd:

m3.Treat(ssn, sal, ins, treat, date)→ ∃Y5, Y6, Y7, Y8, Y9, Y10 :
Cust(ssn, Y5, Y6, Y7, Y8, Y9, Y10)

(3) Functional Dependencies (FDs): The target database also comes with a
number of FDs: d1 = (SSN,Name → Phone), d2 = (SSN,Name → CC#) and
d3 = (Name, Str,City→ SSN) on table Customers. Here, d1 requires that a cus-
tomer’s social-security number (SSN) and name uniquely determine his or her
phone number (Phone). Similarly for d2 and d3. As we mentioned, functional
dependencies can be expressed as egds as follows:

e1.Cust(ssn, n, p, s, c, cc),Cust(ssn, n, p’, s’, c’, cc’)→ p = p’

e2.Cust(ssn, n, p, s, c, cc),Cust(ssn, n, p’, s’, c’, cc’)→ cc = cc’

e3.Cust(ssn, n, p, s, c, cc),Cust(ssn’, n, p’, s, c, cc’)→ ssn = ssn’
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4 CHAPTER 1. INTRODUCTION

Since we don’t assume that the target database is empty, in Figure 1.1
we have reported an instance of the target. There, the pair of tuples {t5, t6}
violates both d1 and d2; the database is thus dirty.

It is worth noting that, aside from inclusion constraints and functional
dependences, the recent literature has shown that more advanced forms of
constraints are often necessary in data cleaning applications [FG12]. To model
these, new forms of data-quality constraints have been introduced. Here we
mention conditional functional dependencies [FGJK08], conditional inclusion
dependencies [FG12], and editing rules [FLM+10], among others. We designed
our example in such a way to incorporate a flavor of these as well. In particular,
we assume two conditional functional dependencies (CFDs):

(4) CFDs: A CFD d4 = (Insur[Abx] → Treat[Dental]) on table Treatments, ex-
pressing that insurance company ‘Abx’ only offers dental treatments (‘Dental’).
Tuple t8 violates d4, adding more dirtiness to the target database.

(5) Inter-table CFDs: In addition, we also have an inter-table CFD d5 between
Treatments and Customers, stating that the insurance company ‘Abx’ only ac-
cepts customers who reside in San Francisco (‘SF’). Tuple pairs {t4, t7} and
tuples {t4, t8} violate this constraint.

Finally, as it is common in corporate information systems [Los09], an addi-
tional master-data table is available in the source database; this table contains
highly-curated records whose values have high accuracy and are assumed to be
clean. We also assume an additional constraint to clean target tuples based on
values in the master-data table:

(6) Editing Rules: our master-data based editing rule, d6, states that when-
ever a tuple t in Customers agrees on the SSN and Phone attributes with some
master-data tuple tm in the master-data table Hospitals, then the tuple t
must take its Name, Str, City attribute values from tm, i.e., t[Name, Str, City] =
tm[Name, Str, City]. Tuple t5 does not adhere to this rule as it has a missing
street value (NULL) instead of ‘Sky Dr.’ as provided by the master-data tuple
tm.

In summary, our example is such that:
(a) it requires to map different source databases into a given target database;
(b) it assumes that the target database may be non-empty, and that both the
sources and the target instance may contain errors and inconsistencies;
(c) it comes with a variety of data-quality constraints over the target; these
include the common inclusion and functional dependencies expressible by target
tgds and target egds, but also richer constraints, like conditional dependencies
and master-data-based editing rules.
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Given the source instances and the target, our goal is to generate an instance
of the target database that preserves the mapping and that it is clean wrt
target constraints. We start with a number of observations with respect to this
problem.

First, we notice that data exchange [FKMP05] provides an elegant seman-
tics for the execution of the source-to-target mappings (item (1) in our exam-
ple). It also incorporates techniques to generate target instances that comply
with target tgds and target egds (items (2) and (3)). Data exchange concen-
trates on soft violations. We call a soft violation for an egd any violation of
the egd that can be removed by replacing one or more null values, either by a
constant or by another null value. Consider for example the Customers table in
the target database. Assume we have a constraint that states that ssn is a key
for the table; we notice that tuples t5, t6 violate the constraint. The conflict
between street names is a soft violation, since t5.Str = null, t6.Str = ‘Fry Dr.’.
On the contrary, as we discussed above, we assume that the data may also con-
tain hard violations, i.e., violations that may only be repaired by changing one
constant into another constant. In our example this happens with credit card
numbers, since t5.CC# = 781658, t6.CC# = 771859. In case of hard violations,
a data exchange scenario has no solution.

In fact, solving hard violations is he primary goal of data repairing algo-
rithms. Early works about database repairing [ABC99] modeled repairs for
data quality constraints as sets of tuple-insertions and tuple-deletions. Since
tuple-deletions may result in unnecessary loss of information, the recent liter-
ature has concentrated on cell changes [FG12], each cell being an attribute of
a tuple. In this respect, the recent literature has provided us with a good ar-
senal of approaches and techniques to repair conflicts. In this thesis, we want
to capitalize on this wealth of knowledge about the subject, and investigate
the following foundational problem: what should a database administrator do
when facing a complex data-repairing problem that requires to bring together
different data-quality constraints, as discussed above? A second, striking ob-
servation about our example is that, despite many studies on the subject, there
is currently no way to handle scenarios like the one in our example. The main
problem is the lack of a uniform formalism to handle different data repairing
constraints. In fact, although repairing strategies exist for each of the individ-
ual classes of constraints discussed at items (2), (3), (4), (5) and (6), there is
currently no formal semantics for their combination.

The third, important observation, is that simply pipelining existing tech-
niques does not work in general. Indeed, why can’t we simply rely on a multi-
step process in which: (i) we first use the standard semantics of data exchange
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[FKMP05] in order to generate an initial instance of the target that is a pre-
solution for the tgds at items (1), (2), as shown in Figure 1.2. Then, (ii) we
use a combination of known data repairing algorithms for the constraints at
(3), (4), (5), (6), like those in [BFFR05], [BFM07] or [BIG10], to repair the
target?

CUSTOMERS 
SSN Name Phone Str City CC#

t4 111 M. White 408-3334 Red Ave. SF 112321 

t5 222 F. Lennon 122-1876 Sky Dr. SF L0 

t6 222 F. Lennon 122-1876 Sky Dr. SF L0 

t10 L1 W. Smith 324-3456 Pico Blvd. LA null 

t11 L1 W. Smith 324-3456 Pico Blvd. LA null 
TREATMENTS 

SSN Salary Insur. Treat. Date
t7 111 25K Abx Dental 07/01/2012 

t8 111 25K Abx Dental 08/12/2012 

t9 222 30K Med Eye surg. 06/10/2012 

t12 L1 null Med Eye surg. 12/01/2013 

t13 L1 null Med Lapar. 03/11/2013 

CUSTOMERS 
SSN Name Phone Str City CC#

t4 111 M. White 408-3334 Red Ave. NY 112321 

t5 L2 L. Lennon 122-1876 null SF 781658 

t6 222 L. Lennon 000-0000 Fry Dr. SF 784659 

t10 123 L5 324-0000 Pico Blvd. LA null 

t11 124 W. Smith 324-3456 Pico Blvd. LA null 
TREATMENTS 

SSN Salary Insur. Treat. Date
t7 111 25K L3 Dental 07/01/2012 

t8 111 25K L4 Cholest. 08/12/2012 

t9 222 30K Med Eye surg. 06/10/2012 

t12 123 null Med Eye surg. 12/01/2013 

t13 124 null Med Lapar. 03/11/2013 

Solution #1 Solution #2 

CUSTOMERS 
SSN Name Phone Conf Str City CC#

t4 111 M. White 408-3334 0.8 Red Ave. NY 112321 

t5 222 L. Lennon 122-1876 0.9 null SF 781658 

t6 222 L. Lennon 000-0000 0.0 Fry Dr. SF 784659 

t10 123 W. Smith 324-0000 0.5 Pico Blvd. LA null 

t11 124 W. Smith 324-3456 0.7 Pico Blvd. LA null 

TREATMENTS 
SSN Salary Insur. Treat. Date

t7 111 10K Abx Dental 07/01/2012 

t8 111 25K Abx Cholest. 08/12/2012 

t9 222 30K Med Eye surg. 06/10/2012 

t12 123 null Med Eye surg. 12/01/2013 

t13 124 null Med Lapar. 03/11/2013 

Pre-Solution for the TGDs 

Figure 1.2: Pre-solution and solutions.

Unfortunately, this is not feasible. In fact, in the thesis we formally prove
that dependencies, i.e., mappings and data quality constraints, interact in such
a way that simply pipelining the two semantics often does not return solutions
(details are in Section 7). To have a simple intuition of this, consider the pre-
solution in Figure 1.2. It satisfies the tgds at items (1) and (2) in our example.
However, it contains inconsistencies wrt the key constraints described at item
(3) (highlighted in bold) due to conflicts in the initial instances. However,
repairing the pre-solution may cause a violation of the tgds and hence the
mappings need to be applied again. For example, in order to solve the conflict
between tuples {t10, t11}, that violate d3, one may want to equate t10[SSN]
and t11[SSN], for instance changing t11[SSN] to ‘123’. The resulting repaired
instance will satisfy the constaint d3, but it will violate the tgd m3.

Notice also that data quality constraints interact with each other in non-
trivial ways. To see this, consider dependencies d1 and d5. Suppose we use
d1 to repair tuples t5, t6 such that both have phone-number ‘122-1876’; then,
since t5 and t6 agree with the master-data tuple tm, we can use d5 to fix names,
streets and cities, to obtain: (222, F. Lennon, 122-1876, Sky Dr., SF, 781658),
for t5, and (222, F. Lennon, 122-1876, Sky Dr., SF, 784659), for t6. However,
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if, on the contrary, we apply d5 first, only t5 can be repaired as before; then,
since t5 and t6 do not share the same name anymore, d1 has no violations. We
thus get a different result, of inferior quality.

Based on these observations, in this thesis we tackle the complex problem
of defining a single, uniform framework for mapping and cleaning, and present
Llunatic, the first comprehensive proposal to handle schema mappings
and data repairing in a uniform way. Llunatic is based on the intuition
that transforming and cleaning data can be seen as different facets of the
same problem, unified by their declarative nature. It is the first system that
supports three kinds of scenarios:

Type 1: schema-mapping scenarios in the spirit of [FKMP05], with one or
more source databases, and a target database that is related to the sources by
a set of schema mappings; integrity constraints can be imposed over the target
under the form of inclusion and functional dependencies; given a set of source
instances, the goal is to generate a valid instance of the target according to the
mappings.

Type 2: data repairing scenarios in the spirit of [FG12], with one tar-
get database, possibly multiple authoritative source tables with highly curated
data, used to model the so called master-data [Los09], and a set of data-quality
rules over the target; these may include functional dependencies, conditional
functional dependencies, editing rules, but also inclusion dependencies and con-
ditional inclusion dependencies; here, we are given an instance of the target that
is dirty with respect to the constraints, and want to generate a clean instance.

Type 3: mapping and cleaning scenarios, that combine and generalize
the two above; here we have multiple sources that may include master-data,
one target, a set of mappings that relate the target to the sources, and a rich
set of data quality constraints over the target. Our reference example in Figure
1.1 falls in this category.

The latter kind of scenarios illustrate the main novelty of our approach: on
the one side they model the problem of exchanging and repairing data as a
single process, and on the other side they conservatively extend and unify type
1 and 2 scenarios, which are the focus of previous approaches.

We want to emphasize, however, that our approach brings some interesting
extensions also to type 1 and type 2 scenarios. For example, type 1 scenarios
generalize traditional data exchange scenarios since we allow for non empty
target databases. Type 2 scenarios generalize what it is typically found in data
repairing papers, since the vast majority of papers about data repairing have
only considered single tables with functional dependencies and their variants,
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and disregarded foreign keys (i.e., inclusion constraints), or the integration
among different classes of constraints, like conditional constraints and editing
rules.

Our ultimate goal is to devise a single algorithm to generate solutions for
all kinds of scenarios listed above. In addition, we want to develop an imple-
mentation that is as scalable as possible. Computing solutions in a scalable
way is a paramount problem, both in data exchange and data repairing. In
fact, computing repairs requires to explore a space of solutions of exponential
size wrt the size of the database.
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Chapter 2

Contributions

In the thesis, we make several important and nontrivial contributions.

2.1 A Uniform Framework for Mapping and Cleaning

We develop a general framework for mapping and cleaning that can be used
to generate solutions to complex data transformation scenarios, and to repair
conflicts and inconsistencies among the sources with respect to a very wide
class of target constraints.

The framework is a conservative extension of the well-known framework of
data exchange, and incorporates most of the features considered in existing
algorithms for data repairing; at the same time, it considerably extends its
reach in both activities; in fact, on the one side it brings a powerful addition to
schema mappings, by allowing for sophisticated conflict resolution strategies,
authoritative sources, and non-empty target databases; on the other side, it
extends data repairing to a larger classes of constraints, especially inclusion
dependencies and conditional inclusion dependencies [FG12] that are very im-
portant in the management of referential integrity constraints, and for which
very little work exists.

In order to do this, we introduce a language to specify constraints based
on equality generating dependencies (egds) [BV84] that generalizes many of
the data quality constraints used in the literature. Besides standardizing the
language to express dependencies, this syntax has two merits. On the one
side, it emphasizes the relationship between the data repairing process and the
logical language of embedded dependencies, thus suggesting a path to define

9
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a chase-like procedure to repair the database. On the other side, it brings
an important extension to the class of constraints that can be handled by the
formalism, since it allows one to express inter-table constraints. In the presence
of such constraints, previous works had no other alternative than joining the
two original tables, and defining standard dependencies over the join result.
This, however, is a strong drawback, since it forces to work with large, non-
normalized tables, for which data-repairing times are even worse.

2.2 Semantics, Preference Rules and Partial Orders

At the core of the framework stands a novel semantics for the mapping and
cleaning scenarios. The definition of such a semantics is far from trivial. The
crux of our approach consists in formalizing the process of executing mappings
and repairing constraints as the process of upgrading the quality of an instance.

In data repairing, whenever a violation to a constraint is detected under the
form of conflicting values, a general problem consists in picking-up a “preferred”
value to repair the database. Consider FD d1 in our example. To repair the
target database one may want to equate t5[Phone] and t6[Phone]. The FD does
not tell, however, to which phone number these attribute values should be
repaired: ‘122-1876’ or ‘000-0000’, or even a completely different value. As it
happens in this kind of problems, we assume that the Phone attribute values
in the Customers table come with a confidence (Conf.) value (‘122-1876’ has
confidence 0.9 and the dummy value ‘000-0000’ has confidence 0). Relying on
confidence is a typical strategy to select preferred values: if we assume that
one prefers values with higher confidence, we can repair t6[Phone] by changing
it to ‘122-1876’.

There are, however, other possibilities. For example, when working with
the Treatments table, we may use dates of treatments to infer the currency of
other attributes. If the target database is required to store the most recent
value for the salary by FD d7 = (SSN→ Salary), this may lead us to repair the
obsolete salary value ‘10K’ in t7 with the more recent (and preferred) value
‘25K’ in t8.

Notice that we don’t always have a clear policy to choose preferred values.
For example, when repairing t5[CC#] and t6[CC#] for FD d2, there is no infor-
mation available to resolve the conflict. This means that the best we can do is
to “mark” the conflict, and then, perhaps, ask for user-interaction in order to
solve it.
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Previous works have proposed several algorithms that incorporate strate-
gies to select preferred values, like the ones discussed above. However, these
algorithms tend to hard-code the way in which preferred values are used for
the purpose of repairing the database. As a consequence, there is no way to
incorporate the different strategies in a principled way. As a consequence, aside
from the generic notion of a repair as an updated database that satisfies the
constraints, it is not possible to say what represents a “good” repair in the
general case.

Our solution to this problem builds on two main concepts. First, we show
that seeing repairs simply as cell updates is not sufficient. On the contrary, we
introduce the new notion of a cell group, that is essentially a “partial repair with
lineage”. Then, we formalize the process of improving the quality of a database
by introducing a very general notion of a partial order over cell groups; the
partial order nicely abstracts all of the most typical strategies to decide when a
value should be preferred to another, including master data, certainty, accuracy,
freshness and currency. In the thesis, we show how users can easily plug-in
their preference strategies for a given scenario into the semantics. Finally, by
introducing a new category of values, called lluns, we are able to complete the
lattice of instances induced by the partial order, and to provide a natural hook
for incorporating user feedbacks into the process.

2.3 The Chase and Scalability

We introduce the notion of a minimal solution and develop algorithms to
compute minimal solutions, based on a parallel-chase procedure. This has the
advantage of building on a popular and principled algorithmic approach, but it
has a number of subtleties. In fact, our chase procedure is more sophisticated
than the standard one, in various respects. To give an example, we realize that
in the presence of inconsistencies user inputs may be crucial. To this aim, we
introduce a nice abstraction of user inputs and show how it can be seamlessly
integrated into the chase. This may pave the way to the development of new
tools for data repairing, in the spirit of [CT06].

In addition, scalability is a primary concern of this work. Given the com-
plexity of our chase procedure, addressing this concern is quite challenging.
Therefore, we introduce a number of new optimizations to alleviate computing
times, making the chase a viable option to exchange and repair large databases.
A key ingredient of our solution is the development of an ad-hoc representation
systems for chase trees, called delta relations.
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12 CHAPTER 2. CONTRIBUTIONS

In addition, we introduce a notion of a cost manager as a plug-in for the
chase algorithm that selects which repairs should be kept and which ones should
be discarded. The cost manager abstracts and generalizes all of the popu-
lar solution-selection strategies, including similarity-based cost, set-minimality,
set-cardinality minimality, certain regions, sampling, among others. In Exam-
ple 1, our semantics generates minimal solutions like the two solutions in Figure
1.2, where Li values represent lluns (confidence values have been omitted); no-
tice that other minimal solutions exist for this example. Cost managers allow
users to differentiate between these two solutions, which have completely dif-
ferent costs in terms of chase computation, and ultimately to fine-tune the
tradeoff between quality and scalability of the repair process.

In our experiments, we show that the chase engine scales to databases with
millions of tuples, a considerable advancement in scalability wrt previous main-
memory implementations. In fact, as a major result, we show in our experi-
ments that the chase engine is orders of magnitude faster than existing engines
for data exchanges, and show superior scalability wrt previous algorithms for
data repairing [BFFR05, BIG10] that were designed to run in main memory.

We compare our semantics to many previous approaches (Sections 7.6 and
10). To the best of our knowledge, this is the first proposal that achieves
the level of generality needed to handle three different kinds of problems:
traditional mapping problems, traditional data repairing problems, and the
new and more articulated category of data translation problems with conflict
resolution, as exemplified in Example 1. We believe that these contributions
make a significant advancement with respect to the state-of-the-art, and may
bring new maturity to both schema mappings and data repairing.
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Chapter 3

Extended Dependencies

3.1 Background

Database instances A schema R is a finite set {R1, . . . , Rk} of relation
symbols, with each Ri having a fixed arity ni ≥ 0. Let consts be a countably
infinite domain of constant values, typically denoted by lowercase letters a, b,
c, . . . . Let nulls be a countably infinite set of labeled nulls, distinct from
consts. Constants are typically denoted by lowercase letters a, b, c, . . . , and
nulls by N1,N2, N3,. . . . An instance I = (I1, . . . , Ik) of R consists of finite
relations Ii ⊂ (consts∪nulls)ni , for i ∈ [1, k]. Let R be a relation symbol in
R with attributes A1, . . . , An and I an instance of R. A tuple is an element of
I and we denote by t.Ai the value of tuple t in attribute Ai. Furthermore, we
always assume the presence of unique tuple identifiers for tuples in an instance.
That is, ttid denotes the tuple with id “tid ” in I. A cell is a location in I
specified by a tuple id/attribute pair ttid.Ai. Given two disjoint schemas, S
and T , if I is an instance of S and J is an instance of T , then the pair 〈I , J 〉
is an instance of 〈S, T 〉. The value of a cell ttid.Ai in I is the value of attribute
Ai in tuple ttid.

Dependencies A relational atom over R is a formula of the form R(x) with
R ∈ R and x is a tuple of (not necessarily distinct) variables. A tuple-generating
dependency (tgd) overR is a formula of the form ∀x

(
φ(x)→ ∃ yψ(x, y)

)
, where

φ(x) and ψ(x, y) are conjunctions of relational atoms overR. Given two disjoint
schemas, S and T , a tgd over 〈S, T 〉 is called a source-to-target tgd (s-t tgd)
if φ(x) only contains atoms over S, and ψ(x, y) only contains atoms over T .

13
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14 CHAPTER 3. EXTENDED DEPENDENCIES

Furthermore, a target tdg is a tgd in which both φ(x) and ψ(x, y) only contain
atoms over T . An equality generating dependency (egd) over T is a formula
of the form ∀x(φ(x) → xi = xj) where φ(x) is a conjunction of relational
atoms over T and xi and xj occur in x. In the sequel, we omit the universal
quantification in front of tgds and egds and simply write φ(x, z) → ∃ yψ(x, y)
for tgds, and φ(x)→ xi = xj for egds.

Schema Mapping A mapping scenario [FKMP05] (aka a data-exchange
scenario) is a quadruple M = (S, T ,Σst,Σt), where S is a source schema,
T is a target schema, Σst is a set of source-to-target tgds, and Σt is a set of
target dependencies that may contain target tgds and egds.

An instance 〈I , J 〉 of 〈S, T 〉 satisfies a tgd or egd following the standard
semantics of first-order logic. Given a set Σ of tgds and egds, 〈I , J 〉 satisfies Σ,
denoted by 〈I , J 〉 |= Σ, if it satisfies all dependencies in Σ. A target instance J
of T is a solution ofM and a source instance I of S, denoted by J ∈ Sol(M, I ),
iff 〈I , J 〉 satisfies Σ (following the standard semantics of first-order logic), i.e.,
〈I , J 〉 |= Σst, and J |= Σt.

Given two instances J , J ′ over a schema T , a homomorphism h : J → J ′ is
a mapping from dom(J ) to dom(J ′) such that for each c ∈ consts(J ), h(c) = c,
and for each tuple t ∈ J it is the case that h(t) ∈ J ′. A solution J is regarded
to be more general than a solution J ′, if there exists a homomorphism from
J to J ′. A universal solution for M and I is a solution that is more general
than any other solution [FKMP05]. The set of universal solutions for M and
I is denoted by USol(M, I ). The core universal solution for M and I is the
smallest, in terms of number of tuples, universal solution and is unique up to
isomorphism [FKP05].

The chase is a procedure to generate universal solutions. We assume the
standard definitions of a chase step, chase sequence, and chase result for map-
pings, as given in [FKMP05].

3.2 Cleaning EGDs and Extended TGDs

A first, important step in the definition of our framework for mapping and
cleaning consists in the definition of a unified language for mappings and data
quality constraints. Traditional embedded dependencies are extensively studied
and used when integrating and exchanging data. They fall short, however,
when it comes to the constraint formalisms used in the context of data quality.
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For example, the constraints d4, d5 and d6 described in Example 1 cannot be
directly expressed as egds.

To alleviate this problem, we make use of extended tgds and cleaning egds.
Our main extensions to the syntax of ordinary embedded dependencies, is that
we freely mix source and target symbols in the premise. In addition, in a
cleaning egd, we also consider equation atoms of the form t1 = t2, where t1, t2
are either constants in consts or variables.

Egds for our running example are expressed as follows:

e1.Cust(ssn, n, p, s, c, cc),Cust(ssn, n, p’, s’, c’, cc’)→ p = p’

e2.Cust(ssn, n, p, s, c, cc),Cust(ssn, n, p’, s’, c’, cc’)→ cc = cc’

e3.Cust(ssn, n, p, s, c, cc),Cust(ssn’, n, p’, s, c, cc’)→ ssn = ssn’

e4.Treat(ssn, s, ins, tr, d), ins = ‘Abx’→ tr = ‘Dental’
e5.Cust(ssn, n, p, s, c, cc),MD(ssn, n’, p, s’, c’)→ n = n’

e6.Cust(ssn, n, p, s, c, cc),MD(ssn, n’, p, s’, c’)→ s = s′

e7.Cust(ssn, n, p, s, c, cc),MD(ssn, n’, p, s’, c’)→ c = c′

e8.Cust(ssn, n, p, s, c, cc),Treat(ssn, sal, ins, tr, d), ins = ‘Abx’→ c = ‘SF’
e9.Treat(ssn, s, ins, tr, d),Treat(ssn, s’, ins’, tr’, d’)→ s = s’

Before we formalize this notion, an immediate observation is that constants
and equation atoms in the premise can be avoided altogether, by encoding
them in additional tables in the source database. Consider dependency e4

in our example in which two constants appear: ‘Abx’ in attribute Insur and
‘Dental’ in attribute Treat. We extend S with an additional binary source
table, denoted by Cste4 with attributes Insur and Treat, corresponding to the
“constant” attributes in e4. Furthermore, we instantiate Cste4 with the single
tuple te4 : (Abx,Dental). Given this, e4 can be expressed as an egd without
constants. Similarly for e8, as follows:

e′4.Treat(ssn, s, ins, tr, d),Cste4(ins, tr’)→ tr = tr′

e′8.Cust(ssn, n, p, s, c, cc),Treat(ssn, sal, ins, tr, d),Cste8(ins, c’)→ c = c’

In general, S can be extended with such constants tables, one for each CFD,
and their source tables contain tuples for the constants used to define the CFD.
In other words, these tables coincide with the pattern tableaux associated with
the CFDs [FGJK08]. Of course, one needs to provide a proper semantics of
egds such that whenever such constant tables are present, egds have the same
semantics as CFDs. We give such semantics later in the thesis.

For the moment we formalize the notion of a cleaning egd as follows:

Definition 1 [Cleaning EGD] A cleaning egd over schemas S, T is a formula
of the form ∀x(φ(x)→ t1 = t2) where φ(x) is a conjunction of relational atoms
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over 〈S, T 〉, and t1 = t2 is of the form xi = c or xi = xj , for some variables
xi, xj in x and constant c ∈ consts. Furthermore, at most one variable in the
conclusion of an egd can appear in the premise as part of a relation atom over
S.

The latter condition is to ensure that the egd specifies a constraint on the
target database rather than on the fixed source database. With an abuse of
notation, in the following we shall often refer to these cleaning egds simply as
egds.

Notice that additional tables that hold constant values are considered as
part of the source database. Since they encode a constraint on the data that
is explicitly specified by the dependencies, we want to treat them as sources of
high reliability, similarly to what happens with master-data.

A similar treatment is also done for tgds. To properly encode data quality
constraints, like, for example, conditional inclusion dependencies [BFM07], we
need to be able to specify equation atoms in the dependency premise. Suppose,
for example, that our target database also contains a DentalProsthesis table,
in which we store all prosthesis that have been installed as part of dental
treatments. We might want to specify a conditional inclusion dependency of
this form:

m4.Treat(ssn, sal, ins, tr, date), tr = ‘Dental′ → DenProst(ssn, . . .)

This is rewritten to get rid of the constant as follows:

m′4.Treat(ssn, sal, ins, tr, date),Cstm4(tr)→ DenProst(ssn, . . .)

As usual, Cstm4 is a source table with a single tuple with a single attribute of
value ‘Dental’. In light of this, we define the notion of an extended tgd:

Definition 2 [Extended TGD] An extended tgd over schemas S, T is a for-
mula of the form ∀x(φ(x) → ∃ yψ(x, y)

)
where φ(x) is a conjunction of rela-

tional atoms over 〈S, T 〉, and ψ(x, y) is a conjunction of relational atoms over
T .

Notice that extended tgds generalize both traditional s-t tgds and target
tgds. Further extensions of dependencies with, e.g., built-in predicates, match-
ing functions and negated atoms, are needed to encode matching dependencies
and constraints for numerical attributes [FFP10, CIP13]. We do not consider
them in this thesis for simplicity of exposition.

In the following sections, we formalize the notion of a mapping and cleaning
scenario with extended tgds and cleaning egds, and then provide a semantics
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for it. Before we turn to this, we need to introduce an important result, that
motivates the need for a new semantics.

One may wonder why a new semantics is needed after all. Indeed, why can’t
we simply rely on the standard semantics for tgds [FKMP05], and on known
data repairing algorithms, like those in [GMPS13], [BFFR05] or [BIG10]? As
an example, let Σt be a set of tgds and Σe be a set of egds, and I and J instances
of a source and target schema, S and T , respectively. Assume that we simply
pipeline the chase of tgds, chasedeΣt

, [FKMP05], and a repair algorithm for egds,
repairΣe

, treated as functional dependencies, as reported in Figure 3.1.

pipelineΣt∪Σe
(〈I , J 〉)

〈I, Jtmp〉 := 〈I , J 〉;
while (true)

〈I, Jtmp〉 := chasedeΣt
(〈I, Jtmp〉);

〈I, Jtmp〉 := repairΣe
(〈I, Jtmp〉);

if (〈I, Jtmp〉 |= Σt ∪ Σe) return Sol := Jtmp;
end while

Figure 3.1: The pipeline algorithm.

Unfortunately, interactions between tgds and egds often prevent that
pipelining the two semantics returns a solution, as illustrated by the follow-
ing proposition.

Proposition 1 There exist sets Σt of non-recursive tgds, Σe of egds, and in-
stances 〈I , J 〉 such that procedure pipelineΣt∪Σe

(〈I , J 〉) does not return solu-
tions.

In addition, as we will show in our experiments, even in those cases in
which pipelineΣt∪Σe

(〈I , J 〉) does return a solution, its quality is usually rather
poor. Even worse, since we are combining two rather different algorithms
without a formal semantics, it is not even clear what a “good” solution is.
These arguments justify the need for a definition of a notion of a mapping and
cleaning scenario, and of a new semantics for it.
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Chapter 4

Mapping and Cleaning Scenarios

Our uniform framework for schema mapping and data repairing is centered
around the concept of a mapping & cleaning scenario. A mapping and cleaning
scenario consists essentially of a source schema S, a target schema T , and a
set of constraints Σ, that may be extended tgds and cleaning egds. There
are however three other main ingredients in a mapping and cleaning scenario,
namely lluns, user inputs, and partial order specifications. These are introduced
next.

4.1 LLUNs

We assume that the target database may contain values of different kinds. To
start, besides constants from consts, we also allow target instances to take
values from a third set of values, called lluns. Recall from Example 1 that t5
and t6 form a violation for the dependency e2 (customers with equal ssns and
names should have equal credit-card numbers), and that the target database
could be repaired by equating t5.CC# = t6.CC#. However, no information
is available as to which value should be taken in the repair. In such case, we
repair the target database (for e2) by changing t5.CC# and t6.CC# into the
llun L0, that is to indicate that we need to introduce a new value that may
be either 781658 or 784659, or some other preferred value. In this case, such
value is currently unknown and we mark it so that it might be resolved later
on into a constant, e.g., by asking for user input.

We denote by lluns = {L1, L2, . . .} an infinite set of symbols, called lluns,
distinct from consts and nulls. Lluns can be regarded as the opposite of

19
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20 CHAPTER 4. MAPPING AND CLEANING SCENARIOS

nulls since lluns carry “more information” than constants. In our approach,
they play two important roles: (i) they allow us to complete the lattice induced
by our partial orders, as it will be discussed in the next section; (ii) they provide
a clean way to record inconsistencies in the data that require the intervention
of users.

4.2 User Inputs

We abstract user inputs by seeing the user as an oracle. More formally:

Definition 3 [User-Input Function] We call a user-input function a partial
function User that takes as input any set of cells, C, i.e., tuple-attribute pairs
with a value, and returns one of the following values, denoted by User(C):

• v, to denote that the value of the cells in C should be changed to value
v ∈ consts;

• ⊥, to denote that changing the cells in C would represent an incorrect
modification to the database, and therefore the change should not be be
performed.

Notice that User is by definition a partial function, and therefore it may be
undefined for some sets of cells.

4.3 The Partial Order Specification

A key idea in our approach is that the strategy to select preferred values and
repair conflicts should be factored-out of the actual repairing algorithm. Our
solution to do that is to introduce a notion of a partial order over updates to
the database. The partial order plays a central role in our semantics, since
it allows us to identify when a repair is an actual “upgrade” of the original
database.

In the definition of a mapping and cleaning scenario, we assume that a
(possibly empty) specification of this partial order, Π, is provided by the user.
We want users to be able to specify different partial orders for different scenarios
in a simple manner. To do this, users may specify preference rules by providing
an assignment Π of so-called ordering attributes to T .

We say that an attribute A of T has ordered values if its domain DA is
a partially ordered set. To specify which values should be preferred during
the repair of the database, users may associate with each attribute Ai of T a
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partially ordered set PAi
= 〈D,≤〉. The poset PAi

associated with attribute
Ai may be the empty poset, or its domain DAi

if Ai has ordered values, or the
domain of a different attribute DAj

that has ordered values. In the latter case,
we call Aj the ordering attribute for Ai. Intuitively, PAi specifies the order
of preference for values in the cells of Ai. A partial-order specification is an
assignment of ordering attributes to attributes in T , denoted by Π.

In our example, the Date attribute in the Treatments table, and the con-
fidence column, Conf, in the Customers table have ordered values. For these
attributes, we choose the corresponding domain as the associated poset (i.e., we
opt to prefer more recent dates and higher confidences). Other attributes, like
the Phone attribute in the Customers table, have unordered values; we choose
Conf as the ordering attribute for Phone (a phone number will be preferred if its
corresponding confidence value is higher). Notice that there may be attributes,
like Salary in Treatments, that have ordered values but the natural ordering of
values does not coincide with the desired notion of a preferred value. Here,
we may rather prefer most recent salaries and hence use Date as the ordering
attribute for Salary. Finally, attributes like ssn will have an empty associated
poset, i.e., all constant values are equally preferred.

Below is the assignment Π of ordering attributes in our example (attributes
not listed have an empty poset):

Π =


PCustomers.Conf = DCustomers.Conf

PTreatments.Date = DTreatments.Date

PCustomers.Phone = DCustomers.Conf

PTreatments.Salary = DTreatments.Date

PCustomers.cc# = ∅


Notice that a similar treatment can also be done for the source schema

S. More specifically, we assume two source schemas, S and Sa. This second
schema, Sa, is a set of authoritative tables that provide clean and reliable in-
formation as input for the repairing process. This include master-data tables
and constant tables introduced to remove constants from dependencies (as dis-
cussed in Section 3). Authoritative tables are considered all as equally reliable,
since they contain “certified” tuples. On the contrary, a partial order spec-
ification can be specified on the attributes of S in order to state preference
relations on source values as well.

The role of the partial order specification is to induce a partial order for
the cells of the initial instance, 〈I , J 〉. This will be detailed in Section 7.1.

With this in mind, we introduce the notion of a mapping and cleaning
scenario as follows.
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Definition 4 [Mapping&Cleaning Scenario] Given a domain D =
consts ∪ nulls ∪ lluns, a mapping & cleaning scenario over D is a tuple
MC = {S,Sa, T ,Σt,Σe,Π,User}, where:

1. S ∪ Sa is the source schema; T is the target schema; Sa is the set of
authoritative source tables;

2. Σt is a set of extended tgds, as defined in Section 3.1;

3. Σe is a set of cleaning egds, as defined in Section 3.1;

4. Π is a partial-order specification for attributes of S and T ;

5. User is a partial function as defined in Definition 3.

If the set of tgds, Σt, is empty, MC is called a cleaning scenario.
It is readily verified that Example 1 can be regarded as an instance of

a mapping & cleaning scenario. Given a mapping & cleaning scenario and
instance 〈I , J 〉 of 〈S,Sa, T 〉, the goal is to compute a set of repair instructions
of the target that upgrades the initial dirty target instance J and satisfies the
dependencies in Σt and Σe. We assume that: (i) the source instance, I, only
contains constants from consts, and is immutable, i.e., its cells cannot be
changed; (ii) the target instance, J , may contain constants from consts and
nulls from nulls. Later on during the repair process, lluns can be used to
update the target. Notice that Π and User can be empty, i.e., users may decide
to provide no additional information but the set of dependencies to satisfy.
However, whenever they are not empty, we expect the semantics to use this
input to “improve” the quality of the repairs. We next describe the necessary
tools to achieve this goal.
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Chapter 5

Cell Groups and Updates

Given instance 〈I , J 〉 of 〈S,Sa, T 〉, we represent the set of changes made to
update the target database J in terms of cell groups. Cell groups are crucial
in defining our semantics.

As the name suggests, they are essentially groups of cells, i.e., locations
in a database specified by tuple/attribute pairs ttid.Ai. For example, t5.CC#

and t6.CC# are two cells in the Customers table. As we have previously seen,
to repair inconsistencies, different cells are often updated together, i.e., they
are either changed all at the same time or not changed at all. For example,
t5.CC# and t6.CC# are both modified to the same llun value in solution #1 in
Figure 1.2. Cell groups capture this by specifying a set of target cells, called
occurrences of the group, and a value to update them.

However, cell groups are more sophisticated than that since they also model
relationships among target and source values. In some cases the target cells
to repair receive their value from tuples in the source database; consider
Example 1 and dependency e6. When repairing t5, cell t5.Street gets the value
‘Sky Dr.’ from cell tm.Street in the master-data table. Since these source cells
contain highly reliable information, it is important to keep track of the rela-
tionships among changes to target cells and values in the source. To do this,
a cell group carries provenance information about the repair in terms of asso-
ciated cells of the source database. We call these source cells the justifications
for the cell group.

In addition, cell groups model different ways to modify the target database.
In our approach, this can be done in two ways: (i) by changing cell values to
enforce egds; (ii) by adding new tuples as an effect of enforcing tgds. We there-
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fore need to record into cell groups also new cells added to the target database
by tgds. These will be part of the occurrences, but need to be distinguishable,
since they do not have a value in the original target instance.

Furthermore, notice that there are two different strategies to remove viola-
tions for a dependency. The ones we have discussed so far are called forward
changes, since they amount to changing cells to satisfy the conclusion of an
egd. Consider egd e2 that states that customers with equal SSNs must have
equal credit-card numbers. The forward change to solve a violation equates
the values of the CC# attribute of the conflicting tuples. However, as an al-
ternative, one may introduce backward changes to falsify the premise instead.
In our example, this requires to set the value of attribute ssn in either of the
conflicting tuples to a llun value to say that the original value is dirty, and
should be changed to something else that we currently do not know. Special
care is needed when we want to use cell groups to backward-change the value of
a cell, as will be discussed in the following section. For this, we clearly separate
cell groups with backward changes from the others.

We specify an update by providing the original target database together
with the set of cell groups encoding the modification. In other words, cell
groups can be seen as partial updates with lineage. Notice how they also pro-
vide an ideal basis to plug-in user-specified changes. In fact, our user function,
User, works with cell groups to modify their values when needed.

These observations are captured by the following definitions. Let 〈I , J 〉 be
an instance of 〈S,Sa, T 〉. We denote by cells(I), auth-cells(I) and cells(J) the
set of all cells in the source tables in I, the set of cells in authoritative tables in
I, and the set of cells in the target tables in J , respectively. Let new-cells(J)
denote the (infinite) set of cells corresponding to all tuples over T that are
not in J . Intuitively, new-cells(J) represents possible insertions in J needed to
satisfy tgds. We assume that each cell in new-cells(J) is initialized each to a
different null value from nulls.

Definition 5 [Cell Group] A cell group g over 〈I , J 〉 is a quadruple
〈v, occ(g), just(g), isBckw(g)〉, where:

1. v = val(g) is a value in consts ∪ nulls ∪ lluns;

2. occ(g) is a finite set of cells in cells(J)∪new-cells(J), called the occurrences
of g; of these, we call target-cells(g) the ones that appear in J , and
new-cells(g) the new ones from new-cells(J);

3. just(g) is a finite set of cells in cells(I), called the justifications of g; of
these, we call auth-cells(g) the ones that belong to authoritative tables;
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4. isBckw(g) is a boolean value; if isBckw(g) = true we say that g has
backward changes.

We denote by cells(g) the set occ(g) ∪ just(g). In writing cell groups, we
find it useful to adopt the following notation. First, a cell group g can be
read as “change (or insert) the cells in occ(g) to value val(g), justified by the
values in just(g)”. We therefore shall often write a cell group as g = 〈v →
occ(g), by just(g)〉 for the sake of readability. We shall use the symbol bckw to
indicate that isBckw(g) = true. In addition, we use superscripts to denote new
and authoritative cells. Subscripts are used to report the value of a cell in the
original databases, I or J , so that the modifications specified by cell groups
are easier to interpret. Following are some examples of cell groups.

Example 2: Consider a sample scenario with a source table S(A,B) and a
target table T (A,B,C), and two constraints:

m1 : S(x, y)→ ∃z : T (x, y, z)
m2 : T (x, y, z), T (x, y′, z′)→ y = y′

Given an initial instance t1 : S(1, 2), t2 : S(1, 3), suppose T is empty. The
insert of tuple t3 with values from t1 into the target (according to m1) may be
expressed using the following cell groups:

g1 : 〈1→ {t3.Anew}, by {t1.A[1]}〉
g2 : 〈2→ {t3.Bnew}, by {t1.B[2]}〉
g3 : 〈N1 → {t3.Cnew}, by ∅}〉

Similarly, the insert of tuple t4 with values from t2 can be modeled by three
more cell groups g4−g6. Whenever a set of cell groups creates new tuples in the
target, it generates a new set of tuples that we call ∆J . In this example: ∆J =
{t3 : T (1, 2, N1), t4 : T (1, 3, N2)}. Notice how new cells may either contain the
copy of values coming from source cells or new, labeled nulls. Constant values
from the source are recorded in cell groups by means of justifications. On the
contrary, new cells with a null value have empty justifications.

If we update the target with g1 − g6, the two new tuples t3, t4 violate the
egd. A cell group that enforces the egd over cells t3.B, t4.B is as follows:

g7 : 〈L1 → {t3.Bnew, t4.B
new}, by {t1.B[2], t2.B[3]}〉

Otherwise, we may remove the violation by backward-changing cell t3.A:

g8 : 〈L2 → {t3.Anew}, by {t1.A[1]}, bckw〉
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Example 3: Consider now our motivating Example 1. Here are further ex-
amples of cell groups:

g1 : 〈L0 → {t5.CC#[781658], t6.CC#[784659]}, by ∅〉
g2 : 〈Dental→ {t8.Treat[Cholest]}, by {te4 .Treatauth[Dental]}〉
g3 : 〈Med→ {t12.Insurnew}, by {t2.Insur[Med]}〉
g4 : 〈null→ {t12.Salarynew}, by ∅〉
g5 : 〈L3 → {t7.Insurance[Abx]}, by ∅, bckw〉}

As you can see, g1 changes two conflicting cells of the target database into
a llun value. The justification in g2 can be intuitively explained by seeing
that the cell is repaired according to egd e4, stating that company ‘Abx’ only
provides dental treatments. Recall that in our approach this is expressed by
encoding constants as additional authoritative tables in the source database,
Cste4 in this example, with a single tuple te4 . Given this, we can express e4

without constants as:

e′4.Treat(ssn, s, ins, tr, d),Cste4(ins, tr’)→ tr = tr′

Cell groups g3 and g4 add new cells to the target, to insert (part of) tuple
t12. Notice how, in g3, the value for the new cell is stored as a justification.
Finally, g5 is an example of a cell group that backward-changes a cell to satisfy
dependency e8.

We consider cell groups to be undistinguishable up to the renaming of nulls
and lluns. In fact, we say that g is equal to g′ if occ(g) = occ(g′), just(g) =
just(g′), isBckw(g) = isBckw(g′), and: (i) both have the same constant value,
i.e., val(g) = val(g′) ∈ consts, or (ii) val(g), val(g′) are equally informative,
i.e., they are both nulls or lluns.

We define an update to an instance 〈I , J 〉 as a set of cell groups. More
specifically,

Definition 6 [Update] An update Upd of J is a set of cell groups over 〈I , J 〉
such that there exists a set of tuples ∆J , distinct from J , for which:

1. for each g = 〈v, occ(g), just(g)〉 in Upd, occ(g) is not empty, and occ(g) ⊆
cells(J ∪∆J). That is, cell groups in Upd are restricted to actual updates
of cells in J ∪∆J ;

2. each cell in J occurs at most once in Upd, and each cell in ∆J occurs
exactly once in Upd. That is, two cell groups in Upd cannot update the
same cell in the target, and ∆J is completely specified by Upd;
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3. for each pair of tuples t1, t2 ∈ ∆J in table R, there exists at least one
attribute A such that Upd assigns different values to t1.A, t2.A. That is,
we never insert two new identical target tuples.

We denote by Upd(J) the target instance obtained by adding to J the tuples
in ∆J , and then changing the values in the new instance as specified by Upd.

We take special care in order to avoid duplicate tuples. We require that
an update is such that it never generates two new identical tuples in ∆J .
This prevents the generation of duplicates when J is initially empty. Notice,
however, that duplicate tuples can still arise by modifying the original cells in
J , if J is not empty. In this case, we assume that duplicate tuples are removed
as a final step to generate Upd(J).

Example 4: Consider our Example 2 above. Following are two updates
Upd1,Upd2 that enforce the constraints:

∆J = {t3 : T (1, 2, N1), t4 : T (1, 3, N2)}
Upd1 = {g1, g3, g4, g6, g7}
Upd2 = {g2, g3, g4, g5, g6, g8}

Example 5: Consider the table Treatments from Example 1 and correspond-
ing table in solution #1 shown in Figure 1.2. It is easy to see that the re-
paired instance can be seen as an update. For example, it can be regarded as
Upd1(Treatments). Following are some cell groups from Upd1:

g1 : 〈Dental→ {t8.Treat[Cholest]}, by {te4 .Treatauth[Dental]}〉,
g2 : 〈25K→ {t7.Salary[10K], t8.Salary[25K]}, by ∅〉,
g3 : 〈L1 → {t10.SSNnew, t11.SSNnew, t12.SSNnew, t13.SSNnew},

by {t1.SSN[123], t2.SSN[123], t3.SSN[124]}〉,
g4 : 〈null→ {t12.Salarynew, t13.Salarynew}, by ∅〉,
g5 : 〈Med→ {t12.Insurnew}, by {t2.Insur[Med]}〉,
g6 : 〈Eye surg.→ {t12.Treatnew}, by {t2.Treat[Eye surg]}〉,
g7 : 〈12/01/2013→ {t12.Datenew}, by {t2.Date[12/01/2013]}〉,
g8 : 〈Med→ {t13.Insurnew}, by {t3.Insur[Med]}〉,
g9 : 〈Lapar.→ {t13.Treatnew}, by {t3.Treat[Lapar]}〉,
g10 : 〈03/11/2013→ {t13.Datenew}, by {t3.Date[03/11/2013]}〉

Clearly, other updates are possible. For example, to resolve e4 one may
consider changing the value of the cell t8.Insurance into a new llun value
L3, i.e., an unknown value that improves ‘Abx’. The following update, Upd2,
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follows the same approach to satisfy all dependencies, and yields the solution
#2 shown in Figure 1.2:

g′1 : 〈L2 → {t5.SSN[222]}, by ∅, bckw〉,
g′2 : 〈L3 → {t7.Insurance[Abx]}, by ∅, bckw〉,
g′3 : 〈L4 → {t8.Insurance[Abx]}, by ∅, bckw〉}
g′4 : 〈L5 → {t10.Namenew}, by {t1.Name[W. Smith]}, bckw〉,

We say that two updates coincide if their cell groups are identical, up to
the renaming of nulls and lluns. We may assume, without loss of generality,
that an update is always complete, i.e., it specifies values for the entire target
instance.

Definition 7 [Complete Update] An update Upd for 〈I, J〉 is complete if
each cell of J occurs in a cell group in Upd.

Indeed, any update Upd can be turned into a complete update Upd′, as
follows:

• initially, we let Upd′ = Upd;

• for each cell c of J that is not changed by Upd, then we add to Upd′ the
cell group 〈val(c)→ {c}, by ∅〉.

From now on, and without loss of generality, we always assume an update
to be complete, and we blur the distinction between an update Upd and the
instance Upd(J ) obtained by applying Upd to J . Observe that the initial target
instance J can be seen as Upd∅(J) where Upd∅ denotes the trivial update, i.e.,
no modifications are made.
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The Partial Order of Cell Groups

Cell groups and updates set the stage for the central notion of our semantics:
upgrades. As we mentioned, our key intuition is that an update to the database
is acceptable only when there is the guarantee that it “improves” the quality
of the target. An essential tool, in this respect, is the partial order over cell
groups and, in turn, updates. In order to do this, we resort to a hierarchy of
partial orders.

We start with a simple partial order for values. This partial order states
that constants are more informative than nulls, and lluns are more informative
than constants.

Definition 8 [Partial Order of Values] Given two values v1, v2 ∈ nulls∪
consts ∪ lluns, we say that v2 is more informative than v1, if v1 and v2 are
of different types, and one of the following holds: (i) v1 ∈ nulls, i.e., the first
value is a null value; or (ii) v2 ∈ llun, i.e., the second value is a llun. On the
contrary, two values of the same type are equally informative.

6.1 The Partial Order of Cells

Based on the partial order specification, Π, provided by the user as part of a
scenario, we now derive a partial order �Π of the cells in the original database
instances, 〈I , J 〉, plus the set of new-cells(J). This is crucial to plug-in arbitrary
preference strategies during the repair process.

Definition 9 [Partial Order of Cells] Given a partial-order specification
Π, and an instance 〈I , J 〉, we can define a corresponding partial order �Π for
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the set of cells C = cells(I) ∪ cells(J) ∪ new-cells(J) as follows. For any pair
of cells c1, c2 ∈ C we say that c1�Πc2 iff either c1 = c2 or one of the following
holds:

1. val(c1) ∈ nulls, and val(c2) ∈ consts;

2. c1 6∈ auth-cells(I), while c2 ∈ auth-cells(I);

3. c1 and c2 are ordered according to Π, that is: c1 = t1.A1, c2 = t2.A2

in 〈I , J 〉, and both are constants in consts; then, assume the ordering
attributes for A1 and A2, called A′1, A′2 have the same poset, i.e., PA′

1
=

PA′
2
; call v′1, v

′
2 the values of cells t1.A

′
1, t2.A

′
2. Then, c1�Πc2 iff v1 = v2

or v′1 < v′2 according to PA′
1

= PA′
2
.

The following proposition states that relation �Π is in fact a partial order
for cells (the proof is in Appendix 14):

Proposition 2 The binary relation �Π as specified in Definition 9 is a partial
order.

As we have seen, cell groups are made essentially of target cells (occur-
rences) and source cells (justifications). We expect cell groups to “improve”
and “generalize” the values that appear in occ(g) ∪ just(g), according to the
partial order over cells; in order to do this, we shall introduce a notion of an
upper-bound value of a set of cells.

6.2 How To Handle Backward Changes and User Inputs

Before we turn our attention to that, we need to discuss how to handle back-
ward changes to the database and user inputs. Backward changes disrupt the
intuition discussed in the previous section about the value of a cell group.
In fact, a backward cell-group essentially states that one or more of its occur-
rences have values that are considered invalid, and should be replaced by a llun.
Therefore, the values of these cells should not be considered when computing
upper bounds. Similarly, user inputs trump any other value, and represent
values of the highest priority.

To seamlessly introduce this notion into the semantics, we introduce a new
category of cells, called meta-cells. More specifically, we assume a set of meta
cells, meta-cells, with two elements:

• the invalid cell, c�, with value �;
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• the user cell, c>, with value >.

First, we introduce the notion of a cell group with user inputs as a cell group
g such that there exists a subset of Csub of occ(g)∪ just(g) such that User(Csub)
is defined and it is equal to a constant value v. Then, we associate a possibly
empty set meta-cell(g) with each cell group g to properly encode its backward
flag and user inputs, as follows:

1. if g has user inputs, then meta-cell(g) is the user cell c>; otherwise:

2. if isBckw(g) is true, then meta-cell(g) is the invalid cell c�;

3. if isBckw(g) is false, then meta-cell(g) is empty.

We extend the partial order of cells introduced in Definition 9 to incorporate
meta cells in a straightforward way. More specifically:

• the invalid cell c� is incomparable to any cell in cells(J) ∪ new-cells(J);
it remains true that any authoritative cell ca is such that c��Πca;

• the user cell c> is the highest cell in the partial order of cells, i.e., for
each cell c, c�Πc>.

In essence, the invalid cell is incomparable wrt to non-authoritative cells. As
a consequence, it forces the upper-bound value to a llun, unless there are au-
thoritative cells that may fix it. The user cell always trumps any other cell.

It is quite straightforward to prove that this extension of Definition 9 is still
a partial order.

6.3 Valid Cell Groups and Valid Updates

We notice that our semantics is centered around the fact that arbitrary updates
to the target are forbidden. We therefore introduce the notion of a valid cell
group. Intuitively, a valid cell group should have a value that “generalizes” and
“improves” the ones of its occurrences and justifications. We formalize this
notion as the upper-bound value of a cell group:

Definition 10 [Upper-Bound Value] Given a set of cells C in cells(I) ∪
cells(J) ∪ new-cells(J) ∪meta-cells, we define the upper-bound value of C, de-
noted by lub-val(C), as follows:
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1. if the user-cell, c> ∈ C, then consider the set of cells C′ = C − {c>}; then
lub-val(C) = User(C′), if this is defined and equal to a constant; if User(C′)
is not defined, then lub-val(C) is a fresh llun value Li;

2. otherwise, if all cells in C have a null value, then lub-val(C) is a fresh null
value Ni;

3. otherwise, consider the set maximal-cells(C) of maximal elements in C
wrt �Π. If all cells in maximal-cells(C) have exactly the same value
v ∈ consts, then lub-val(C) is exactly v;

4. otherwise lub-val(C) is a fresh llun value Lj .

Whenever lub-val(C) comes from an authoritative cell we say that it is an
authoritative value. If it comes from the user function, User, we say that it is
a user value.

Notice that, throughout the definition of the semantics, we always refer to
the original value of a cell in cells(I)∪ cells(J)∪new-cells(J), regardless of any
modification that will be done to the target database to satisfy the constraints.
This is a very important feature of our approach: to find solutions we compute
upper-bound values with respect to a partial order of cells, �Π, that is fixed
in advance and cannot change. This guarantees that the repair process does
not interfere with the strategy to pick-up preferred values for cell groups, and
therefore no termination or confluence problems may arise [CFY13] (further
details on this aspect are provided in Section 10).

We can now formalize the notion of a valid cell group as a cell group whose
value is either the upper-bound value of the corresponding cells, or a general-
ization thereof.

Definition 11 [Valid Cell Group] A cell group g is called a valid cell group if
it is not refused by the user function, i.e., it is not the case that User(cells(g)) =
⊥, and in addition:

• either val(g) is equal to the upper-bound value lub-val(g) =
lub-val(occ(g)∪just(g)∪meta-cell(g)) (in this case, we say that g is strict);

• or val(g) is more informative than lub-val(g) (and we say that g is non
strict).

A valid update is an update made exclusively of valid cell groups. From
now on, we shall only consider valid updates to the database.
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Example 6: Following is a set of valid cell groups from our motivating exam-
ple. Cell groups g1 − g4 are valid and strict.

g1 : 〈L0 → {t5.CC#[781658], t6.CC#[784659]}, by ∅〉

The value of g1 is a llun, because g1 has two occurrences with different values,
and we have no preference rules that states than one is an improvement over
the other.

g2 : 〈Med→ {t12.Insurnew}, by {t2.Insur[Med]}〉
In g2 we have two cells. One is a new cell that is to be inserted into the target.
Therefore, the source justification provides the value for g2.

g3 : 〈null→ {t12.Salarynew}, by ∅〉

Cell group g3 is an example of a cell group that only has null cells. Therefore
its upper-bound value is a null value.

g4 : 〈25K→ {t7.Salary[10K], t8.Salary[25K]}, by ∅〉

Finally, g4 has two occurrences that are ordered according to the partial order
specification (one salary is more recent than the other). The upper-bound value
is chosen accordingly.

All cell groups so far have a value that is strict, i.e., it coincides with the
upper-bound value of the involved cells. However, we also consider as valid cell
groups that overgeneralize these cells, for example:

g′4 : 〈L1 → {t7.Salary[10K], t8.Salary[25K]}, by ∅〉

By comparing g4 and g′4 it is easy to see that g′4 is not a “minimal” way
of upgrading the database, since it is introducing an unnecessary llun into the
target.

Following are additional cell groups with authoritative cells and backward
changes.

g5 : 〈Dental→ {t8.Treat[Cholest]}, by {te4 .Treatauth[Dental]}〉

The cells in g5 have a clear upper bound, namely the authoritative source cell
from te4 . Therefore, the upper-bound value coincides with the value of te4 .Treat,
and the cell group is strict.

All cell groups so far had the backward flag set to false. As a consequence,
their meta-cell coincided with the bottom cell, which has no effect on the
upper-bound value. On the contrary, consider:

g6 : 〈L3 → {t7.Insurance[Abx]}, by ∅, bckw〉
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Cell group g6 is different from the cell groups above since it is a backward
change. Its meta-cell is the invalid cell, c�. As a consequence, its strict value
is a llun, since there is no maximal cell in occ(g6) ∪ just(g6) ∪meta-cell(g6).

Example 7: Consider table R(A,B) with three dependencies:

• an FD A→ B, encoded by e0 : R(x, y), R(x, y′)→ y = y;

• a CFD A[a] → B[v1], stating that whenever R.A is equal to “a”, R.B
should be equal to “v1”; this is encoded by egd e1 : R(x, y), c1(x, z) →
y = z;

• a second CFD A[a] → B[v2], that contradicts the first one and states
that whenever R.A is equal to “a”, R.B should be equal to “v2”; this is
encoded by e2 : R(x, y), c2(x, z)→ y = z.

Assume R contains two tuples: t1 :R(a, 1), t2 :R(a, 2). Here, c1, c2 are authori-
tative source tables with a single tuple tc1, tc2 each, encoding the patterns in
the CFDs: tc1 : (A : a,B : v1), tc2 : (A : a,B : v2). Since the two CFDs clearly
contradict each other, previous approaches [FG12] would fail to give a solution
to this example. Nevertheless, later on we will provide a semantics for this
case.

Following is a set of cell groups, with an indication of their validity. Here we
assume that the partial order specification Π states that cells of A with higher
values are to be preferred over ones with smaller ones, and User(cells(g4)) = k.

g1=〈1→{t1.B[1]}, by ∅〉 valid
g′1=〈L1→{t1.B[1]}, by ∅〉 valid

g2=〈2→{t1.B[1], t2.B[2]}, by ∅〉 valid (Π)
g′2=〈3→{t1.B[1], t2.B[2]}, by ∅〉 non valid

g3=〈v1→{t1.B[1], t2.B[2]}, by {tc1 .Bauth
[v1]
}〉 valid

g4=〈k→{t1.B[1], t2.B[2]}, by {tc1 .Bauth
[v1]

, tc2 .B
auth
[v2]
}〉 valid(User)

g5=〈L→{t1.B[1], t2.B[2]}, by {tc1 .Bauth
[v1]

, tc2 .B
auth
[v2]
}〉 valid

In the case of g4, we look for the maximal cell in occ(g4) ∪ just(g4) ∪
meta-cell(g4). Since the user function is defined, the maximal cell consists
of the user cell c>, and the strict value is exactly User(occ(g4) ∪ just(g4)).

Notice that g′2 is not valid, since its value is neither the upper-bound value
of the cells (constant 3 does not appear anywhere in its occurrences), nor a
generalization of them. As such, in our approach it represents an unjustified
way of repairing the database and is discarded.
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With this in mind, we shall now lift this partial order over cells to a partial
order �Π,User over cell groups, that ultimately will tell us when an update
upgrades the database more than another.

6.4 The Partial Order of Cell Groups: A Simplified Case

Since the definition of the partial order over cell groups has a number of sub-
tleties, let us first discuss a simple case in which we ignore some of the features
of our approach, namely: authoritative tables (i.e., Sa is empty), and user in-
puts (i.e., User is also empty). Despite these simplifications, the fragment of the
semantics we consider here represents an interesting combination of tgds, egds
with hard-conflict resolution, forward and backward changes, and declarative
preference rules specified through the partial-order specification.

This simplified case allows us to introduce the main intuitions behind the
notion of upgrades, without giving all of the technical details that are needed
to handle our framework in its generality. We will extend the definitions to the
general case in the next paragraph.

Solutions to mapping & cleaning scenarios (formalized in Section 7) are up-
dates made of valid cell groups that represent “upgrades” to the original target
instance. However, we are also interested in minimal solutions. Intuitively,
these will be composed only of strict cell groups that minimally upgrade the
database and do not introduce over-generalizations of the original values. We
now lift the partial order over cells, �Π, to a partial order over valid cell groups
and updates. This is based on the following intuitions:

• it is natural to say that a cell group g′ is an improvement wrt a cell group
g if its cells “carry more information” according to the partial order of
cells and values. Given the definition of a strict value, this happens
when the set of occurrences and justifications of g′ contains those of g.
Therefore we state that g′ can only be preferred over g if this containment
property among their cells is satisfied. When the containment property
is not satisfied, these cell groups represent incomparable ways to modify
a target instance, and therefore cannot be ordered;

• in addition, given two cell groups g, g′ with comparable occurrences and
justifications, we need that the value set by g′ is “at least as good” as
the value set by g.

More formally:
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Definition 12 [Simplified Partial Order for Cell Groups] Given two
valid cell groups g and g′, we say that g�Πg

′ iff either g is equal to g′, or:

1. the cell-containment property is satisfied: occ(g) ⊆ occ(g′), just(g) ⊆
just(g′), and isBckw(g′) is true if isBckw(g) is true;

2. in addition, one of the following is true:

a) val(g) ∈ nulls (in this case, val(g′) may be either a null, or a
constant, or a llun);

b) val(g′) ∈ lluns (in this case, val(g) may be either a null, or a
constant, or a llun);

c) val(g) = val(g′) ∈ consts – i.e., both are equal constants – and g,
g′ are non-strict;

d) val(g) ∈ consts, val(g′) ∈ consts and both cell groups are strict,
i.e., val(g) = lub-val(occ(g) ∪ just(g)) and val(g′) = lub-val(occ(g′) ∪
just(g′)).

We notice that there are alternative and more compact formulations for
this notion. However, we prefer to state the definition in this form because we
believe it makes it more readable, and allows us to clarify its content using an
analogy to data exchange. In data exchange, solutions are compared to one
another via homomorphisms in which: (i) nulls can be mapped to one another;
(ii) nulls can be mapped to constants, but not the other way round; (iii) each
constant can only be mapped to itself. In our setting, updates are compared
via the partial order, with a similar inspiration:

1. items (a)-(b) state conditions analogous to (i), (ii) in our setting, where
three different kind of values are present;

2. items (c)-(d) handle constants, which require special attention; item (c)
is analogous to (iii); we say that two non-strict cell groups, g and g′, can
be compared if they satisfy the containment property, and change the
cells to the same constant (notice that g′ may change a larger number of
cells wrt g);

3. items (d) is peculiar to our framework, and incorporates the preference
relation over cells we have introduced in Definitions 9, 10; in essence, it
states that the constant values of g and g′ may also be different from
one another, provided that they are obtained as upper-bound values of
the cells in the two cell groups; due to the containment property, this
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guarantees that the value of g′ is “at least as good” as (possibly an
improvement over) the one of g.

Also in this case, �Π is a partial order over valid cell groups:

Proposition 3 Relation �Π among valid cell-groups over 〈I , J 〉 as specified in
Definition 12 is a partial order.

This partial order over cell groups can be easily lifted into a partial or-
der over updates, and provides the basis to formalize the crucial notion of an
upgrade in Section 7.1.

6.5 The Partial Order of Cell Groups: The General Case

When we move to the general case, things become more involved. In fact, we
now have a much more ambitious goal, that it, to unify into a single notion
the many different facets of the process of improving cells in a database. We
want that the partial order of cell groups still encodes the rules discussed in the
previous section, i.e (i) constant values are an improvement over null values,
and lluns are an improvement over constants, (ii) cells in the input databases
are ordered according to the partial order specification, (iii) unjustified changes
to the database are forbidden.

However, in addition to these we need to incorporate a number of new
rules: (iv) values coming from authoritative tables are an improvement over
other values; (v) ultimately, users may step in and specify values which are to
be considered higher up than anything else in our partial order.

To provide the general definition, given a mapping & cleaning scenario M
and an instance 〈I , J 〉, we partition valid cell groups over 〈I , J 〉 in the following
subsets:

• userM,〈I ,J〉, the set of cell groups with user inputs, i.e., they are such
that the user function, User, is defined over a subset of their cells; this
is further divided in user-strictM,〈I ,J〉, user-nonstrM,〈I ,J〉, depending if
a cell group takes the strict value or a generalization;

• authM,〈I ,J〉, the set of cell groups with no user inputs, whose justifications
contain authoritative cells; this is further divided in auth-strictM,〈I ,J〉,
auth-nonstrM,〈I ,J〉, similarly to the previous case;

• stdM,〈I ,J〉, the set of cell groups with no user inputs, nor authoritative
cells.
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We assign an order to these sets, such that:

stdM,〈I ,J〉 < auth-strictM,〈I ,J〉 < auth-nonstrM,〈I ,J〉 < user-strictM,〈I ,J〉 < user-nonstrM,〈I ,J〉

The general partial order of cell groups is an extension of the one introduced
in Definition 12, as follows:

Definition 13 [Partial Order over Cell Groups] Given two valid cell
groups g and g′, we say that g�Π,Userg

′ iff either g is equal to g′, or:

1. the cell-containment property is satisfied: occ(g) ⊆ occ(g′), just(g) ⊆
just(g′), and isBckw(g′) is true if isBckw(g) is true;

2. in addition, one of the following is true:

a) g belongs to a subset that is less than the subset of g′ in the order
above;

b) g, g′ ∈ userM,〈I ,J〉∪authM,〈I ,J〉, and they belong to the same subset;

c) g, g′ ∈ stdM,〈I ,J〉 and the conditions of Definition 12 hold, i.e.:

i. val(g) ∈ nulls;

ii. val(g′) ∈ lluns;

iii. val(g) = val(g′) ∈ consts and g, g′ are non-strict;

iv. val(g) ∈ consts, val(g′) ∈ consts and both cell groups are
strict.

Consider Example 7. Cell groups are ordered as follows:

g1�Π,User g2�Π,User g3�Π,User g4�Π,User g5

First, g1�Π,Userg2 because we have a conflict wrt the FD A→ B, and we know
that higher values are preferable for cells t1.B, t2.B in R. However, we have a
CFD that requires that both cells should be equal to v1, and therefore g3 is an
improvement over g2. Unfortunately, in this example we also have a contra-
dicting CFD, that states that the value should be v2 instead. Our semantics
accommodates for these inconsistencies by resorting to lluns, as stated by g4.
Lluns, however, need at some point to be resolved by asking for user input; in
our example, if the user provides the value k for the llun, we have a final group
g5 that is an improvement over all the others. It is also true that g1�Π,Userg

′
1,

since L1 is more informative than 1.

Proposition 4 Relation �Π,User among valid cell-groups is a partial order.
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What are Lluns, in the End? The role and the importance of lluns should
now be apparent. While lluns are nothing more than symbols from a distin-
guished set, like constants and nulls, their use in conjunction with cell groups
makes them a powerful addition to the semantics. Not only they allow us to
complete the lattice of cell-groups and updates, but, when appearing inside
cell-groups, they also provide important lineage information to support users
in the delicate task of resolving conflicts. Consider again Example 7. The cell
group 〈L→ {t1.B[1], t2.B[2]}, by {tc1 .Bauth

[v1] , tc2 .B
auth
[v2] }〉 is a clear indication that

it was not possible to fully resolve the conflicts, and therefore user interven-
tions are needed to complete the repair. In addition, the cell-group provides
complete information about the conflict, both in terms of which target cells –
and therefore which original values – were involved, and also in terms of source
values that justify the change.
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Chapter 7

Semantics

7.1 Upgrades

We are now ready to formalize the notion of an upgrade. To do this, we must
be able to compare updates with each other. We therefore introduce one final
tool, called id mappings. This is a way to map updates – which by tgds may
add new tuples with completely new ids to the target – to one another.

Definition 14 [Id Mapping] Let Upd and Upd′ be two updates over 〈I, J〉.
An id mapping hid from Upd to Upd′ maps tuple ids appearing in Upd(J) into
those appearing in Upd′(J). We assume that hid also maps each tuple id that
appears in both Upd(J),Upd′(J) to itself.

In the following, we will only consider id mappings with a functional prop-
erty, as follows. We define the image hid(v) of a value v ∈ nulls ∪ llun that
appears in Upd(J) according to hid, as the set of values of cells of Upd′(J) that
are the image according to hid of cells of Upd(J) whose value is v:

hid(v) = {v′|v ∈ nulls ∪ lluns,∃tid.A, val(t.id.A) = v, val(t.hid(id).A) = v′}

We say that hid is functional if hid is a singleton for each null and llun value
v ∈ dom(Upd(J).

Id mappings can be extended to cells in a straightforward way. Given a
cell group g = 〈v → occ(g) by just(g), isBckw〉 we denote its image according
to hid by hid(g) = 〈v → hid(occ(g)) by hid(just(g)), isBckw〉, if hid(g) is a valid
cell group. Otherwise we say that its image is undefined. With this in mind,
we introduce the concept of an upgrade:

41
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Definition 15 [Upgrade] Given two updates Upd and Upd′ over 〈I, J〉 and a
partial order �Π,User on cell groups, we say that Upd′ upgrades Upd, denoted
by Upd�Π,UserUpd′, if there exists a functional id mapping hid from the tuple
ids in Upd to the tuple ids in Upd′ such that for each cell group g ∈ Upd there
exists a cell group g′ ∈ Upd′ and hid(g)�Π,Userg

′.

In the rest of the thesis, we consider that an update Upd′ is preferable to Upd
whenever Upd�Π,UserUpd′. Notice that �Π,User is a preorder for updates, and
not a partial order. It is not, in fact, antisymmetric: there may exist updates
Upd and Upd′ such that Upd�Π,UserUpd′, Upd′�Π,UserUpd, and Upd 6= Upd′

(examples are in the next section). It is possible to show that, in the case of
cleaning scenarios where no tgds are present, �Π,User is also a partial order.

7.2 Solutions

In this section, we formalize the semantics of a mapping and cleaning scenario.
The key challenge here is to develop a new semantics for mappings and cleaning
constraints that is a conservative extension of the semantics for mappings in
[FKMP05], and of those of data repairing in [FG12]. We address this challenge
by leveraging the notions of cell groups, partial order and upgrades.

Intuitively, a solution of a mapping and cleaning scenario is a set of repair
instructions of the target (represented by cell groups) that upgrades the initial
dirty target instance and that satisfies the dependencies in Σt and Σe. We
notice however that updating the database to enforce egds may disrupt the
standard notion satisfaction of the tgds. To handle this, we shall adopt a revised
notion satisfaction for dependencies, called of satisfaction after upgrades. We
first give the formal definition of a solution.

Definition 16 [Solution] Given a mapping&cleaning scenario MC =
{S,Sa, T ,Σt,Σe,Π,User}, and an input instance 〈I , J 〉, a solution for MC
over 〈I , J 〉 is a valid update Upd s.t.:

1. J�Π,UserUpd, i.e., Upd upgrades the initial target instance;

2. 〈I,Upd(J)〉 satisfies after upgrades Σt ∪ Σe under �Π,User.

Let us now turn to the definition of satisfaction after upgrades. Let Upd
be an update over 〈I , J 〉. Clearly, if 〈I,Upd(J)〉 satisfies an edg or tgd in
the standard semantics, nothing needs to be done. Otherwise, we revise the
semantics for edgs and tgds in such a way that they remain satisfied as long as
we upgrade the database.
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7.3 Satisfaction After Upgrades for Egds

Let us first discuss egds. Consider Example 7. Notice that we upgrade the
database with cell group g5 to write a user input, k, into cells t1.B, t2.B,
and obtain two identical tuples t1 : R(a, k), t2 : R(a, k). However, the two
(contradicting) conditional functional dependencies in this example state that,
whenever R.A equals a, R.B must be equal to v1, v2, respectively. Therefore,
after g5, the corresponding egds are not satisfied in the standard sense.

We still want to consider these updates as solutions, since they are the
result of an “improvement” of values that originally satisfied the dependencies,
but were dirty. In order to do this, given a dependency (egd or tgd), variables
x, x′, and a homomorphism h of the premise into 〈I,Upd(J)〉, we need to be
able to compare the cell groups associated by h with x, x′, to check whether
one value, say h(x), is an upgrade for h(x′), or vice versa.

Notice that a variable x may have several occurrences in a formula. Homo-
morphism h maps each occurrence into a cell of the database. We denote by
cellsh(x) the set of cells in 〈I,Upd(J)〉 associated by h with occurrences of x.
Then, we define the notion of a cell group associated by h with x, gh(x), as the
result of merging all cell groups of cells in cellsh(x).

Definition 17 [Cell Group for Variable] Given a dependency d :
φ(x̄, z̄) → ∃ȳ : ψ(x̄, ȳ), and a homomorphism h of φ(x̄) into 〈I ,Upd(J )〉, for
each variable x ∈ x̄ we define the cell group associated by h with x as the cell
group gh(x) = 〈h(x), occ, just, isBckw〉, where:

• if h(x) ∈ consts, then occ (resp. just) is the union of all occurrences
(resp. justifications) of the cell groups in Upd for cells in cellsh(x);

• if h(x) ∈ nulls ∪ lluns, then occ (resp. just) is the union of all occur-
rences (resp. justifications) of the cell groups in Upd for cells in cellsh(x),
and any other cell group with value h(x) in Upd;

• in addition, just contains all cells in cellsh(x) that belong to the source
tables in I;

• in addition, isBckw is true if it is true in any of the cell groups for cells
in cellsh(x). �

Consider the sample scenario in example 2. Given the initial instance,
the s-t tgd m : S(x, y) → ∃z : T (x, y, z), and the homomorphism h that
maps x into constant 1 and y into 2, the cell groups for these variables are
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gh(x) : 〈1 → ∅, by {t1.A[1]}〉 and gh(y) : 〈2 → ∅, by {t2.B[1]}〉. Consider
now the target instance ∆J and the egd e : T (x, y, z), T (x, y′, z′) → y = y′.
In this case, consider homomorphism h that maps, among others, variable
x into constant 1; the cell group associated by h with x is gh(x) : 〈1 →
{t3.Anew, t4.A

new}, by {t1.A[1], t2.A[1]}〉.
Based on the notion of cell group for a variable, we are now ready to intro-

duce the notion of satisfaction after upgrades for egds:

Definition 18 [Satisfaction After Upgrades - Egds] Given an egd
e : ∀x φ(x) → x = x′, an instance 〈I, J〉, and an update Upd, we say that
〈I,Upd(J)〉 satisfies after upgrades e wrt the partial order �Π,User if, whenever
there is a homomorphism h of φ(x) into 〈I,Upd(J)〉, then (i) either the value
of h(x) and h(x′) are equal (standard semantics), or (ii) it is the case that the
cell groups associated by h with x, x′ are comparable wrt �Π,User, i.e., either
gh(x)�Π,Usergh(x′) or gh(x′)�Π,Usergh(x).

7.4 Satisfaction After Upgrades for Tgds

A similar notion holds for tgds. To give an example, consider our motivating
Example 1. The s-t tgd m1 uses source tuples t1, t2 from source #1 to generate
tuple t10 : (123, W. Smith, 324-0000, Pico Blvd., LA, null) into the target; we
call t10 the canonical update for m1 and t1, t2. After egds have been enforced,
however, the tuple is upgraded in several ways, and becomes (L1, W. Smith,
324-3456, Pico Blvd., LA, null). Again, after the changes the target instance
does not satisfy tgd m1 in the standard sense.

Consider a tgd m : ∀x(φ(x) → ∃y (ψ(x, y))) that is not satisfied by
〈I,Upd(J)〉. Let h be a homomorphism of φ(x, z) into 〈I,Upd(J)〉 that cannot
be extended to a homomorphism h′ of ψ(x, y) into 〈I,Upd(J)〉. We now want
to regard m as being satisfied after upgrades whenever Upd(J) is an upgrade
of the canonical update for m and h.

Intuitively, the canonical update Updcan
h represents the “standard way” to

satisfy the tgds, defined as follows:

Definition 19 [Canonical Update] Let hcan be the canonical homomor-
phism that extends h by injectively assigning a fresh labeled null with each
existential variable. Consider the new instance Jcan = J ∪ hcan(ψ(x, y)), ob-
tained by adding to J the set of tuples in ∆J = hcan(ψ(x, y)), each with a
fresh tuple id. Then, Updcan

h is such that:

1. Jcan = Updcan
h (J);
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2. Updcan
h coincides with Upd when restricted to cells(J);

3. it contains a cell group ghcan(x) over 〈I, J〉 for each variable x ∈ x̄, where
ghcan

(x) denotes the cell group associated by hcan with variable x;

4. it contains a cell group ghcan(y) over 〈I, J〉 for each variable y ∈ ȳ, with
value hcan(y), occurrences equal to cellshcan

(y), all of them new cells,
empty justifications and no backward flag.

Consider again example 2, the s-t tgd m and the homomorphism h defined
above. The canonical update Updcan

h contains the following cell groups: g1 :
〈1 → {t3.Anew}, by {t1.A[1]}〉, g2 : 〈2 → {t3.Bnew}, by {t1.B2}〉 and g3 : 〈N1 →
{t3.Cnew}, by ∅}〉.
Definition 20 [Satisfaction After Upgrades - Tgds] Given a tgd m :
∀x(φ(x) → ∃y (ψ(x, y))), and an update Upd, we say that 〈I,Upd(J)〉 satisfies
after upgrades m under partial order �Π,User if, whenever there is a homomor-
phism h of φ(x) into 〈I,Upd(J)〉, then (i) either m is satisfied by 〈I,Upd(J)〉
in the standard sense, or (ii) Updcan

h �Π,UserUpd.

This concludes the formalization of the notion of a solution as given in
Definition 16.

7.5 Minimal Solutions

We are interested in solutions that are minimal, i.e., they do not contain
unneeded target tuples and upgrade the initial target instance as little as pos-
sible. To quantify minimality we leverage �Π,User to decide when one update
Upd′ strictly upgrades another update Upd, denoted by Upd≺Π,UserUpd′. More
specifically, Upd≺Π,UserUpd′ if:

• Upd�Π,UserUpd′, but not the other way around; or

• Upd�Π,UserUpd′, according to id mapping hid, Upd′�Π,UserUpd, according
to id mapping h′id, and h′id is surjective while hid is not surjective.

Definition 21 [Minimal Solutions] A minimal solution for a mapping and
cleaning scenario is a solution Upd such that there exists no solution Upd′ such
that Upd′≺Π,UserUpd.

Consider Example 2. Figure 7.1 reports some of the updates and solutions
for this example, along with a diagram of the “upgrades” relationship among
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T A B C
t3 1 L1 N1 
t4 1 L1 N2 

S A B
t1 1 2 
t2 1 3 

T A B C
empty 

<I,J> Upd1(J) 

SOLUTIONS 

NON SOLUTIONS 

MINIMAL SOLUTION 

g1 : 1→ t3.A
new{ },by t1.A[1]{ }

g2 : 2→ t3.B
new{ },by t1.B[2]{ }

g3 : N1 → t3.C
new{ },by ∅

g4 : 1→ t4 .A
new{ },by t2.A[1]{ }

g5 : 3→ t4 .B
new{ },by t2.B[3]{ }

g6 : N2 → t4 .C
new{ },by ∅

g7 : L2 → t3.A
new{ },by t1.A[1]{ },bckw

g8 : L1 → t3.B
new{ },by t1.B[2],t2.B[3]{ }

g8' : L1 → t4 .B
new{ },by t1.B[2],t2.B[3]{ }

g9 : L3 → t4 .A
new{ },by t2.A[1]{ },bckw

g10 : N3 → t3.C
new ,t4 .C

new{ },by ∅
g11 : N5 → t5.A

new{ },by ∅
g12 : 9→ t5.B

new{ },by ∅
g13 : N6 → t5.C

new{ },by ∅
g14 : 3→ t3.C

new ,t4 .C
new{ },by ∅

g15 : L5 → t3.A
new ,t4 .A

new{ },by t1.A[1],t2.A[1]{ }
g16 : L1 → t3.B

new ,t4 .B
new ,t5.B

new{ },by t1.B[2],t2.B[3]{ }
gtop : L0 → t0.A

new ,t0.B
new ,t0.C

new{ },
by t1.A[1],t1.B[2],t2.A[1],t2.B[3]{ },bckw

T A B C
t3 1 2 N1 
t4 1 3 N2 

Upd3(J) 

Upd6(J) 

T A B C
t3 1 L1 N3 
t4 1 L1 N3 

MINIMAL SOLUTION 

Upd2(J) 

T A B C
t3 L2 2 N1 
t4 1 3 N2 

MINIMAL SOLUTION 

Upd4(J) 

T A BC
t3 1 2 N1 
t4 L3 3 N2 

Upd7(J) 
T A B C
t3 1 L1 N1 
t4 1 L1 N2 
t5 N5 9 N6 

Upd5(J) 

T A B C
t3 L2 L1 N1 
t4 1 L1 N2 

Upd9(J) 
T A B C
t3 L5 L1 N3 
t4 L5 L1 N3 

Upd8(J) 
T A B C
t3 L2 L1 3 
t4 1 L1 3 

Upd10(J) 
T A B C
t3 1 L4 N1 
t4 1 L4 N2 
t5 9 L4 9 

Upd1 : g1,g2,g3,g4 ,g5,g6{ }

Upd2 : g7,g2,g3,g4 ,g5,g6{ } Upd3 : g1,g8,g8',g3,g4 ,g6{ } Upd4 : g1,g2,g3,g9,g5,g6{ }

Upd5 : g7,g8,g8',g3,g4 ,g6{ } Upd6 : g1,g8,g8',g10,g4{ }Upd7 : g1,g8,g8',g3,g4 ,g6,g11,g12,g13{ }

Upd8 : g7,g8,g8',g14 ,g4{ } Upd9 : g15,g8,g8',g10{ } Upd10 : g1,g16,g3,g4 ,g6,g11{ }

CELL GROUPS 

(non surjective) 

Updtop(J) 
T A B C
t0 L0 L0 L0 

Updtop : gtop{ }

Figure 7.1: A diagram of solutions for Example 2.

them. This example clearly shows that �Π,User is a preorder for updates, and
not a partial order (see, for example, Upd3,Upd7).

7.6 Restrictions and Relationship to Other Semantics

We stated several times that our semantics generalizes the ones previously
introduced for mapping scenarios [FKMP05] on one side, and data repairing
[BFFR05, BFM07, BIG10] on the other side. Our goal in this section is to
introduce two restrictions of our setting, the notion of a mapping scenario, and
the notion of a cleaning scenario. We will investigate the relationship between
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mapping & cleaning scenarios and existing repair strategies later on, in Section
10, after we have introduced our operational chase-based semantics.

7.7 Mapping Scenarios and Data Exchange

To start, we compare our semantics to the one of data exchange. Recall that
traditionally [FKMP05] a data-exchange scenario has been defined as a quadru-
pleMde = {S, T ,Σde

st ,Σ
de
t }, where S and T are the source and target schemas,

Σde
st a set of s-t tgds, and Σde

t a set of target constraints that includes target
tgds and target egds. Notice how we use superscripts to emphasize that Mde

only contains standard dependencies, as defined in Section 3.1.
We see mapping scenarios as a restriction of mapping and cleaning. Recall

the general definition of a mapping and cleaning scenario as a tuple MC =
{S,Sa, T ,Σt,Σe,Π,User}. Recall that dependencies here are the extended tgds
and cleaning egds defined in Section 3. Given a data-exchange scenario Mde,
we now introduce its associated mapping scenario M as a mapping & cleaning
scenario over the same source and target schema, with the following restrictions:

• Sa, the authoritative schema is empty;

• Σt is the set of standard s-t tgds in Σde
st and the set of standard target

tgds in Σde
t ;

• Σe is the set of standard egds in Σde
t ;

• Π and User are empty;

• finally, the set of lluns, lluns, is also empty, i.e., we only allow for
constants and labeled nulls in instances.

When restricted to this notion of a mapping scenario, many of the notions in
our semantics are greatly simplified. First, a cell group becomes simply a set
of occurrences and justifications. The partial order over the cells of 〈I , J 〉 only
states that constants are preferable to labeled nulls, and therefore a cell group
g′ is preferable to g another if the containment property among their cells is
satisfied, and either both have the same value, or the value of g′ is a constant,
and the one of g is a null.

Interestingly, our semantics is a conservative extension of the one of data
exchange, as stated by the following theorem.
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Theorem 5 Every (core) solution of a data exchange scenario corresponds to
a (minimal) solution of its associated mapping scenario, and vice versa.

We consider this an important result, since not only are we preserving the
semantics of data exchange, but we are also extending it in a significant way.
In fact, we are enriching it with a principled way to handle hard conflicts – i.e.,
conflicts among constant values – in addition to soft ones addressed in data
exchange – the ones that involve nulls.

7.8 Cleaning Scenarios

Let us turn our attention to scenarios with no tgds. We call a cleaning scenario
a mapping and cleaning scenario in which the set of tgds Σt is empty. We
discuss them in detail in Section 10. For now, let us summarize some of the
properties of cleaning scenarios. First, we notice that, even in the absence of
tgds, cleaning egds may still maintain a link between the source and the target
database, e.g., to leverage authoritative sources.

Theorem 6 Given a cleaning scenario CS = {S, T ,Σe,Π} and an input in-
stance 〈I , J 〉, there always exists a solution for CS and 〈I , J 〉.

Theorem 7 Given two solutions Upd,Upd′ for a scenario CS over instance
〈I , J 〉, one can check Upd �Π Upd′ in O(n + kmlog(m)) time, where n is the
number of cells in J , k is the maximum number of cell groups in Upd, Upd′,
and m is the maximum size of a cell group in Upd, Upd′.
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Chapter 8

The Chase

In order to generate solutions for mapping & cleaning scenarios, we resort
to a variant of the traditional chase procedure for egds and tgds [FKMP05].
However, we revise and extend the standard chase substantially in order to
achieve the following goals:

(i) our first goal is that the chase is correct, i.e., it computes solutions for
our semantics; a key property, in this respect, is that chase steps preserve cell
groups and generate actual upgrades of the target database; as a consequence,
in the definition we shall make extensive use of cell groups and the partial
order;

(ii) the second important property we want is that the chase explores all pos-
sible strategies to satisfy the dependencies, this implies that an egd may be
chased both forward, to satisfy its conclusion, or backward, to falsify its premise;
this, in turn, means that we need to consider a disjunctive chase, which gener-
ates a tree of alternative solutions;

(iii) finally, we have a strong concern for scalability: we want that the chase
provides a basis to implement a scalable engine that scales nicely to large
databases. This requirement has a tricky interaction with the expressibility
one above, since we need to find the appropriate balance between generality
and scalability.

To simplify the presentation and ease the reading, we shall proceed in two
steps. In this section, we introduce a first, simplified version of the chase that
we show to be correct. Then, we revise the definition in the next section to
show how to strike a balance with scalability.

49
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To start, recall that we also want to incorporate user inputs in the process.
As a consequence, our chase generates a tree of solutions by three main kind
of steps: (a) chasing egds (forward and backward) with cell groups; (b) chasing
tgds with cell groups; (c) correcting cell groups or refuting updates by means
of user inputs. Notice that we don’t backward-chase tgds, since in most cases
this would require to delete tuples from the original database, a modification
that is not allowed in our setting.

We fix a mapping & cleaning scenario MC = {S,Sa, T ,Σt,Σe,�Π,User}
and instances I of S ∪ Sa and J of T . Given a (possibly empty) update Upd
of J , a dependency d (tgd or egd) is said to be applicable to 〈I,Upd(J)〉 with
homomorphism h if h is a homomorphism of the premise of d into 〈I,Upd(J)〉
that violates the conditions for 〈I,Upd(J)〉 to satisfy after upgrades d. Recall
that, given a homomorphism h of a formula φ(x̄) into 〈I,Upd(J)〉, we denote
by gh(x) the cell group associated by h with variable x.

8.1 Chase Step for Tgds

The definition of a chase step for an extended tgd is a natural generalization
of the standard notion of a chase step for a standard tgd [FKMP05], the main
difference being the need to properly update cell groups.

Definition 22 [Chase Step for TGDs] Given an extended tgd m : ∀x
(φ(x̄)→ ∃ȳ : (ψ(x̄, ȳ))) in Σt applicable to 〈I,Upd(J)〉 with homomorphism h,
by chasing m on 〈I,Upd(J)〉 with h we generate a new update Upd′ obtained
from Upd by:

(i) removing all cell groups gh(x) that are present in Upd, for all x ∈ x̄;

(ii) adding the new cell groups in the canonical update Updcan
h .

In symbols we write Upd→m,h Upd′, where Upd′ = Updcan
h .

In our running Example 1, the canonical update for tgd m1 over 〈I , J 〉
contains, for the table Treatments, the following new cell groups:

g1 : 〈123→ {t12.SSNnew}, by {t1.SSN[123], t2.SSN[123]}〉
g2 : 〈null→ {t12.Salarynew}, by ∅〉
g3 : 〈Med→ {t12.Insurnew}, by {t2.Insur[Med]}〉
g4 : 〈Eye surg.→ {t12.Treatnew}, by {t2.Treat[Eye surg]}〉
g5 : 〈12/01/2013→ {t12.Datenew}, by {t2.Date[12/01/2013]}〉,
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8.2 Chase Step for Egds

In order to introduce the notion of a chase step for egds we need a few prelimi-
nary definitions. We first introduce the notions of witness and witness variable
for an egd. Intuitively, the witness variables are those variables upon which the
satisfiability of the dependency premise depends; these are all variables that
have more than one occurrence in the premise, i.e., they are involved in a join
or in a selection.

Definition 23 [Witness] Let e : ∀x (φ(x) → x = x′) be an egd. A witness
variable for e is a variable x ∈ x̄ that has multiple occurrences in φ(x̄). For a
homomorphism h of φ(x̄) into 〈I,Upd(J)〉, we call a witness, wh for e and h,
the vector of values h(x̄w) for the witness variables x̄w of e.

Consider, for example, dependency e9 in Example 1 (we omit some of the
variables for the sake of conciseness): e9. Treat(ssn, s, . . .),Treat(ssn, s’, . . .) →
s = s’. Assume that the target instance of Treatments contains tuples t7 =
(ssn : 111, salary : 10K, . . .), t8 = (ssn : 111, salary : 25K, . . .). We have a
homomorphism h that maps the first atom of e9 into t7, and the second one
into t8. In this case, the witness variable, i.e., the variable that imposes the
constraint that the two tuples have the same SSN, is ssn, and its value is 111.

Definition 24 [Merge of a set of Cell Groups] Given a set of cell groups,
G, we define merge�Π,User

(G) the cell group 〈v, occ, just, isBckw〉, where (i) occ
(resp. just) is the union of all occurrences (resp. justifications) of the cell
groups in G, (ii) isBckw is true if it is true in any of the cell groups in G, (iii)
v is the strict value of merge�Π,User

(G).

Definition 25 [Chase Step for EGDs] Given a cleaning egd e : ∀x (φ(x)→
x = x′) in Σe applicable to 〈I,Upd(J)〉 with homomorphism h, by forward
chasing e on 〈I,Upd(J)〉 with h we generate a new update Updf obtained from
Upd by:
(i) removing gh(x) and gh(x′);
(ii) adding the new cell group merge�Π,User

(gh(x) ∪ gh(x′)).
In symbols Updf = Upd− {gh(x), gh(x′)} ∪ gf .

By backward chasing e on 〈I,Upd(J)〉 with h we try to falsify the premise
in all possible ways. To do this, we generate a number of new updates as
follows: for each witness variable xi ∈ x̄w of e, and each cell cj ∈ cellsh(xi)
that belongs to the image h(R(. . .)) of a relational atom appearing in φ(x̄),
consider the corresponding cell group according to Upd, gij = gUpd(cj), where
by gUpd(c) we denotate the cell-group of cell c according to Upd. If:
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(i) val(gij) ∈ consts, i.e., the cell has a constant value, and

(ii) auth-cells(gij) = ∅, i.e., gij has no authoritative justifications,

then, we generate a new update Updbij obtained from Upd by changing gij to
another cell group g′ij that has same occurrences and justifications, backward
flag set, and a new llun Lij as a value. In symbols Updbij = Upd−{gij}∪{g′ij}

We simultaneously consider all these chase steps, in parallel, and write
Upd →e,h Updf ,Updb0,Updb1, . . . ,Updbn, where Updf and Updb0, Updb1,
. . . ,Updbn are the updates generated by the forward and backward chase step,
respectively.

Observe that we do not backward-chase cells in two cases: (i) they contain
nulls or lluns; in fact, nulls and lluns are essentially placeholders, and there is
no need to replace a placeholder by another one, since this is does not represent
an upgrade; (ii) they have a authoritative justification from the source; since
we use the source to model high-reliability data, we consider it unacceptable
to disrupt a value coming from the source in favor of a llun.

To see an example, tuples t7 and t8 in the pre-solution in Figure 1.2 violate
egd e9, stating that SSN implies Salary on the table Treatments. Here the
witness variable is ssn, and the cellsh(ssn) are t7.SSN and t8.SSN, with cell
groups gUpd(t7.SSN) : 〈111 → {t7.SSN[111]}, by ∅}〉 and gUpd(t8.SSN) : 〈111 →
{t8.SSN[111]}, by ∅}〉. Moreover, the cell groups for variables x and x′ are gh(x) :
〈10K → {t7.Salary[10K]}, by ∅}〉 and gh(x′) : 〈25K → {t8.Salary[25K]}, by ∅}〉.
Notice that the two cell groups are incomparable, and therefore we have a
violation.

The chase procedure generates three different updates for the violation:

(a) Updf that in the place of gh(x) and gh(x′) contains the new cell group
gf : 〈25K → {t7.Salary[10K], t8.Salary[25K]}, by ∅}〉 (25K is more recent than
10K as a salary, and therefore it is preferred); as you can see, the least upper
bound is constructed in such a way that it contains the union of occurrences
and the union of justifications of the two conflicting groups;

(b) Updb1 that in the place of gUpd(t7.SSN) contains its backward cell group
gb1 : 〈L6 → {t7.SSN[111]}, by ∅, bckw}〉;

(c) Updb2 that in the place of gUpd(t8.SSN) contains its backward cell group
gb2 : 〈L7 → {t8.SSN[111]}, by ∅, bckw}〉;
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8.3 Chase Step for User Inputs

In addition to these steps, in our approach we also want users to be able to
correct updates and provide inputs. This may happen in two ways: either by
changing the values of cell groups (typically either lluns or nulls), or by refusing
an update because it is considered to be incorrect (for example because an egd
has been backward chased when the right update according to the user is the
forward one). We therefore introduce a notion of a chase step for user inputs.

Definition 26 [Chase Step for User Inputs] Given an update Upd of J ,
we say that User applies to a group g ∈ Upd if User(cells(g)) is defined, and
returns a value that is different from val(g).

We say that User refuses Upd if User(cells(g)) = ⊥. If User refuses Upd, we
mark Upd as invalid. Otherwise, we denote by User(Upd) the update obtained
from Upd by changing any cell group g ∈ Upd such that User applies to g to a
new cell group gUser obtained from g by changing val(g) to User(cells(g)).

Chasing 〈I,Upd(J)〉 with User either marks 〈I,Upd(J)〉 as invalid, or gen-
erates a new update in which cell groups have been changed according to User.
In the latter case, we write Upd→U User(Upd).

Consider again the Upd1 in Example 5. If User({t1.SSN, t2.SSN, t3.SSN}) =
123, chasing 〈I,Upd1(J)〉 with User generates a new update that
contains, in the place of g3, the new cell group gUser : 〈123 →
{t10.SSNnew, t11.SSNnew, t12.SSNnew, t13.SSNnew}, by {t1.SSN[123], t2.SSN[123],
t3.SSN[124]}〉.

8.4 Chase Tree

Given sets of tgds and egds Σt,Σe, a chase of 〈I , J 〉 with Σt,Σe and User,
denoted by chaseΣt,Σe,User(〈I , J 〉) is a tree whose root is 〈I , J 〉, i.e., the empty
update, and for each valid node Upd, the children of Upd are the updates
Upd0,Upd1, . . . ,Updn such that, for some d ∈ Σt,Σe and some h, it is the case
that Upd →d,h Upd0,Upd1, . . . ,Updn, or Upd →User Upd0. The leafs are valid
updates Upd` such that there is no dependency applicable to 〈I,Upd`(J)〉 with
some homomorphism h. Any leaf in the chase tree is called a result of the chase
of 〈I , J 〉 with Σt,Σe.

Note that, as usual, the chase procedure is sensitive to the order of appli-
cation of the dependencies. In our chase tree, we consider all possible orders
in parallel. Different orders of application of the dependencies may lead to
different chase sequences and therefore to different results.
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8.5 Correctness, Termination, and Complexity

We next show that the chase, if it terminates, always generates solutions of
mapping & cleaning scenarios. We also show that the chase does not always
terminate in general.

Theorem 8 Given a mapping & cleaning MC = {S,Sa, T ,Σt,Σe,Π,User},
instances I of S ∪ Sa and J of T , and oracle User, the chase of 〈I , J 〉 with
Σt,Σe,User may not terminate after a finite number of steps. If it terminates,
it generates a finite set of results, each of which is a solution forM over 〈I , J 〉.
Even if the chase terminates, not every minimal solution is generated.

We can prove that, as soon as the tgds are non recursive, then the chase
terminates. This result is far from trivial, since, as we discussed, egds interact
quite heavily with tgds by updating values in the database. We conjecture that
this result can be extended to more sophisticated termination conditions for
tgds [GST11].

Theorem 9 Given a mapping & cleaning MC = {S,Sa, T ,Σt,Σe,Π,User},
instances I of S ∪ Sa and J of T , and oracle User, if Σt is a set of weakly-
acyclic tgds, then the chase of 〈I , J 〉 with Σt,Σe,User terminates after a finite
number of steps, and each leaf in the chase tree is a solution for MC.

We next show that for cleaning scenarios, the chase procedure always gen-
erates solutions, i.e., it is sound, and it terminates after a finite number of
steps.

Theorem 10 Given a cleaning scenario CS = {S,Sa, T , ∅,Σe,Π,User} and
an instance 〈I , J 〉, the chase of 〈I , J 〉 with Σe (i) terminates; (ii) it generates
a finite set of results, each of which is a solution for CS over 〈I , J 〉.

It is well-known [Ber11] that a database can have an exponential number of
solutions, even for a cleaning scenario with a single FD and when no backward
chase steps are allowed.

Theorem 11 Given a cleaning scenario CS = {S,Sa, T , ∅,Σe,Π,User} and an
instance 〈I , J 〉, CS may have at most an exponential number of solutions over
〈I , J 〉, and each solution is computed in a number of steps that is polynomial
in the size of 〈I , J 〉.
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A Revised Chase

Let us now reconsider the definition of a chase step for egds. As we mentioned
above, our goal is to define a chase procedure that provides a basis for an
efficient implementation, possibly by pruning unnecessary computations.

Example 8: To explain scalability issues, consider a simple functional de-
pendency A → B over relation R(A,B,C), with tuples t1 = R(1, 2, x),
t2 = R(1, 2, y), t3 = R(1, 4, z), t4 = R(2, 5, w), t5 = R(2, 6, v).

In our definition so far, violations to dependencies are analyzed in a tuple-
oriented fashion, i.e., by considering two tuples at a time. However, this is
highly inefficient, in some cases. Consider first the forward update, i.e., the
one that only changes values of the B attribute. It can be seen that eventually
the B value of t1, t2, t3 will all become equal. If we analyze violations in a
tuple-oriented fashions, it will take several chase steps to realize this. Our goal,
on the contrary, is to group and fix all violations together. In the literature
[BFFR05, FG12] this has been formalized by means of equivalence classes.

However, we also have other solutions to generate, namely those that back-
ward chase the value of the A attribute of some of the tuples above. We need
a way to generate these chase steps as well. Therefore, we define our chase
step in such a way that: (i) it considers all tuples in one homomorphism class
together; (ii) it allows to specify whether any single tuple should be backward
or forward chased, or even left untouched.

In order to do this, we need a number of preliminary definitions.

Recall the definition of a witness and witness variable given in Section
8. Consider our FD A → B over relation R(A,B,C) introduced above. This
becomes an extended egd of the form e. R(a, b, c),R(a, b’, c’)→ b = b’. Consider
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tuples t1 = R(1, 2, x), t2 = R(1, 2, y), t3 = R(1, 4, z), t4 = R(2, 5, w), t5 =
R(2, 6, v). Here, the witness variable is a, and we have several homomorphisms,
some with witness 1 and some others with witness 2. Our goal is to group
homomorphisms with equal witnesses together.

Definition 27 [Homomorphism Class] Given an update Upd, and an egd e :
∀x (φ(x) → x = x′), let x̄w ⊆ x̄ be the witness variables of e. An equivalence
class for Upd and e, H, is a set of homomorphisms of φ(x̄) into 〈I,Upd(J)〉
such that all hi ∈ H have equal witness values hi(x̄w).

Notice that homomorphism classes induce classes of tuples in a natural way.
In our simple example above, the tuples are partitioned into two homomor-
phism classes, as follows: ec1 = {t1, t2, t3} (with witness 1) and ec2 = {t4, t5}
(with witness 2).

To identify a violation, we look for different values in the conclusion of e. To
see an example, consider the homomorphism class ec1 (witness 1), composed of
the three tuples {t1, t2, t3}: to identify the violation, we notice that they have
two different values for the B attribute, 2 and 4, respectively. To formalize
this, we introduce the notion of witness groups and conclusion groups for an
homomorphism class H:

Definition 28 [Witness Groups, Conclusion Groups] Given an homo-
morphism class H for Upd and egd e: (i) we call witness groups, w-groupsH,
the set of cell groups associated by homomorphisms in H with the witness
variables, x̄w; (ii) we call conclusion groups, c-groupsH, the set of cell groups
associated by homomorphisms in H with the conclusion variables, x, x′, of e:

w-groupsH = {gh(xw) | h ∈ H, xw ∈ x̄w}
c-groupsH = {gh(x) | h ∈ H} ∪ {gh(x′) | h ∈ H}

An homomorphism class for Upd and e generates a violation if it has at least
two conclusion groups with different values and such that there is no ordering
among them, i.e, there exist g1, g2 ∈ c-groupsH such that val(g1) 6= val(g2) and
neither g1�Π,Userg2 nor g2�Π,Userg1. In this case, we say that e is applicable to
〈I,Upd(J)〉 with H.

In order to rework the notion of a chase step for an egd, we introduce the
notion of a repair strategy for an homomorphism class. This will provide a
hook to introduce our optimizations in the chase.

We are now ready to define the notion of a chase step for an egd. Our
goal is to define the chase in such a way that it is as general as possible, but
at the same time it allows to plug-in optimizations to tame the exponential
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complexity. In order to do this, we introduce the crucial notion of a repair
strategy for an homomorphism class, which provides the hook to introduce the
notion of a cost manager in the next section.

Definition 29 [Repair Strategy] A repair strategyrsH for an homomor-
phism class H is a mapping from the set of conclusion cell-groups, c-groupsH
of Upd and H, into the set {f , b, u} (where f stands for “forward”, b for “back-
ward” and u for “unaffected”). We call the forward groups, forw-grsH , of rsH
the set of groups gi such that rsH(gi) = f , the backward groups, back-grsH ,
those such that rsH(gi) = b and the unaffected groups, equ-grsH , those such
that rsH(gi) = u, i.e., those that we don’t want to repair in that particular
chase step.

For each backward group g ∈ back-grsH and for each target cell ci ∈ g such
that ci is a cell of a relation in φ, we assume that the repair strategy rsH also
identifies (whenever this exists) one of the witness cells in w-groupsH to be
backward-repaired. This cell, denoted by w-cellrsH(ci), must be such that:

(i) there exists an homomorphism h ∈ H that covers both ci and w-cellrsH(ci);

(ii) the corresponding cell group gi according to Upd has a constant value, i.e.,
val(gi) ∈ consts;

(iii) the corresponding cell group gi has empty justifications, i.e., just(gi) = ∅.
Repair strategies for homomorphism classes are the main building block to

define how to generate chase steps for egds.

Definition 30 [Chase Step Strategy] Given a mapping & cleaning MC =
{S,Sa, T ,Σt,Σe,Π,User}, and an update Upd of J , a chase step strategy css
is a triple {e,H, rsH}, where e is an egd applicable to 〈I,Upd(J)〉 with homo-
morphism class H, and rsH is a repair strategy for H.

Notice that for a given update Upd and egd e, several different chase step
strategies may exist: once for each different rsH of any H that generates a
violation for Upd and e. We denote by cssUpd the set of all possible css for
Upd. Each chase step is defined based on a specific chase step strategy.

In our simple example 8, the dependency e is applicable to 〈I,Upd∅(J)〉
with homomorphism class ec1. The three conclusion groups are g1 : 〈2 →
{t1.B[2]}, by ∅〉, g2 : 〈2→ {t2.B[2]}, by ∅〉 and g3 : 〈4→ {t3.B[4]}, by ∅〉.

Some possible repair strategies are: rs1 = {f , f , f }, i.e. we choose to repair
in a forward way all these conclusion groups; rs2 = {f , b, f }, where we want
to equate the first and third conclusion group, and repair backward the second
one, for which the witness cell to be backward repaired is t2.A; rs3 = {u, f , f },
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here we choose to leave unaffected the first conclusion group. The associated
chase step strategies are css1 = {e, ec1, rs1}, css2 = {e, ec1, rs2} and css3 =
{e, ec1, rs3}.
Definition 31 [Chase Step for EGDs] Given a mapping & cleaningMC =
{S,Sa, T ,Σt,Σe,Π,User}, and an update Upd of J . For each chase step strat-
egy css = {e,H, rsH}, a chase step generates a new update Updcss defined as
follows:

(i) to start, we initialize Updcss = Upd

(ii) then, we replace all forward groups in rsH by their least upper bound:

Updcss = Updcss − forw-grsH ∪merge�Π,User
(forw-grsH)

(iii) finally, we add the backward updates, i.e, for each backward group g ∈
back-grsH , and cell ci ∈ occ(g), we replace gi = gUpd(w-cellrsH(ci)) by the cell
group g′i = 〈Li → occ(gi), by ∅, bckw〉 (where Li is a new llun), as follows:

Updcss = Updcss − {gi} ∪ {g′i}

Note that g′ is the immediate successor of gi according to �Π,User.
We say that a chase step strategy css is valid for Upd if the chase of css in

Upd generates an update Upd′ such that Upd′ differs from Upd in at least one
cell group.

Given Upd, each valid chase step strategy cssi ∈ cssUpd generates a different
step, Updcssi . We simultaneously consider all these chase steps, in parallel, and
write

Upd→cssUpd
Updcss0 ,Updcss1 . . . ,Updcssn

In our example, the chase of the chase step strategies css1, css2 and css3

over 〈I,Upd∅(J)〉 generates the following updates:
(i) Updcss1 contains, in the place of conclusion groups g1, g2 and g3, the new
cell group merge�Π,User

(g1, g2, g3) = 〈L1 → {t1.B[2], t2.B[2], t3.B[4]}, by ∅〉;
(ii) in order to generate Updcss2 we need to forward chase g1 and g3, and
change in a backward way the cell group associated to the cell t2.A in Upd∅(J).
The result is an update with two cell groups: merge�Π,User

(g1, g3) = 〈L2 →
{t1.B[2], t3.B[4]}, by ∅〉 and gb = 〈L3 → {t2.A[1]}, by ∅, bckw〉.
(iii) in Updcss3 we leave untouched g1, and we merge g2 and g3 in the new cell
group merge�Π,User

(g2, g3) = 〈L2 → {t2.B[2], t3.B[4]}, by ∅〉;
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Definition 32 [Chase Tree] Given a mapping & cleaning MC =
{S,Sa, T ,Σt,Σe,Π,User}, a chase is a tree whose root is 〈I , J 〉, i.e., the empty
update, and for each valid node Upd, the children of Upd are the updates
Upd0,Upd1, . . . ,Updn such that one of the following conditions holds:
(a) for some e ∈ Σe it is the case that Upd→cssUpd

Upd0,Upd1 . . . ,Updn;
(b) for some m ∈ Σt and some h, it is the case that Upd→d,m Upd0; or
(c) Upd→User Upd0.

The leafs are valid updates Upd` such that there is no dependency or user
inputs applicable to 〈I,Upd`(J)〉. Any leaf in the chase tree is called a result
of the chase of 〈I , J 〉 with Σt,Σe,User.

We denote by revised-chaseΣt,Σe,User(〈I , J 〉) the chase tree obtained by this
revised chase procedure.

Theorem 12 Consider the chase tree chaseΣt,Σe,User(〈I , J 〉), generated by the
chase of MC over 〈I , J 〉 as defined in Section 8. If the chase of 〈I , J 〉 with
Σt,Σe,User terminates, then the revised chase of 〈I , J 〉 with Σt,Σe,User also
terminates. In this case, the revised chase procedure generates a chase tree
revised-chaseΣt,Σe,User(〈I , J 〉) such that for any node in chaseΣt,Σe,User(〈I , J 〉),
there is an identical node in revised-chaseΣt,Σe,User(〈I , J 〉).

9.1 Introducing the Cost Manager

The chase procedure defined in the previous section provides an elegant opera-
tional semantics for cleaning scenarios. However, as argued above, computing
all solutions has very high complexity, which makes the chase often impractical.
In this section, we introduce a key component to improve the scalability of the
chase, namely the cost manager.

Chasing at the equivalence-class level is more efficient than chasing at the
tuple level, but by itself it does not reduce the total number of solutions, and
ultimately the complexity of the whole chase process. In fact, previous propos-
als have chosen many different and often ad-hoc ways to reduce the complexity
by discarding some of the solutions in favor of others. Among these we men-
tion various notions of minimality of the updates [ABC99] [BFFR05] [BIG10],
certain regions [FLM+10], and sampling [BIG10]. We propose to incorporate
these pruning methods into the chase process in a more principled and user-
customizable way by introducing a component, called the cost manager.

Definition 33 [Cost Manager] Given a mapping & cleaningM and instance
〈I , J 〉, a cost manager for M and 〈I , J 〉 is a predicate cm over chase step
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strategies to be used during the chase of the egds. For each chase step strategy
css, it may either accept it (cm(css) = true), or refuse it (cm(css) = false).

During the chase of the egds, we shall systematically make use of the cost
manager. Whenever we need to chase an homomorphism class, we only gener-
ate updates corresponding to repair strategies accepted by the cost manager.
The standard cost manager is the one that accepts all chase step strategies, and
may be used for very small scenarios. As an alternative, our implementation
offers a rich library of cost managers. Among these, we mention the following,
that have been used in experiments:

– a maximum size cost manager (sN): it accepts repair strategies as long as
the number of leaves in the chase tree (i.e., the updates produced so far) are
less than N ; as soon as the size of the chase tree exceeds N , it accepts only the
first one of them, and rejects the rest; as a specific case, the s1 cost manager
only considers one order of application of the dependencies, and ignores other
permutations;

– a forward-only cost manager (FO): it accepts forward-only repair strategies,
and rejects those that perform backward updates;

– a sampling cost manager (SPLk): it randomly accepts repair strategies, until
k solutions have been generated;

– a certain-region cost manager (CTN): it incorporates the notion of a certain
region [FLM+10] in the target, i.e., a set of attributes A that are considered
“fixed”, i.e., reliable, and cannot be changed; it refuses all chase steps in which
changes are made to attributes in A.

Notice that combinations of these strategies are possible, to obtain, e.g., a
FO-s1 or a SPL50-FO-s5 cost manager. The FO-s5, for example, discards
backward changes and, in addition, it considers five different permutations of
the dependencies. In the following, we shall always assume that a cost manager
has been selected in order to perform the chase.
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Comparison to Data Repairing
Semantics

We have already shown in Section 7.6 that our general notion of a mapping
and cleaning scenario can be restricted to mapping scenarios on one side, and
cleaning scenarios, on the other side, and that our semantics is a conservative
extension of data exchange.

In this section, we want to develop the comparison of mapping and cleaning
scenarios to some of the semantics that have been proposed for data repairing
[BFFR05, CFG+07, BFM07, BIG10]. Since the partial order stands at the core
of our approach, we also consider a few other recent proposals [SCM12, CFY13]
that have dealt with notions of preference in connection with data quality
constraints.

10.1 The Minimum Cost Algorithm

Let us start our discussion with early works by Fan and others on repairing
by cell-modifications [BFFR05], and algorithms for conditional dependencies
[CFG+07, BFM07]. We find it useful to start by comparing our framework to
the algorithm by Bohannon and others [BFFR05] using a simple data repairing
problem where we are given a database table with schema T , and a set of
functional dependencies F over it, and an instance J of T that is dirty wrt F .
We want to repair J by using the semantics given in [BFFR05], which we call
the minimum cost semantics. The main ideas behind this semantics are the
following:
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• a repair is any instance of J ′ that is the result of updating J and satisfies
the constraints in F ;

• we seek repairs that minimally differ from J ; the notion of minimality
is based on the cost of updating J to obtain a repair J ′, according to an
appropriate cost function;

• the actual repair algorithm is organized in two phases; in the first one
the goal is to build equivalence classes (as introduced in Section 9), i.e.,
groups of cells that ultimately will become equal according to the depen-
dencies, without actually modifying them; the decision about the value
to update the cell is deferred to phase two, when its equivalence class has
been determined, and more informed decisions can be taken.

R 
A B C

t1 1 2 x 
t2 1 2 y 
t3 1 4 z 
t4 2 5 w 
t5 2 6 v 

R1 
A B C

t1 1 2 x 
t2 1 2 y 
t3 1 2 z 
t4 2 6 w 
t5 2 6 v 

R2 
A B C

t1 1 2 x 
t2 1 2 y 
t3 1 2 z 
t4 2 5 w 
t5 2 5 v 

R3 
A B C

t1 1 4 x 
t2 1 4 y 
t3 1 4 z 
t4 2 7 w 
t5 2 7 v 

R’ 
A B fr C

t1 1 2 2 x 
t2 1 2 2 y 
t3 1 4 1 z 
t4 2 5 1 w 
t5 2 6 1 v 

R’’ 
A B fr C

t1 1 2 2.2 x 
t2 1 2 2.2 y 
t3 1 4 1.4 z 
t4 2 5 1.5 w 
t5 2 6 1.6 v 

R4 
A B C

t1 1 2 x 
t2 1 2 y 
t3 1 2 z 
t4 2 L w 
t5 2 L v 

c1	  

c2	  

Figure 10.1: A Sample Data Repairing Scenario

Let us consider table R(A,B,C) in Figure 10.1, with a simple functional
dependency d : A→ B. The minimum cost algorithm would first build equiv-
alence classes of cells (in our example c1 for value 1, c2 for value 2 of the A
attribute, also shown in the figure), and then figure out a way to repair them.
This is done by minimizing an elaborate cost function [BFFR05] that mixes
together various features, like string similarity and confidence values. In its
simplest form, however, all updates have the same unitary cost. Thus, to min-
imize the cost we need to to repair each equivalence class by the value with the
highest frequency.

In fact, two minimum cost repairs for our example are R1, R2 in Figure 10.1.
Notice how we don’t have a clear policy to pick up a preferred value for the
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second equivalence class, since both values have equal frequency. Repair R3,
on the contrary, is not minimal: by picking 4 as a preferred value for the first
equivalence class, it generates an higher number of updates. It is also worth
noting that, according to the semantics in [BFFR05], it is perfectly acceptable
– although not minimal – to update the cells in c2 to some arbitrary value, 7,
that is different from both 5 and 6.

We now introduce a cleaning scenario that mimics this semantics. We
have an empty source database, a target database that coincides with R, and
a single egd that encodes the functional dependency d. We assume that no
backward changes are allowed, i.e., we use a forward-only cost manager, and
the user function is empty. The crux is to properly construct the partial order
specification. Suppose we are given a dirty instance R that we want to repair.
Our goal is to associate an ordering attribute to attribute B in R. From the
theoretical viewpoint, this can be done by building a table R′ that is obtained
from R by adding a new attribute fr. For each tuple t ∈ R, the value of t.fr is
the frequency of the value of t.B, as shown in Figure 10.1. We then specify fr

with the natural order of integer numbers as the ordering attribute for B.

In practice, of course, this is not necessary. We may consider fr as a virtual
attribute, and compute value frequencies on the fly. It is easy to see that our
semantics applied to R′ yields the minimal solution R4 in Figure 10.1. There
are a few important things to notice:

(i) there is a relationship (as we also discussed in Section 9) between equivalence
classes and cell groups; in fact, in this example two cell groups are generated
in the end, the first having occurrences that coincide with c1, the second with
c2; cell groups, however, are more sophisticated than equivalence classes, since
their semantics is such that we don’t need to separate the class-construction
step from the value-selection one. This is due to the monotonicity property
of cell groups: they may only increase in size, and at every step the keep
upgrading the quality of the target database;

(ii) our semantics is based on the assumption that arbitrary choices are to be
avoided, because they correspond to unjustified ways of updating the target.
To start, R3 is not even a solution in our approach: a cell groups that updates
t4.B to 7 would not be a valid cell group, because the constant is not motivated
either by some occurrence, justification or user-input. In addition, our chase
wouldn’t even choose between 5 or 6 for that cell, because the two values are
incomparable according to the partial order, and introduce a llun instead, that
needs to be resolved later on by the user;
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(iii) if we wanted to make an explicit choice between R1 and R2 without
resorting to users, then we need to refine our partial order in such a way that
all values for the fr attribute are different. One way to do this is to say that we
use both frequency and value, and whenever two values are equally frequent,
we pick up the higher one. We did this in table R′′ in Figure 10.1. A minimal
solution for R′′ would be R1; R4 is a non-minimal solution for R′′, while R2 is
not even a solution in this case.

Notice that the algorithms in [BFFR05, CFG+07, BFM07] deal with a few
more features. We quickly discuss them here.
(a) more sophisticated metrics and confidence values: it is easy to generalize the
frequency approach we have introduced here to incorporate string similarity or
some other forms of value distance. In a similar way, as we have shown in our
motivating example it is possible to handle confidence values and even more;
(b) conditional functional dependencies and backward chasing [CFG+07]: CFDs
are considered as a source of authoritative values in our approach; they nicely
blend with the partial order and need no ad hoc treatment. Similarly for
backward chasing;
(c) inclusion dependencies and conditional inclusion dependencies [BFFR05,
BFM07]: these papers develop hoc algorithms to handle the interaction of
functional and inclusion dependencies. On the contrary, in our approach their
interaction is nicely handled by our chase over cell groups.

10.2 The Sampling Algorithm

To further emphasize the flexibility of our approach, let us consider a second
repair algorithm from the literature, that is completely different in spirit from
the minimum-cost algorithm discussed above. Beskales and others have pro-
posed a repair algorithm [BIG10] that combines together forward and backward
chasing, a random strategy to repair cells, and sampling to reduce complexity.
We call this the sampling algorithm. In essence, whenever a violation for an
FD is detected, this algorithm may randomly decide to forward or backward
repair it. It also nondeterministically chooses whether to introduce a variable
to repair the conflict, or a random value from the active domain of the dirty
table. The space of repairs is sampled in order to generate k repairs that have
a minimality property.

We use two different techniques to reproduce this semantics in our approach.
The tricky part is to design a partial order that “simulates” the random se-
lection of values. To do this we may proceed along the lines of what we did
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with the frequency attribute. In this case, we start with the dirty database,
and associate with each attribute A a (virtual) additional attribute rndA; for
each cell of A, we initialize the corresponding cell of rndA with a randomly
assigned value. This guarantees that values will be preferred to each other
in a completely random way. Then, we adopt a sampling cost manager, that
randomly decides whether to accept or refuse a chase step, until k solutions
have been generated.

10.3 Prioritized Repairing

We now want to compare our partial order with different notions of preference
that have been recently introduced in connection with data quality constraints.
We start by considering the work on prioritized repairing [SCM12]. This re-
search is is inspired by works on preferred models for logic programs, and is
somehow different in spirit from our work. While we focus primarily on ob-
taining preferred solutions by means of a general chase procedure, their focus
is on the complexity of repair checking, and on consistent query answering.

There are also significant differences in terms of the language of dependen-
cies, and update strategies. Prioritized repairs consider subset repairs (i.e.,
tuple deletions only), and denial constraints with no constants. While clean-
ing egds can be extended to capture arbitrary denial constraints, their update
primitives are considerably different from the ones we use (cell updates, and
no deletions). These differences are such that the two algorithms are quite
different in nature.

Nevertheless, our partial order has points of contact with their notion of
a prioritized repair, and therefore we find it interesting to compare the two
approaches. In this respect, we believe that our partial order over cells and cell
groups is more flexible. In fact, prioritized repairs rely on preference orders
that are specified over tuples, and lift them to sets of tuples. On the contrary,
we specify preference orders over cells, and lift them to cell groups, i.e., sets of
cell modifications. This finer granularity of our approach makes our notion of
an upgrade more general than their notion of global optimal repair.

To see this, consider the simple example in which we have a single table
R(A,B,C) with a functional dependency A→ B,C, and a dirty instance I =
{t1 : R(a, 1, 4), t2 = R(a, 2, 3)}. Suppose our partial order specification states
that, for any attribute, cells with higher values should be preferred to the ones
with lower values; this gives us the following minimal solution: J = {R(a, 2, 4)}.

First, we notice that J is not a repair in their setting, since any of their
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repairs must either correspond with t1 or t2 only (depending on the preference
relation on tuples, and therefore on the tuple that is deleted to satisfy the FD).
Second, by changing our partial order specification, we can easily simulate their
semantics. Suppose, in fact, we say that for attribute B we prefer cells with
lower values, while for attribute C the ones with higher values; then we have
a minimal solution: J ′ = {t1 = R(a, 1, 4)} that coincides with their globally
optimal repair.

There are a few other restrictions associated with prioritized repairing that
we don’t need to impose, namely the acyclicity restriction on preference rela-
tions, and the notion of Pareto optimality.

Source #1 – Master Data 

FN LN League Season Team

tm1 Michael Jordan NBA 1994-95 Chicago Bulls 

tm2 Michael Jordan NBA 2001-02 Washington Wz 

NBA STATS 
ID FN MN LN Rnds TotPts J League Team Arena

t1 1 MJ null null 16 424 45 NBA Chicago Chicago Stadium 

t2 1 Michael null Jordan 27 772 23 NBA Chicago Bulls United Center 

t3 1 Michael null Jordan 1 19 45 NBA Chicago Bulls United Center 

t4 1 Michael Jeffrey Jordan 127 51 45 SL Birmingham Barons Regions Park 

t5 2 Larry Joe Bird 13 234 33 NBA Boston Celtics null 

t6 2 Larry null Bird 45 908 33 NBA Boston Celtics TD Garden 

STATS 
ID FN MN LN Rnds TotPts J League Team Arena

t1 1 Michael Jeffrey Jordan 27 772 23 NBA Chicago Bulls L1 

t2 1 Michael Jeffrey Jordan 127 51 45 SL Birmingham Barons Regions Park 

t3 2 Larry Joe Bird 45 908 33 NBA Boston Celtics TD Garden 

Solution #1 
d1 = ID→ FN, LN( )
d2 = ID, FN→MN( )
d3 = ID, League→ TotPts, J, Team( )
d4 = ID, League, J→Rnds( )
d5 = ID, League, Team→ Arena( )
d6 = tm[FN, LN,Season='1994-95'],t[FN, LN]→
                    tm[League, Team]= t[League, Team]

Π =

PFN = DMN
PJ = DRnds
PTotPts = DRnds
PRnds = DRnds

⎧

⎨
⎪
⎪

⎩

⎪
⎪

Initial Target 

Dependencies 

Figure 10.2: The Michael Jordan Example

10.4 Relative Accuracy

We conclude our discussion by a discussion of a recent paper by Cao and others
[CFY13]. This paper studies a rather specific problem, called by the authors the
accuracy problem which falls within the reach of entity resolution [BGMM+09]
rather than constraint-based data repairing. It is formulated as follows: we are
given a set of records Ie with the same schema, that correspond to a description
of a single real world entity e. These records may have conflicting values, and
the goal is to derive a single tuple te, which we call the entity tuple, with the
most accurate values for all attributes. Master-data tuples may be used during
the process.

One example of this problem is shown in Figure 10.2. Consider for now
only tuples t1 − t4, that refer to Michael Jordan. The goal is to unify them
within a single tuple that reflects the most accurate values for season 1994-95.
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While their algorithms do not aim at repairing an arbitrary database in-
stance that is dirty wrt a set of constraints, there are some points in common
with our approach. The authors develop a language of accuracy rules that have
two goals:

(i) on the one side, they can specify a partial order among target values; they
write t ≺rnds t

′ to denote that the value in cell t′.rnds is more accurate than
the one in cell t.rnds; this may happen, for example, because t1.rnds < t2.rnds,
i.e., tuple t′ contains stats that are more current than those in t; this can be
stated as follows:

a1 :∀t1, t2 ∈ Stats : (t1.leag = t2.leag, t1.rnds < t2.rnds→ t1 ≺rnds t2)

in addition, accuracy rules can be used to infer accuracy relationships among
attributes:

a2 : ∀t1, t2 ∈ Stats : (t1 ≺rnds t2 → t1 ≺totalPts t2)

i.e., the total number of points is more accurate in those tuples that have a
more accurate number of rounds;

(ii) on the other side, they may be used to correct the entity tuple te based on
master data tuples, like the ones shown in Figure 10.2 within table NBA.

The authors develop algorithms to dynamically handle the construction of
the entity tuple while at the same time deriving the partial order of accuracy
among attribute values. The main concern, here, is about the termination and
confluence of the process, i.e., if the algorithm terminates, and if it returns the
same identical tuple regardless of the order in which accuracy rules are fired.
This cannot be guaranteed in all cases.

Let us remark again that this is not a general-purpose data repairing al-
gorithm, since it does not contemplate constraints and makes the strong as-
sumption that all tuples represent a single entity. Still, we find it very useful to
compare our approach to this to emphasize a couple of important differences.

The main difference is that our approach to the partial order is immune
from the termination and confluence problems discussed in [CFY13]. In fact,
the partial-order specification of a mapping & cleaning scenario fixes a partial
order of the cells of the initial instance, 〈I , J 〉, which never changes during
the chase. In other terms, our algorithm clearly separates the definition of the
partial order for cells, that is done once and for all over 〈I , J 〉 before the repair
process starts, and the generation of the actual updates using cell groups.
This clear separation, along with the monotonicity property of cell groups,
guarantees that our chase procedure for cleaning scenarios always terminates
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and gives deterministic results (modulo the order of application of egds, which
is a totally different problem).

On the contrary, the relative accuracy algorithm adopt a dynamic strategy
to derive the partial order by interleaving the firing of accuracy rules and
master data rules. Despite the fact that our definition of the partial order is
static, we believe that our semantics guarantees most of the benefits of accuracy
rules, without the associated shortcomings. The intuition behind this is that
accuracy rules in essence do two things: (i) fix a natural order for the values of
an attribute, as discussed above for rule a1; (ii) they propagate this ordering
to other attributes, as in rule a2 above. But this is exactly what our partial
order specification does.

To show this, in Figure 10.2 we report a translation of the Michael Jordan
example as a cleaning scenario. Recall that the original problem was not a data
repairing problem. Therefore we needed to make some changes, to adapt it to
our setting. First, the target table Stats now may freely contain data about
different players (we added tuples for Larry Bird as well). Second, we needed
to specify a set of data quality constraints for this example to state that ID is a
key, in order to trigger the repair of tuples for each player, and an editing rule
to correct tuples using master-data. In Figure 10.2 we also report our partial
order specification for this example, and the minimal solution returned by our
algorithm (duplicate tuples have been removed for the sake of readability),
which is in line with the expected results reported by Cao and others [CFY13].

In conclusion, the formalism of accuracy rules and ours have different inspi-
rations and are not directly comparable. Loosely speaking, accuracy rules are
a very expressive language to encode preference relations, but their dynamic
nature is such that they not always interact in the proper way with the entity
resolution process.

Our partial order specification is less expressive, but it is static and therefore
free from termination and confluence issues: in fact, in cleaning scenarios a
solution is always reached. One may wonder how in this example we can
achieve basically the same results with our static partial order. The answer
is again cell groups. In fact, while the partial order of cells in the original
database is fixed and static, the partial order of cell groups naturally evolves
during the chase. This evolution obeys the nice law that it is guaranteed to
improve the quality of the target in a monotonic way. In light of this, we believe
that this example is another proof of the flexibility of our approach.
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Scalability

11.1 Delta Databases

Even with cost managers in place, the parallel nature of our chase algorithm
imposes to store a possibly large tree of updates. A naive approach in which
new copies of the whole database are created whenever we need to generate
a new node in the tree, is clearly inefficient. To solve this problem, we in-
troduce an ad-hoc representation system for nodes in our chase trees, called
delta databases. Delta databases are a formalism to store a finite set of worlds
into a single relational database. Intuitively, they allow to store “deltas”, i.e.,
modifications to the original database, rather than entire instances as is done
in the naive approach.

Delta relations rely on an attribute-level storage system, inspired by U-
relations [AJKO08], modified to efficiently store cell groups and chase se-
quences. More specifically, (i) each column in the original database is stored
in a separate delta relation, to be able to record cell-level changes; (ii) chase
steps are identified by a function with a prefix property, such that the id of the
father of n is a prefix of the encoding of n; this allows to quickly reconstruct the
state of the database at any given step, using fast SQL queries; (iii) additional
tables are used to store cell groups, i.e., occurrences and justifications.

More formally, we introduce a function stepId() that associates a string id
with each chase step, i.e., with each node in the chase tree, and has the prefix
property such that for each n, stepId(father(n)) is a prefix of stepId(n). For
this, we use the function that assigns the id r to the root, r.0, r.1, . . ., r.n to
its children, and so on.
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Definition 34 [Delta Database] Given a target database schema R =
{R1, . . . , Rk}, a delta database for R contains the following tables: (i) a delta
table Ri Aj with attributes (tid, stepId, value), for each Ri and each attribute
Aj of Ri; (ii) a table occurrences, with schema (stepId, value, tid, table, attr);
(iii) a table justifications, with schema (stepId, value, tid, table, attr).

During the chase, we store the whole chase tree into the delta database. We
do not perform updates, which are slow, but execute inserts instead. Whenever,
at step s, a cell tid.A in table R is changed to value v, we store a new tuple in
the delta table R A with value (tid, stepId, v). Using this representation, it is
possible to store trees of hundreds of nodes quite efficiently. In addition, it is
relatively easy to find violations using SQL (the actual queries are omitted for
space reasons).

In the next section we show how the combination of our advanced chase
procedure and its implementation under the form of delta databases scale to
large repairing problems with millions of tuples and large chase trees.

11.2 Optimizations to the Chase

Our goal in this section is to introduce new optimizations that guarantee good
performance when chasing tgds, and at the same time considerably improve
performance on egds.

When Does the Chase Scale?

Of the many variants of the chase, the ones that scale nicely are those that
can be implemented as queries in a first-order language, and therefore as SQL
scripts. To give an example, consider the s-t tgd R1(x, z), R2(x, v) → ∃y :
R3(x, y). Assume R3 is empty. Then, as it was detailed in [tCCKT09], chasing
this tgd amounts to run the following SQL statement, where sk(x) is a Skolem
term used to generate the needed labeled null:

insert into R3 select x, sk(x) from R1,R2 where R1.x=R2.x

We call this a batch chase execution. In fact, chasing s-t tgds, or even
the more general FO-rules [MPR12] is extremely fast. On the contrary, the
chase becomes slow whenever it needs to be executed in a violation-by-violation
fashion. Unfortunately, our chase procedure does not allow for easy batch-mode
executions, because of a crucial factor: during the chase, we need to keep track
of cell groups, and properly maintain them. Repairing a violation for either a
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tgd or an egd changes the set of cell groups, and therefore may influence other
violations.

In our approach, cell-groups are stored during the chase using two additional
database tables, one for occurrences, one for justifications.

Consider now the tgd above, and assume also R1, R2 are target tables.
Suppose our chase is at step s. In our approach, to chase the tgd by literally
following the definition of a chase step, we need to do the following: (i) query
the target to join R1, R2 to find a tuple t that satisfies the premise; (ii) query
R3 to check that t contains a value of x that should actually be copied to R3;
(iii) add the new tuple to R3; in addition, we also have to properly update cell
groups; to do this: (iv) for each cell associated in t with variable x, we need
to query tables occurrences and justifications to extract the cell group of the
cell, and build the a new cell group as the union of these; (v) store the new
cell group for x in tables occurrences and justifications; (vi) do the same for
the existentially quantified variable, y. Then, move to the next violation and
iterate.

It is easy to see that this amounts to perform several thousands of queries,
even for a very small database. More importantly, we are forced to mix queries,
operations in main memory, and updates to the database, and send many single
statements to the dbms using different connections, with a perverse effect on
performance. In the next paragraphs, we develop a number of optimizations
that alleviate this problem.

Caching Cell Groups

A key optimization in order to speed up the chase consists in caching cell groups
in main memory. This, however, has a number of subtleties. We tested several
caching strategies for cell groups. The first, straightforward one, is a typical
cache-aside, lazy loading strategy, in which a cell group is first searched in the
cache; in case it is missing, it is loaded from the database and stored in the
cache. As it will be shown in our tests, this strategy is too slow.

Greedy strategies perform better. We tried a cache-as-sor, greedy strategy
in which the first time a cell group for a step s is requested, we load into
the cache all cell groups for s, with two queries (one for occurrences, one for
justifications). This strategy works very well for the first few steps. Then, as
soon as the chase goes on, for large databases it tends to become slower since
the main memory limit is easily reached (no cell group is ever evicted from
the cache), and some of the cell groups need to be swapped out to the disk.
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Since accessing the file system on disk is slower than querying the database,
performances degrade.

To find the best compromise between storage-efficiency and performance,
we noticed that our chase algorithm has a high degree of locality. In fact, when
chasing node s in the tree to generate its children, only cell groups valid at
step s are needed. Then, after we move from s to its first child, s′, cell groups
of s will not be needed for a while. We therefore designed a single-step, greedy
caching strategy, that caches cell groups for a single step at a time. In essence,
we keep track of the step s currently in the cache; whenever a cell group for
a different step s′ is requested, we clean the cache and load all cell groups for
s′. Our experiments show that this brings excellent improvements in terms of
running times.

Chasing Tgds in Batch Mode

A second, major optimization, consists in chasing tgds in batch mode. In
essence, we want to clearly separate updates to the dbms (that are much more
efficient when are run in batch mode), from the analysis and update of cell
groups. To do this, we use a multi-step strategy that we shall explain using
our sample tgd above. As a first step, we update the dbms in batch mode.
To avoid the introduction of unnecessary tuples, we insert into table R3 only
those tuples that contain values that are not already in R3, by the following
statement:

insert into R3 select x, sk(x) from R1,R2 where
R1.x=R2.x and x not in ( select x from R3).

Once all of the needed tuples have been inserted into the database, we maintain
cell groups. To do this, we store all values of x that have been copied to R3

into a violations temporary table. Then, we run the following query, that gives
us the cells for which we need to update cell groups:

select R1.x, R2.x, R3.x, R3.y from R1, R2, R3

where R1.x = R2.x and R2.x = R3.x
and x in (select x from violations).

We scan the result, and properly merge the cell groups. Notice that this step
is usually very fast, since we use the cache. Finally, we update the occurrence
and justifications table.



i
i

i
i

i
i

i
i

11.2. OPTIMIZATIONS TO THE CHASE 73

Chasing Egds in Batch Mode

We also use an aggressive strategy to chase egds. Generally speaking, viola-
tions for egds should be solved one at a time, since they interact with each
other. Consider for example this common egd, encoding a conditional func-
tional dependency: R(x), S(x, y)→ x=y, where S is source table. Assume the
following tuples are present R(1), S(1, a), S(1, b). We first query the database
to find out violations using the following query:

select x, y from R,S where R.x = S.x and x <> y.

This will return two violations, the first arising from R(1), S(1, a), the second
from R(1), S(1, b). However, as soon as we repair the first one and change R.x
to a, the second violation disappears. To see this, it is necessary to repeat the
query and realize that the result is empty.

Despite this, we do not want to process violations one at a time, but rather
in batch mode. During the chase, we keep track in main memory of the cell
groups that need to be maintained to solve violations. Before writing updates
to the database, we check if the resulting set of cell groups is consistent with
each other, i.e., each cell of the database is changed only once. As soon as we
realize that a cell group is not consistent, we discard the update and iterate
the query.
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Chapter 12

Experimental Result

12.1 Prototype

The proposed algorithms have been implemented in a working prototype of
the Llunatic system, written in Java. A preliminary release of the sys-
tem is already available on the project page (http://db.unibas.it/projects-
/llunatic/files). We plan to release the prototype under an open-source
license on one of the major open-source repositories. Llunatic comes with a
GUI developed using the NetBeans Platform and reported in Figure 12.1, that
allows users to easily specify a scenario, explore initial instances and configure
the core aspects of the repair process. In particular users can specify the partial
order in a declarative way, associating ordering attributes or writing a custom
JavaScript code.

The scenario specification is then handled by the tool, which runs a parallel-
chase procedure, that generates a chase tree, as shown in Figure 12.1. Leaves in
the chase tree are solutions and, for each of them, it is possible to explore all the
chase steps, from the root to the leaf, and analyze the modifications, expressed
by cell groups. As already said, they not only specify how to change the cells
of the database, but also carry full provenance information for the changes, in
terms of (a) original values of the cells in the target database; (b) relationships
to source and master-data values, if these exist; and (c) user interventions to
repair the cells (see Figure 12.1).

The real power of Llunatic stands in the possibility to control the solution-
generation process in a very fine way. In particular the number of alternative
solutions are defined by using the cost manager, and the interaction with the
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Figure 12.1: Llunatic in action

users is handled by the user manager.

A cost manager defines how to prune the chase tree and discard partial
solutions along the process to limit the size of the output. Each cost manager
is defined by a type and a set of configuration values.

The user interaction is another crucial feature of our system: indeed in
those cases in which no preference rule is available, Llunatic does not make
arbitrary choices, and rather marks conflicts so that users may resolve them
later on.

Based on this, Llunatic offers powerful features to collect user-inputs.
First, it is allows to declaratively specify when the chase should be (temporar-
ily) paused to collect inputs from the user by plugging user managers into the
chase. A user manager is a declarative condition over the chase tree that stops
the chase and asks the user for input. There are several strategies supported:
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(i) Interactive stops the chase and asks for inputs after each new node is added
to the tree; (ii) AfterLLUN only stops for nodes that contain LLUNS; (iii)
AfterFork stops the chase every time one child is created.

When the chase stops and the user is invoked, s/he may pick up a node in
the chase tree, consult its history in terms of changes to the original database,
inspect the lluns that have been introduced, and analyze the associated cell
groups. Based on this, informed decisions are taken in order to remove lluns
and replace them with the appropriate constants (see Figure 12.1).

Working with cost managers concretely allows users to explore the trade-
offs between the quality of updates, and the cost of their generation. Even more
important, cost managers, user-specified preference rules, and user-inputs give
a fine-grained control over the solution-generation process, and can be used to
learn important lessons, as discussed in the next section.

12.2 Experimental Result

In this section, we consider several cleaning scenarios, of different nature and
sizes, and study both the quality of the updates computed by our system, and
the scalability of the chase algorithm. We show that our algorithm produces
updates of better quality with respect to other systems in the literature, and at
the same time scales to large databases. All experiments have been executed
on an Intel i7 machine with 2.6Ghz processor and 8GB of RAM under MacOS.
The DBMS was PostgreSQL 9.2.

The section is organized as follows. We start by introducing the datasets
and how they are used in the three kinds of scenarios we support. We describe
the way errors are introduced in the datasets and how solutions are evalu-
ated with several metrics. We then introduce alternative algorithms to obtain
solutions and compare them against Llunatic.

Datasets and Scenarios

We selected three datasets. The first two are based on real
data from the US Department of Health & Human Services
(http://www.medicare.gov/hospitalcompare/), the third one is synthetic. More
details about datasets and transformations are reported in the Appendix.

(a) Hospital-Norm is the normalized version of the hospital data, of which we
considered 3 tables with 2 foreign keys, a total of 20 attributes, and approxi-
mately 150K tuples.
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(b) Hospital-Den is a highly denormalized version of the same data, with 100K
tuples and 19 attributes, traditionally used in data quality experiments, over
which we specified 9 functional dependencies. This second version has tradi-
tionally been used in data quality experiments to test algorithms that were
restricted to single-table databases. For both Hospital datasets, in our scala-
bility tests we generated instances of size up to 1M tuples by replicating the
original data several times.
(c) Customers, corresponds to our running example in Figure 1. The source
database schemas contain 3 tables, plus 1 master data table and 2 additional
tables encoding constants in CFDs. The target database schema contains 2
tables. Dependencies are the ones in Section 1.

We synthetically generated up to 1M tuples for the 4 source tables, with a
proportion of 40% in MedTreatments, 40% in Surgeries, and 20% in Patients; the
master-data table contains a few hundreds of the tuples present in MedTreat-
ments and in Patients. We consider master-data tuples outside the total, as
they cannot be modified. For the target, we generated up to 1M tuples, with
a proportion of 40% in the Customers table, and 60% in Treatments;

Based on these datasets, we defined 5 scenarios, one for Type-1, two for
Type-2 and two for Type-3. For each scenario we also fixed an expected solu-
tion, called DBexp, as follows:
(i) a Type-1, data exchange scenario Customers-DE based on a version of the
Customers dataset for which there are no conflicts among the sources and an
empty target database; we generated a clean and consistent version of the
source tables, and based on those the expected instance is the core universal
solution for the set of tgds and egds in Section 1;
(ii) a Type-2, cleaning scenario Hospital-Den-CL based on the Hospital-Den

dataset, with 1 table, 9 functional dependencies, and the standard partial order
specification; the expected instance, in this case, is the original table;
(iii) a Type-2, cleaning scenario Customers-CL based on the Customers dataset,
with the 2 target tables Customers and Treatments, 3 source tables (1 master
data table and 2 additional tables encoding constants in CFDs), the 9 extended
egds reported in Section 3, and the partial order discussed in Section 4.3; the
expected instance, in this case, is the original table;
(iv) a Type-3, mapping & cleaning scenario Hospital-Norm-MC based on the
Hospital-Norm dataset, with 3 tables, 2 tgds and 12 egds, and the standard
partial order specification; the expected instance, in this case, corresponds to
the original tables;
(v) a Type-3, mapping & cleaning scenario Customers-MC based on the Customers

dataset, with the set of tgds and egds in Section 1, (a total of 6 source tables,
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2 target tables, 3 tgds and 9 egds), and the partial order in Section 4.3, and
a non-empty target database; since we are integrating several sources, fixing
the expected instance in this case is less obvious. We consider the clean and
consistent versions of the source tables used for scenario Customers-DE, and
the core universal solution, C, of the mapping scenario. Then, we introduced
random noise and inconsistencies in the sources, and fed them to the mapping
and cleaning scenario. We intend to measure to which extent our algorithm is
capable of generating a consistent and minimal repair of the target database.
To do this, we adopt as an expected solution the core universal solution C
above.

It is worth noting that these scenarios somehow represent opposite extremes
of the spectrum of data-repairing problems. In fact, the Hospital-Den-CL and
Hospital-Norm-MC scenarios contain functional dependencies only, and therefore
are quite standard in terms of constraints. However, Hospital-Den-CL can be
considered a worst-case in terms of scalability, since all data are stored as a
single, non-normalized table, with many attributes and lots of redundancy;
over this single table, the 9 dependencies interact in various ways, and there
is no partial-order information that can be used to ameliorate the cleaning
process. On the contrary, the Customers-CL scenario contains a complex mix of
dependencies; this increased complexity of the constraints is compensated by
the fact that data are stored as normalized tables, with no redundancy, and
preference strategies are given for some of the attributes.

Errors Induction

In order to test our algorithms with different levels of noise, we introduced
errors in the datasets. Part of these errors were generated by a random-noise
generator. However, in order to be as close as possible to real scenarios, in the
Hospital datasets we also used a different source of noise. We asked workers
from Mechanical Turk (MT) (https://www.mturk.com/mturk/) to perform data
entry for a random sample of tuples from the original database. Workers were
shown the original tuple under the form of a jpeg image, and needed to manu-
ally copy values into a form. In order to make all the errors detectable by the
constraints, we let the workers hand copy only values for attributes involved in
constraints. We then extended the noise to the entire datasets by simulating
the error patterns of the workers with a program over the clean data. We used
different groups of workers with different approval rates; approval rates measure
the quality of a worker in terms of the percentage of previous jobs positively
evaluated within MT. Approval rates varied between 50% and 99%; for these,
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we observed a percentage of wrong values between 5% and 1%. These errors
were then complemented with those generated by the random noise generator.
Errors have been added to the other datasets with the same procedure.

For all datasets, we generated dirty copies with an increasing number of
noisy cells (ranging from 1% to 10% of the total depending on the scenario).
Changes to the original values were done only for attributes involved in de-
pendencies, in order to maximize the probability of generating detectable vio-
lations. All perturbations are detectable by the constraints (we discarded any
generated perturbation over attributes that were not involved in a dependency).

Quality Metrics

For all scenarios, we measure running times and the size of the chase trees. For
evaluation of the quality of the solutions for Type-2 and Type-3 scenarios, we
have four quality metrics.

The quality of repair algorithms (Type-2) have been traditionally measured
by considering a single table with an immutable set of cells, and by reporting
precision and recall in terms of dirty cells that have been restored to the original
values. More specifically, for each clean database, we generated the set Cp of
perturbated cells. Then, we run each algorithm to generate a set of repaired
cells, Cr, and computed precision (P ), recall (R), and F-measure (F = 2 ×
(P ×R)/(P +R)) of Cr wrt Cp. Since several of the algorithms may introduce
variables to repair the database – like our lluns – we calculated two different
metrics.

Metric 0.5. The first one is the one adopted in [BIG10], which we call
Metric 0.5 : (i) for each cell c ∈ Cr repaired to the original value in Cp, the
score was 1; (ii) for each cell c ∈ Cr changed into a value different from the one
in Cp, the score was 0; (iii) for each cell c ∈ Cr repaired to a variable value,
if the cell was also in Cp, the score was 0.5. In essence, a llun or a variable is
counted as a partially correct change. This gives an estimate of precision and
recall when variables are considered as a partial match.

Metric 1.0. Since our scenarios may require a consistent number of vari-
ables, due to the need for backward updates, and this metric disfavors variables,
we also adopt a different metric, which counts all correctly identified cells. In
this metric, called Metric 1.0 , item (iii) above becomes: for each cell c ∈ Cr
repaired to a variable value, if the cell was also in Cp, the score was 1.

In mapping and cleaning (Type-3), on the contrary, we may have different
tables, referential integrity constraints, and the addition of new cells to the
target. The presence of new cells makes it impossible to reuse the traditional
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metrics. Given a clean target database, we need for each repair a general al-
gorithm to measure the similarity of the whole, multi-table repaired database
to the expected target database. A general and efficient algorithm to mea-
sure the similarity of two complex databases by taking into account foreign
keys, different cell ids, and placeholders, like labeled nulls or lluns has been
recently developed in [MPRS12], and we adopt it for this metric. Based on
this algorithm, we report two different quality measures.

Metric Sim. The first one is the similarity, sim(Upd,DBexp), measured by
the algorithm in [MPRS12]. In the comparison, lluns are considered as partial
matches, and counted as 0.5 each.

Metric Rep-rate. In the Hospital-Norm-MC this measure can be misleading.
There we start with a clean target database, DBclean, and introduce random
noise to generate a dirty database, DBdirty. On average, the dirty copy is
approximately 90% similar to the clean one, and therefore all repairs will also
have high similarity to the clean instance. In this case we report a repair rate
defined as:

rep-rate(Upd,DBexp) =
1− (1− sim(Upd,DBexp))

(1− sim(DBdirty, DBexp))

In essence, we measure how much of the original noise a repairing algorithm
actually removed. Whenever an algorithm returned more than one repair for
a database, we calculated the maximum, minimum, and average quality.

Algorithms

We ran Llunatic with several cost managers and several caching strategies, as
discussed in Sections 9, 11. In particular we used a new kind of cost manager,
called frequency cost manager (FR), that adopts the following rules in order to
repair an homomorphism class H for dependency e: it relies on the frequency
of values appearing in conclusion cells, and on a similarity measure for val-
ues (based on the Levenshtein distance for strings); then: (i) it rejects repair
strategies that backward-chase cells with the most frequent conclusion value;
(ii) for every other conclusion cell, if its value is similar (distance below a fixed
threshold) to the most frequent one, the cell is forward-chased; otherwise, it
is backward chased; this is typically used with a frequency rule in the partial
order of cell-groups;

We chose variants of the Llunatic-FR-sN cost manager – the frequency
cost-manager that generates up to N solutions – with N = 1, 10, 50, and the
Llunatic-FR-s1-FO, the forward-only variant of Llunatic-FR-s1. We do
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not report results obtained by the standard cost manager, as it only can be
used with small instances due to its high computing times.

In order to compare our system to previous approaches, we tested the fol-
lowing algorithms from the literature, implemented as separate systems:

For Type-1, the demo system [PS09], as the state of the art chase engine
for mappings.

For Type-2, three repair systems:

(a) Minimum Cost [BFFR05] (Min. Cost);

(b) Vertex Cover [KL09] (Vertex Cover);

(c) Repair Sampling [BIG10] (Sampling), for which, for each experiment, we
took 500 samples, as done in the original paper.

For Type-3, we used Min. Cost for repair scenarios with FDs and IDs (in
which IDs are repaired only by tuple insertions, and not by deletions or mod-
ifications), and an implementation of the Pipeline algorithm in Section 3 for
mapping and cleaning scenarios. The latter is obtained by coupling a standard
chase engine for tgds, and the Sampling algorithm for FDs in [BIG10]; here,
for each experiment, we took 100 samples.

All of these systems support a smaller class of constraints wrt to the ones ex-
pressible in our framework. No system can handle Customers-MC and Customers-

CL. We therefore limited the comparison to Hospital-Norm-MC and Hospital-Den-

CL.

Results

Each experiment was run 5 times, and the results for the best execution are
reported, both in terms of quality and execution times. We pick the best
result, instead of the average, in order to favor Sampling, which is based on
a sampling of the possible repairs and has no guarantee that the best repair is
computed first.

Whenever an algorithm returned more than one repair for a database, we
calculated the quality metrics for each repair; in the graphs, we report the
maximum, minimum, and average values. We do not report values for the
Llunatic-FR-s50 cost manager, since they differ for less than one percentage
point from those of Llunatic-FR-s10.

Type-1 Experiment: Customers-DE We start by showing the scalability of
our chase engine in Figure 12.2.d. We compare the performance of Llunatic
to the data exchange chase engine demo on scenario Customers-DE. It can be
seen that our implementation is orders of magnitude faster than demo.
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Figure 12.2: Experimental results for Hospital and Customers Type-1 and
Type-2.

Type-2 Experiment: Hospital-Den-CL We report in Figures 12.2.a–c scala-
bility results for some of our cost managers and the caching strategies discussed
in Section 11 (single step, greedy, lazy). The charts confirm that, due to the lo-
cality of the chase algorithm, the single-step cache represents the best choice in
terms of performance. Further experiments were performed with a single-step
cache manager.
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Figures 12.2.a–d clearly show the benefits that come with a DBMS imple-
mentation wrt main-memory ones, namely the possibility of scaling up to very
large databases. While previous works [BFFR05, BIG10] have reported results
up to a few thousand tuples, we were able to investigate the performance of
the system on databases of millions of tuples. The figures show that Llunatic
scales in both Type-1 and Type-2 scenarios to large databases. For Hospital-

Den we replicated the original dataset ten times with 1% errors. In these cases,
execution times in the order of an hour for millions of tuples can be considered
as a remarkable result, since no system had been able to achieve them before
on problems of such exponential complexity.

The trade-offs between quality and scalability are shown in Figures 12.2.e–g.
We start by showing that Llunatic produces repairs of significantly higher

quality with respect to those produced by previous algorithms. We ran Llu-
natic with the cost managers listed above, and the three competing algorithms
on samples of the Hospital dataset with increasing size (5k to 25k tuples) and
increasing percentage of errors (1% to 5%).

The maximum F-measure for Metric 1 is in Figure 12.2.e; for the two al-
gorithms that return more than one solution, the minimum and average F-
measures are reported in Figure 12.2.f . The maximum F-measure for Metric
0.5 is in Figure 12.2.g. Quality results for algorithms Min. Cost, Vertex
Cover, and Sampling are consistent with those reported in [BIG10], which
also conducted a comparison of these three algorithms on scenarios in which
forward and backward repairs were necessary.

It is not surprising that the F-measure in these cases is quite low. Consider,
in fact, a relation R(A,B) with FD A → B and a tuple R(a, 1); suppose the
first cell is changed to introduce an error, so that the tuple becomes R(x, 1).
There are many cases in which this error is not fixed by repairing algorithms.
This happens, in fact, whenever the new tuple, R(x, 1), does not get involved
in any conflict, and therefore the error goes undetected. In addition, even if a
violation is raised, an algorithm may choose to repair it forward, thus missing
the correct repair. Finally, even when a backward repair is correctly identified,
algorithms have no clue about the right value for the A attribute, and may do
little more than introducing a variable – a llun in our case – to fix the violation.
All of these cases contribute to lower precision and recall.

The superior quality achieved by Llunatic variants can be explained by
first noticing that algorithms capable of repairing both forward and backward
obtained better results than those that only perform forward repairs. Besides
Llunatic, the only other algorithm capable of backward repairs is Sampling.
However, this algorithm picks up repairs in a random way. On the contrary,



i
i

i
i

i
i

i
i

12.2. EXPERIMENTAL RESULT 85

Llunatic’s chase algorithm explores the space of solutions in a more system-
atic way, and this explains its improvements in quality. In light of this, the su-
perior quality achieved by the Llunatic variants, which clearly outperformed
the competitors, is a significant improvement.

Figure 12.2.h compares execution times for the various algorithms on
Hospital-Den dataset up to 100K tuples, with 1% perturbation. Recall that Llu-
natic is the first DBMS-based implementation of a data repairing algorithm.
Therefore, our implementation is somehow disfavored in this comparison. To
see this, consider that, when producing repairs, main-memory algorithms may
aggressively use hash-based data structures to speed-up the computation of
repairs, at the cost of using more memory. Using the DBMS, our algorithm
is constrained to use SQL for accessing and repairing data; to see how this
changes the cost of a repair, consider that even updating a single cell (a very
quick operation when performed in main memory) when using the DBMS re-
quires to perform an UPDATE, and therefore a SELECT to locate the right
tuple.

Nevertheless, the Llunatic-FR-s1 cost manager scales nicely and has bet-
ter performances than some of the main memory implementations. We may
therefore say that graphs e–h in Figure 12.2 give us a concrete perception of
the trade-offs between complexity and accuracy, and allow us to say that the
Llunatic-FR-S1 is the best compromise for the Hospital scenario. Other
algorithms do not allow to fine tune this trade-off. To see an example, consider
the Sampling algorithm: we noticed that taking 1000 samples instead of 500
doubles execution times, but it does not produce significant improvements in
quality.

Type-2 Experiment: Customers-CL Figures 12.2.i reports quality results for
the Customers-CL scenario. Recall that Llunatic is the first system that is
able to handle such kind of scenarios with complex constraints. We notice that
quality results are better than those on Hospital-Den-CL; this is a consequence
of the clear user-specified preference rules.

It is interesting to report that performances were significantly better on
the Customers-CL scenario w.r.t. Hospital-Den-CL . This is not surprising: as we
discussed above, this database contains non redundant, normalized tables. This
reflects the benefit of a constraint language that allows to express inter-table
cleaning constraints.

Type-3 Experiment: Customers-MC The overall scalability of the chase is
confirmed on scenario Customers-MC in Figure 12.3.a. In fact, the normalized
nature of the data guarantees performance results that are significantly bet-
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a: Scalability Customers-MC 
 

b: Max Quality, Customers-MC c: Min&Avg. Quality, Customers-MC d: Chase Tree Size, Customers-MC 
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Figure 12.3: Experimental results for Hospital and Customers Type-3.

ter than those reported for the denormalized scenario in Hospital-Den-CL, even
though in this case we are chasing tgds and egds together.

The execution times achieved by the algorithm can be considered as a re-
markable result for problems of this complexity. They are even more surprising
if we consider the size of the chase trees that our algorithm computes, which
may reach several hundreds of nodes as reported in Figure 12.3.d. Consider
also that each node in the tree is a copy of the entire database. It is also worth
noting that storing chase trees as delta databases is crucial in order to achieve
such a level of scalability. Without such a representation system times would
be orders of magnitude higher.

Figures 12.3.b–c report the quality achieved by the various cost managers,
in terms of the similarity to the core instance, sim(Upd,DBexp). Llunatic is
the only system capable of handling scenarios of this complexity, and therefore
no baseline is available. Notice that achieving 100% quality is in some cases
impossible, since the sources have been made dirty in a random way, and some
conflicts are not even detected by the dependencies. However, quality of the
solutions is very high. This is a consequence of the rich preference rules that
come with this scenario.

Type-3 Experiment: Hospital-Norm-MC Figure 12.3.e confirms the excellent
scalability of chasing tgds and egds on normalized databases, even with chase
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trees of large size (Figure 12.3.g). We do not report computation times for the
pipeline and Min.Cost algorithms since they were designed to run in main
memory and do not scale to large databases.

In terms of quality, we notice that finding the right repairs for Hospital-

Norm-MC is quite hard, since here we have no preference relations, and there
is very little redundancy in the tables. In Figure 12.3.f we report metric
rep-rate(Upd,DBexp) for the three algorithms that we ran on this scenario.
Two things are apparent: Llunatic was able to partially repair the dirty
database, but the overall quality was lower than the maximum one achieved in
scenario Customers-MC.

On the contrary, both the Min.Cost, and the pipeline somehow lowered
the quality. In fact, on the one side, the Min.Cost algorithm cannot backward
repair cells. The pipeline algorithm samples repairs in a random fashion and
cannot properly handle interactions among tgds and egds. As a consequence,
both algorithms manage to generate a consistent repair, but at the cost of
adding many unnecessary tuples to the target to repair foreign keys, and this
lowers their score.

We finish by mentioning Figure 12.3.h, in which we study the impact of user
inputs on the chase process. We run the experiment for 25K tuples interactively,
and provided random user inputs by alternating the change of a llun value with
the rejection of a leaf. It can be seen that small quantities of inputs from the
user may significantly prune the size of the chase tree, and therefore speed-up
the computation of solutions.
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Chapter 13

Related Works

There has been a host of work on both data exchange and data quality man-
agement (see [ABLM10] and [FG12] for recent surveys, respectively). From the
data exchange perspective, the traditional framework allows to define and en-
force target constraints useful for data quality, such as functional dependencies,
but a general semantics to handle conflicting values has never been proposed
before our work. From the data cleaning perspective, the existing algorithms
can be applied on the materialized instance of exchanges from multiple sources,
but, as we have discussed above, they fail short in modeling important infor-
mation coming from the sources and the transformation itself, thus obtaining
repairs that are not valid instances.

Our mapping & cleaning approach is applicable to general classes of con-
straints and provides an elegant notion of solution. We now discuss related
proposals in more details, grouped according to topic

13.1 Data Repair

Several classes of constraints have been proposed to characterize and improve
the quality of data. Most relevant to our work are the (semi-)automated re-
pairing algorithms for these constraints [BIG10, BFFR05, CFG+07, FLM+10,
FLM+11, KL09]. These methods differ in the constraints that they admit,
e.g., FDs [BIG10, BFFR05], CFDs [CFG+07, KL09], inclusion dependen-
cies [BFFR05], and editing rules [FLM+10], and the underlying techniques used
to improve their effectiveness and efficiency, e.g., statistical inference [CFG+07],
measures of the reliability of the data [BFFR05, FLM+10], and user interac-
tion [CFG+07, YEN+11].
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Dependency Language Rep. Strat. Value Preference Solution Selection
System FD CFD ER TGD RHS LHS Conf. Curr. MD Cost Cert. Cardin. Sampl.

[BFFR05]
√ √ √ √ √

[CFG+07]
√ √ √ √ √ √ √

[KL09]
√ √ √ √ √

[FLM+10]
√ √ √ √

[BIG10]
√ √ √ √ √ √

[DEE+13]
√ √ √ √ √ √ √ √

[CIP13]
√ √ √ √ √ √ √ √

Llunatic
√ √ √ √ √ √ √ √ √ √ √ √ √

ext. dependencies chase proced. partial order cost manager

Table 13.1: Feature Comparison for Type-2 Scenarios.

All of these methods work for a specific class of constraints only, with the
exception of [CIP13, FLM+11]. A flexible data quality system was recently
proposed [DEE+13] which allows user-defined procedural code for detection
and cleaning. These works explore the interaction among different kinds of
dependencies, but they do not have a unified formal semantics with a definition
of solution, neither the generality of our partial order to model preferences.
Table 13.1 summarizes the features of Llunatic with respect to some of these
approaches for Type-2 scenarios.

More importantly, none of the above algorithms allow tgds between
schemas, i.e., the mappings. However, some of the ingredients of our scenarios
are inspired by, but different from, features of other repairing approaches: re-
pairing based on both premise and conclusion of constraints [CFG+07, BIG10,
KL09], cells [BIG10, KL09, BFFR05], groups of cells [BFFR05], partial orders
and its incorporation in the chase [BKL11]. We discuss these aspects in detail
next.

We do allow for forward and backward chasing. Similarly, [CFG+07, KL09,
BIG10] resolve violations by changing values for attributes in both the premise
and conclusion of constraints. They do, however, only support a limited class
of constraints. Previous works [KL09, BIG10] have used variables in order
to repair the left-hand side of dependencies. With respect to variables, our
lluns are a more sophisticated tool. In our approach, the full power of lluns
is achieved in conjunction with cell-groups: for each llun, the corresponding
cell group provides complete provenance data for the llun, both in terms of
target and source cells. Therefore, it represents an ideal support for user in-
tervention, when the value of the llun must be resolved to some constant. In
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fact, lluns and cell-groups can be seen as a novel representation system [IL84]
for solutions, that stands in between of the naive tables of data exchange, and
of the more expressive c-tables, trying to strike a balance between complexity
and expressibility.

An approach similar to ours has been proposed in [BKL11], with respect
to a different cleaning problem. The authors concentrate on scenarios with
matching dependencies and matching functions, where the main goal is to
merge together values based on attribute similarities, and develop a chase-based
algorithm. They show that, under proper assumptions, matching functions
provide a partial order over database values, and that the partial order can be
lifted to database instances and repairs. A key component of their approach
is the availability of matching functions that are essentially total, i.e., they are
able to merge any two comparable values. In fact, the problem they deal with
can be seen as an instance of the entity-resolution problem. In this thesis, we
deal with the different problem of data-repairing under a large class of data-
cleaning constraints, and have a more ambitious goal, i.e., to embed different
forms of value preference into a general semantics for the cleaning process. Our
main intuition is that the notion of a partial order is an effective way to let
users specify value preferences, and to incorporate them into the semantics in
a principled way. In order to do this, we have shown that reasoning on the
ordering of values – as in [BKL11] – or on the ordering of single cells is not
enough. On the contrary, it is necessary to devise a more sophisticated notion
of a partial order for cell-groups, i.e., groups of cells that need to be repaired
together and for which lineage information is maintained. Also, we do not
make strong assumptions about the possibility of resolving all conflicts among
values in the database, and therefore introduce lluns as a third category of
values besides nulls and constants.

Finally, a major contribution of this work is the development of a DBMS-
based implementation of the repairing algorithm. We devoted special care
in designing our chase algorithm over equivalence-classes, a notion originally
proposed in [BFFR05] for FDs, and in developing the representation system of
delta databases; delta database are similar to U-relations [AJKO08], but have
been adapted to better suit the needs of the data repairing process.

13.2 Inference of Accuracy, Currency and Truth
Discovery

A crucial and far from trivial contribution of this thesis consists in developing a
new semantics for a cleaning scenario that allows to incorporate many different
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strategies to pick-up preferred values and solve conflicts, as reported in Ta-
ble 13.1. We showed that our partial order allows users to model master-data,
value confidence, and even currency rules. The partial order can also be used
to take into account tuple provenances and tuple certainty.

Algorithms for data repairing with preference relations were introduced in
[SCM12]. Their changes are based on tuple deletions, not on cell changes; and
preferences are among tuples, not cell values. Also, they do not consider tgds,
the main challenge dealt with in our framework.

This work is also related to prior work on truth discovery from data
sources [DS13]. In fact, these methods first discover dependencies on sources,
such as copy relationships, to identify reliable sources; then, they employ these
statistics in a probabilistic vote counting to estimate the accuracy of tuples
with inconsistent values. In contrast, we do not focus on heuristics to compute
the most probable value for a lluns, but expose the llun for user consumption
in order to have a supervised repair.

As discussed in Section 10, a chase procedure to infer accuracy information
represented by partial orders was devised in [CFY13].

13.3 Data Exchange
Our framework can be seen as an extension of the data exchange set-
ting [FKMP05]. Furthermore, we development a DBMS-based implementa-
tion of the chase that outperforms existing chase engines [PS09] (demo) and
can handle a much larger class of scenarios with its support to cleaning egds.
We are not aware of any prior studies on optimizations for the chase. Stud-
ies to guarantee scalability for data exchange scenarios were undertaken in
[MPRB09, MMP10, MMP+11], but they were based on the technique of rewrit-
ing dependencies to remove the need to chase egds.

In industrial settings, most data quality related tasks are executed with
ETL tools (e.g, Talend, and Informatica PowerCenter). These systems are
employed for data transformations and have low-level modules for specific data
quality tasks, such as verification of addresses and phone numbers. However,
these tools do not offer a declarative interface and lack a formal underpinning.
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Conclusions and Future Work

In this thesis we faced with the problem of translating data from different
repositories using schema mappings and improving the quality of the resulting
database using declarative constraints. We discussed the state-of-the-art in
both these fields and we argued that schema mapping and data cleaning have
been considered so far in isolation, whereas in real world scenarios they are
strongly related problems.

In light of these considerations, we presented the Llunatic mapping and
cleaning system, the first comprehensive proposal to handle schema mappings
and data repairing in a uniform way. The main contributions in our work are (a)
a new declarative semantics for mapping a cleaning scenarios that generalizes
most of the existing approaches (b) an in-depth comparison of our semantics
to previous ones (c) an optimized chase algorithm to compute solutions that
incorporates user interaction (d) a working system based on a scalable DBMS
chase engine.

We believe that these contributions make a significant advancement with
respect to the state-of-the-art, and may bring new maturity to both schema
mappings and data repairing. In particular we want to encourage other re-
searchers to use and extend Llunatic in order to define their existing or future
mapping and cleaning semantics.

As future work, we plan to extend the language of dependencies in order
to capture denial constraints. This will require to rework the notion of cell
group and the chase engine. Furthermore we will try to generalize semantics
which use a black-box approach in order to detect and repair violations, such
as [DEE+13].
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Proofs of the Theorems

Proposition 1 There exist sets Σt of non-recursive tgds, Σe of cleaning egds,
and instances 〈I , J 〉 such that procedure pipelineΣt∪Σe

(〈I , J 〉) does not return
solutions.

Proof: Consider the s-t tgd S(x, y) → T1(x, y), target tgd T1(x, y) → T2(x, y)
and egd T2(x, y), T2(x, y′) → y = y′. Given source instance I = {S(1, 2),
S(1, 3)}, enforcing the tgds gives a pre-solution J0 = {T1(1, 2), T1(1, 3), T2(1, 2),
T2(1, 3)}. This instance satisfies the tgds (in the standard sense), but not the
egd. Assume the repair algorithm changes both tuples in T2 to 3. Then, when
we enforce the egd, we end up with a new instance J1 = {T1(1, 2), T1(1, 3),
T2(1, 3)} that satisfies the egd, but does not longer satisfy the target tgd. The
pipelining approach thus runs indefinitely without generating a solution. �

Proposition 2 The binary relation �Π as specified in Definition 9 is a partial
order.

Proof:Given 〈I , J 〉, we consider the set of cells C = cells(I) ∪ cells(J) ∪
new-cells(J). We need to show that 〈C,�Π〉 is a partially-ordered set. This
amounts to show that �Π is reflexive, antisymmetric, and transitive.

We denote by const-cells(J),null-cells(J) the set of cells of J that has a
value in consts, nulls, respectively. We regard the binary relation �Π as
a directed graph Go with cells in C as vertices and a directed edge between
them as specified by �Π. This graph can be represented in a compact way by
the following adjacency matrix, which we call A, in which cells are grouped
in blocks, numbered 1–5 (recall that cells in new-cells(J) have different null
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values, and therefore are not ordered):

A 1.auth-cells(I) 2.cells(I) \ auth-cells(I) 3.const-cells(J) 4.null-cells(J) 5.new-cells(J)
1.auth-cells(I) 1(=) 0 0 0 0

2.cells(I) \ auth-cells(I) 1 1(Π) 1(Π) 0 0
3.const-cells(J) 1 1(Π) 1(Π) 0 0
4.null-cells(J) 1 1 1 1(=) 0
5.new-cells(J) 1 1 1 0 1(=)

where: (i) 1 denotes an edge; 0 no edges; (ii) 1(=) denotes that an edge is
present provided that the cells are equal; (iii) 1(Π) denotes that an edge is
present if the cells are ordered according to the partial order specification, Π.
We notice that the adjacency matrix above is made of the following blocks:

A cols 1. cols 2, 3. cols 4. cols 5.
rows 1. I 0 0 0

rows 2, 3. 1 P 0 0
rows 4. 1 1 I 0
rows 5. 1 1 0 I

where: (i) I is the identity matrix; (ii) 1 is a matrix made of ones only; (iii)
0 is a block made of zeros only; (iv) P is the adjacency matrix of the partial
order induced by the partial-order specification, Π, over the cells of 〈I , J 〉.

It can be seen that �Π is reflexive (∀c : c�Πc, and so all elements on the
diagonal of the matrix are equal to 1). Since the matrix is lower triangular,
�Π is also anti-symmetric.

To verify transitivity, we need to show that ∀a, b, c : a�Πb, b�Πc implies
that a�Πc. To show this we will show that whenever there is a path of length
2 between a and c, then there is also an edge between a to c in Go. To find out
paths of length 2, we can multiply the matrix by itself. Given the structure
of matrix A, it is easy to verify that A2 is also lower triangular, and has the
following structure:

A2 cols 1. cols 2, 3. cols 4. cols 5.
rows 1. I 0 0 0

rows 2, 3. B1 P 2 0 0
rows 4. B2 B4 I 0
rows 5. B3 B5 0 I

where B1 − B5 are blocks of non-null elements. Therefore, different elements
for which there is a path of length 2 may only be found in B1−B5 and P 2. But
we know that elements in B1−B5 are such that the corresponding elements in
A are equal to 1, and therefore there is also a corresponding edge in between
these nodes in Go. This means that the transitivity property is satisfied.

Let us now turn our attention to elements in P 2. Recall that these elements
encode ordering relationships associated with the partial order specification, Π.
These correspond to a partial order by definition, and therefore they are also
transitive.
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This concludes the proof. �

Proposition 3 Relation �Π among valid cell-groups over 〈I , J 〉 as specified
in Definition 12 is a partial order.

Proof:Given 〈I , J 〉, we consider the set of valid cell groups G over 〈I , J 〉. We
need to show that 〈G,�Π〉 is a partially-ordered set. This amounts to show
that �Π is reflexive, antisymmetric, and transitive.

By looking at the definition, we notice that �Π is the composition of two
different relations among cell groups. The first one is the containment rela-
tionship ⊆ among occurrences, justifications and backward flags. This requires
that, whenever g�Πg

′, then it is the case that occ(g) ⊆ occ(g′), just(g)∪just(g′),
and that if isBckw(g) is true, then isBckw(g′) is also true. The latter condition
ensures that cells(g) ⊆ cells(g′), and this is known to be a partial order.

The second one is the following relation, denoted by E, such that g E g′ if
one of the following holds:

(a) val(g) ∈ nulls (in this case, val(g′) may be either a null, or a constant,
or a llun);

(b) val(g′) ∈ lluns (in this case, val(g) may be either a null, or a constant,
or a llun);

(c) val(g) ∈ consts, val(g′) ∈ consts, the two cell groups are non-strict,
and val(g) = val(g′);

(d) val(g) ∈ consts, val(g′) ∈ consts and both cell groups are strict.

Our goal is to show that the composition of the two is still a partial order. We
find it useful to divide valid cell groups in several subsets:

1. lluns: cell groups with a llun value (either strict or non-strict);

2. strict, const : strict cell groups with a constant value;

3. non-strict, const : non-strict cell groups with a constant value;

4. nulls: cell groups with a null value (these may only be strict).
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Similarly to Proposition 2, we regard the binary relation �Π as a directed
graph Go with cell groups in G as vertices and a directed edge between them
as specified by �Π. This graph can be represented in a compact way by the
following adjacency matrix, which we call A:

A 1.lluns 2.strict, const 3.non-strict, const 4.nulls

1.lluns 1(⊆), rule (b) 0 0 0
2.strict, const 1(⊆), rule (b) 1(⊆), rule (d) 0 0

3.non-strict, const 1(⊆), rule (b) 0 1(⊆,=), rule (c) 0
4.nulls 1(⊆), rules (a&b) 1(⊆), rule (a) 1(⊆), rule (a) 1(⊆), rule (a)

where: (i) 1 denotes an edge; 0 no edges; (ii) 1(⊆) denotes that an edge is
present provided that the containment property is verified; (iii) 1(⊆,=) denotes
that an edge is present if both the containment property and the value of the
two cell groups are identical.

We need to verify that �Π is reflexive, antisymmetric and transitive. It is
reflexive by definition (∀g, g′ : g = g′ → g�Πg

′). To prove that it is antisym-
metric, we notice that whenever g�Πg

′ and g′�Πg, then g and g′ have exactly
the same occurrences, justifications and meta-cell. In addition, we can show
that they need to have exactly the same value. In fact:

• if both g and g′ are strict, they have the set of occurrences, justifications
and meta-cells C and therefore the same value lub-val(C);

• if g is strict, and g′ is not, we end up in a contradiction: while it may
be the case that g�Πg

′, the opposite cannot be true (the value of g′ is
a generalization of lub-val(g′) = lub-val(g) and the opposite cannot be
true); a similar contradiction arises in the case in which g′ is strict, and
g is not;

• if both are not strict, either: (i) their values are both lluns; in this case
the two cell groups are identical up to renaming of lluns; or (ii) they are
both equal constants; (iii) or we have a similar contradiction (the value
of g′ is a llun, and the value of g is a constant, and therefore it is not
possible that g′�Πg);

Therefore g and g′ are identical and antisymmetry is guaranteed.
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To prove transitivity, we notice that the adjacency matrix above is made of
the following blocks:

A cols 1. cols 2. cols 3. cols 4.
lluns strict, const non-strict, const nulls

rows 1. lluns A1 0 0 0
rows 2. strict, const A2 A3 0 0

rows 3. non-strict, const A4 0 A5 0
rows 4. nulls A6 A7 A8 A9

where each Ai is the adjacency matrix that encodes the relationship in the
corresponding block of A above. For example, A1 is matrix such that for any
cells groups gi, gj with a llun value A1 has a 1 in element (i, j) if g1 is contained
in g2.

We have already noticed that the containment relationship ⊆ among cell
groups is itself a partial order. In addition, it is easily verified that also the
conjunction of the containment relation, ⊆, and of relation = (true if two cell
groups have the same value) for cell groups with constant values is a partial
order. Therefore, each Ai is the adjacency matrix of a partial order.

Consider the product of A with itself:

A2 cols 1. cols 2. cols 3. cols 4.
lluns strict, const non-strict, const nulls

rows 1. lluns A2
1 0 0 0

rows 2. strict, const B1 A2
3 0 0

rows 3. non-strict, const B2 0 A2
5 0

rows 4. nulls B3 B4 B5 A2
9

where each Bi is the sum of the products of some of the Ai:

B1 = A2A1 +A3A2

B2 = A4A1 +A5A4

B3 = A6A1 +A7A2 +A8A4 +A9A6

B4 = A7A3 +A9A7

B5 = A8A5 +A9A8

Since A1, A3, A5, A9 are adjacency matrices of partial orders, we know they
are transitive, i.e., for any element that is non null in their square product
(denoting a path of length 2 in the graph), we know that the corresponding
element is also non null in the original matrix respectively.

It remains to show that transitivity is also satisfied for blocks B1−B5. We
analyze these in the following. First, we consider blocks B1, B2, B3 in the first
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columns of A2. These blocks encode paths of length 2 between any cell group
g1 and a cell group g2 such that val(g2) ∈ lluns. We know that containment
is transitive, and therefore it is satisfied among g1 and g2, and since the value
of g2 is a llun, we also know that g1�Πg2, so the blocks are transitive.

It remains to discuss blocks B4, B5, We do this in a compact way by the
following tables, in which we discuss the paths they encode in terms of the
different kinds of cell groups involved and their values, an draw the conclusion
that these are also transitive:

B4 A7A3 or A9A7

cell groups g1 g′ g2 g1 g′ g2
types null strict, const strict, const null null strict, const

values Ni cj ck Ni Ni cj
hence: g1�Πg2 g1�Πg2

B5 A8A5 or A9A8

cell groups g1 g′ g2 g1 g′ g2
types null non-strict, const non-strict, const null null non-strict, const

values Ni cj cj Ni Ni cj
hence: g1�Πg2 g1�Πg2

This concludes the proof. �

Proposition 4 Relation �Π,User among valid cell-groups is a partial order.

Proof: The proof builds on the one of Proposition 3. It can be seen that relation
�Π,User can be represented as the following adjacency matrix Ag, where A is
the matrix in the proof of Proposition 3:

Ag 1.user-nonstrM,〈I ,J〉 2.user-strictM,〈I ,J〉 3.auth-nonstrM,〈I ,J〉 4.auth-strictM,〈I ,J〉 5.stdM,〈I ,J〉
1.user-nonstrM,〈I ,J〉 1(⊆) 0 0 0 0
2.user-strictM,〈I ,J〉 1(⊆) 1(⊆) 0 0 0

3.auth-nonstrM,〈I ,J〉 1(⊆) 1(⊆) 1(⊆) 0 0
4.auth-strictM,〈I ,J〉 1(⊆) 1(⊆) 1(⊆) 1(⊆) 0

4.stdM,〈I ,J〉 1(⊆) 1(⊆) 1(⊆) 1(⊆) A

As usual, we know that �Π,User is reflexive by definition. To show that it is
antisymmetric, we notice that �Π,User restricted to standard cell groups – i.e.,
block A – is antisymmetric. Let us now concentrate on user and authoritative
cell groups. Consider g, g′ s.t. g�Π,Userg

′, g′�Π,Userg. This means that cell
groups have exactly the same occurrences, justifications, and backward flag.
In addition, since the matrix is lower triangular, they belong to the same
subset among the ones listed above. Based on this, we can show that they
have exactly the same value (up to the renaming of lluns). In fact:
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• if they are both non-strict, their values are both lluns;

• if they are both strict with user inputs, consider the set of cells C =
occ(g) ∪ just(g) = occ(g′) ∪ just(g′); if User(C) is defined, they have the
same user-provided value; otherwise, their values are both lluns;

• if they are both strict with authoritative cells, the upper-bound value is
again the same, since the set of cells are the same.

It remains to show that �Π,User is transitive. We notice that each block of this
matrix is a partial order, and therefore it is fairly easy to show along the lines
of the proofs of Proposition 3 that matrix Ag also encodes a transitive graph.

�

Lemma 13 Any cleaning egd or extended tgd in which only target symbol ap-
pear is satisfied after repairs if and only if it is satisfied in the standard sense.

Proof: The if part is straightforward: any dependency that is satisfied in the
standard sense is also satisfied after upgrades by definition.

Let us first prove the only if part for egds, and then for tgds. Consider
and egd e : φ(x̄) → x = x′, an instance 〈I , J 〉, and repair Upd. We know that
e contains only target symbols, so we may ignore I in the following. Given
homomorphism h of φ(x̄) into Upd(J), assume e is satisfied after upgrades, i.e.,
gh(x)�Π,Usergh(x′). We need to show that h(x) = h(x′), i.e., e is satisfied in
the standard sense for h.

Consider the two cell groups gh(x), gh(x′). Since we know that
gh(x)�Π,Usergh(x′), we also know that occ(gh(x)) ⊆ occ(gh(x′)). Notice also
that, since e only contains target symbols, all cells for x, x′ according to h are
target cells, and therefore both set of occurrences are not empty.

Notice also that, all cells c ∈ cellsh(x) have the same value in Upd(J)
(they are mapped by h to the same variable), and therefore all cell groups
gUpd(c) in Upd for these cells have the same value. Similarly for c′ ∈ cellsh(x′).
Therefore, Upd(J) is such that all cells in occ(gh(x)) have value h(x), and all
cells in occ(gh(x′)) have value h(x′). However, since occ(gh(x)) ⊆ occ(gh(x′)),
this may only happen if h(x) = h(x′), and therefore e is satisfied in the standard
sense for h.

Let us now consider a tgd m : φ(x̄, z̄) → ∃ȳ : ψ(x̄, ȳ). Given J and Upd,
assume h maps φ(x̄, z̄) into Upd(J) and m is satisfied after upgrades for h. This
means that Upd is an upgrade of the canonical repair for m and h, Updcan

h , i.e.,
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Updcan
h �Π,UserUpd. We need to show that there is an extension h′ of h that

maps ψ(x̄, ȳ) into Upd(J), i.e., m is satisfied in the standard sense for h.
Since Updcan

h �Π,UserUpd, we know that there exists an id mapping hid from
tuple ids in Updcan(J) to tuple ids in Upd(J) such that for each cell group
g ∈ Updcan, there exists a cell group g′ ∈ Upd such that hid(g)�Π,Userg

′. Recall
that Updcan(J) is obtained by taking the set of tuples in Upd(J), and adding
the new tuples in hcan(ψ(x̄, ȳ)) to it. Therefore, by definition of an id mapping,
hid is the identity on the tuples in Upd(J).

To show that m is satisfied in the standard sense, we need to prove that
Upd(J) contains a set of tuples of the form ψ(h(x̄), b̄), for some vector of values
b̄. In this case, in fact, we can extend h by mapping ȳ to b̄, and have an
homomorphism of ψ(x̄, ȳ) into Upd(J).

Consider the set of tuples inserted into Upd(J) by Updcan, i.e., ∆can
h =

ψ(hcan(x), hcan(y)), and recall that hcan(x̄) = h(x̄) by construction. Let us
consider the set of tuples:

hid(∆can
h ) = hid(ψ(h(x̄), hcan(ȳ)))

that is the image of ∆can
h in Upd(J). We know that this image exists by

definition of �Π,User. We will now show that this set of tuples is of the form
ψ(h(x̄), b̄), and therefore m is satisfied in the standard sense by Upd for h.

This amount to show the following:

1. for each xi ∈ x̄, and for each cell c ∈ cellshcan(xi), the value of the cell is
preserved by the id mapping, i.e., val(hid(c)) = val(c) = h(xi);

2. for each yi ∈ ȳ, there exist a value bi ∈ nulls∪consts∪lluns such that,
for each cell c ∈ cellshcan(yi), the value of val(hid(c)) is equal exactly to
bi;

Let us first consider item 1. Consider xi ∈ x̄, and the corresponding cell group
ghcan

(xi) in Updcan
h . Consider a cell c ∈ cellshcan

(xi), and the corresponding
cell group, gc = gUpdcan

h
(c). By definition of the partial order over cell groups,

we know that there exists a cell group g′ in Upd such that hid(gc)�Π,Userg
′.

Consider now the occurrences of gc. Since m contains by hypothesis only
target symbols, these occurrences are cells that appear in part in Upd(J), in
part in ∆can

h . In fact, the cells in Upd(J) are those that atoms in the premise
of m, φ(x̄), are mapped to, while those in ∆can

h are those that belong to the
new tuples added to Upd(J) to satisfy the tgd in the canonical way.

Let us now consider the cell group g′c such that hid(gc)�Π,Userg
′
c. This exists

by definition of satisfaction after upgrades. We know that occurrences of g′c are
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such that they contain the set of cells hid(occ(gc)). Among these cells, those
in Upd(J) are mapped to themselves by definition of id mapping. Since, as
discussed above, this set is not empty, gc and g′c have at least one occurrence in
common. We know that all occurrences in occ(gc) that come from Upd(J) have
the same value in Upd(J). Similarly for occurrences of g′c. Since the two sets
have an element in common, it must be the case that val(g′c) = h(xi). Since
this is true for each c ∈ cellshcan

(xi), and each xi ∈ x̄, then item 1 holds.
With a very similar argument it is possible to show that also item 2 holds.

In fact, the containment property for cell groups can be used to show that all
cells c for a variable yi have the same value bi.

This concludes the proof. �

Theorem 5 Every (core) solution of a data exchange scenario corresponds to
a (minimal) solution of its associated mapping scenario, and vice versa.

Proof: We first recall that a data exchange scenario is specified by
Mde = {S, T ,Σde

st ,Σ
de
t }, where S and T are the source and target schemas,

Σde
st is a set of standard s-t tgds, and Σde

t is a set of standard target constraints
that includes target tgds and target egds. For a data exchange scenario
Mde we denote by Mmap

de its associated mapping scenario specified by
{S,Sa, T ,Σt,Σe,Π,User}, where

• Sa = ∅;

• Σt is the set of standard s-t tgds in Σde
st and the set of standard target

tgds in Σde
t ;

• Σe is the set of standard egds in Σde
t ;

• Π and User are empty;

• the set of lluns, lluns, is also empty, i.e., we only allow for constants
and labeled nulls in instances.

We write such mapping scenario’s as {S, T ,Σt,Σe} for short. Conversely,
given a mapping scenario Mmap = {S, T ,Σt,Σe} satisfying the conditions
above for some sets Σde

st and Σde
t , we define its associated data exchange

scenario as Mde
map = {S, T ,Σde

st ,Σ
de
t }.

Let I be an instance of S and Jde be an instance of T such that 〈I, Jde〉 is
a (core) solution for Mde. We will show that Jde corresponds to a (minimal)
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solution Updmap
de for Mmap

de over 〈I, ∅〉. Conversely, we show that a (minimal)
solution Updmap forMmap over 〈I, ∅〉 corresponds to a (core) solution 〈I, Jde

map〉
for Mde

map.

Data Exchange Solution to Mapping & Cleaning Solution We first
show how solutions forMde relate to solutions forMmap

de . In other words, given
Jde we need to construct an upgrade Updmap

de of the initial target instance J
(which is empty) and such that 〈I,Updmap

de (J)〉 satisfies after upgrades Σt∪Σe,
where Σt, Σe are part of Mmap

de . We observe that in the absence of lluns
no backward changes can be present in cell groups. Similarly, since User is
empty no user input can be present in cell groups. As a consequence, all cell
groups have empty meta-cells and the flag isBckw is always false. We can thus
safely represent cell groups in this setting simply by their value, occurrences
and justifications.

We define Updmap
de as follows: for each occurrence occ of a value v ∈ nulls∪

consts, we define gv,occ = 〈v → occ, by ∅〉. An update that only consists of
these cell groups will be referred to as an update in standard form.

Recall that J = ∅ and we can represent J by the trivial modification Upd∅,
which in this case is empty. The condition Upd∅�Π,UserUpdmap

de is then vacu-
ously satisfied and it remains to be shown that 〈I,Updmap

de (J)〉 satisfies after
upgrades Σst and Σt under �Π,User. For this, it suffices to observe that the
definition of satisfaction after upgrades incorporates the standard notion of
satisfaction. Recall that 〈I, Jde〉 is a solution for Mde and thus 〈I, Jde〉 satis-
fies Σt and Σe in the standard semantics. Furthermore, Jde = Updmap

de (J) by
construction. We may thus conclude that 〈I,Updmap

de (J)〉 also satisfies Σt and
Σe in the standard sense, and thus also satisfies these after upgrades.

Mapping & Cleaning Solution to Data Exchange Solution We next
show that a solution Updmap forMmap over 〈I, J = ∅〉 corresponds to a solution

〈I, Jde
map〉 ofMde

map. Let Jmap = Updmap(J), i.e., Jmap is the set of tuples which
are inserted in the initial empty target instance, as specified by Updmap. We

claim that Jmap is a solution for Mde
map. In other words, 〈I, Jmap〉 satisfies Σt

and Σe under the standard semantics of first-order logic. By Lemma 13, we
know that this is true for standard egds (that only contain target symbols) and
target tgds. It remains to show that satisfaction after upgrades coincides with
the standard notion of satisfaction for s-t tgds.

Consider an s-t tgd m : ∀x, z
(
φ(x, z) → ∃ y ψ(x, y)

)
in Σt and suppose

that it is satisfied after upgrades. Clearly, if 〈I, Jmap〉 satisfies m under the
standard semantics then nothing needs to be shown. Assume for the sake of
contradiction m is not satisfied under the standard semantics, i.e., there exists
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a homomorphism h of φ into 〈I, Jmap〉 that cannot be extended to a homomor-
phism h′ of ψ into 〈I, Jmap〉. This implies, since m is satisfied after upgrades,
that Updcan

h �Π,User Updmap holds. Here Updcan
h refers to the canonical update

associated with Updmap, m and h. We show that in the context of the map-
ping scenario’s considered here, this still implies that m is satisfied under the
standard semantics.

The crux of the proof is the following:

Claim 14 In the absence of authoritative sources, lluns, user input and par-
tial order specification Π, Upd �Π,User Upd′ implies that there exists a homo-
morphism from Upd(J) to Upd′(J).

Indeed, suppose that this claim holds. Then, Updcan
h �Π,User Updmap implies

that there exists a homomorphism h′′ : Updcan
h (J)→ Updmap(J). Consider the

homomorphism h which maps φ(x, z) into I. We show that h can be extended to
a homomorphism h′ which maps ψ(x, y) into Jmap. By definition, hcan extends
h and maps ψ(x, y) into Updcan

h (J). Consider the mapping h′(x) = h(x),
h′(z) = h(z) and h′(y) = h′′ ◦ hcan(y) for x ∈ x,y ∈ y and z ∈ z.

Clearly, h′(φ(x, z)) = h(φ(x, z)) and thus h′ is an extension of h. Consider
h′(ψ(x, y)) = ψ(h(x), h′′(hcan(y))). We will now show that h′(ψ(x, y)) can be
written as h′′(hcan(ψ(x, y))). In fact, we know that, for every x ∈ x̄, h(x) =
h′(x) = hcan(x) = c ∈ consts. As a consequence, it is also the case that
h(x) = h′′(hcan(x)) = c. Therefore, we have that:

h′(ψ(x, y)) = ψ(h(x), h′′(hcan(y))) = ψ(h′′(hcan(x), h′′(hcan(y))) = h′′(hcan(ψ(x, y)))

Since hcan maps ψ(x, y) into Updcan
h (J), and h′′ maps tuples in Updcan

h (J)
into tuples in Updmap(J), we also have that h′(ψ(x, y)) ⊆ Jmap. Indeed, the
composition of two homomorphisms is again a homomorphism. In other words,
h′ is an extension of h that maps ψ(x, y) into Jmap. This contradicts the fact
that h could not be extended. That is, 〈I, Jmap〉 |= m.

Proof of Claim 14 It remains to show the claim. Assume that Upd �Π,User

Upd′. This implies that there exists a functional id mapping hid from tuple ids
in Upd to tuples ids in Upd′ such that for each cell group g ∈ Upd there exists
a cell group g′ ∈ Upd′ such that hid(g) �Π,User g

′. We define a homomorphism
h from Upd(J) to Upd′(J), as follows. For constants c in dom(Upd(J)) we let
h(c) = c. For labeled nulls N in dom(Upd(J)) we define h(N) as the value of
the cell group g′ = 〈v → occ′, by just′〉 in Upd′ such that hid(g) �Π,User g

′. In
other words, h(N) = v. Observe that h is well-defined since hid is functional.
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We show that h is indeed a homomorphism. Let ti :
R(a1, . . . , ak, N1 . . . , N`) be a tuple in Upd(J). We need to show that
R(a1, . . . , ak, h(N1), . . . , h(N`)) is in Upd′(J). We claim that the tuple hid(ti)
is such a tuple.

First, we show that hid(ti) is a tuple containing the same constants as
R(a1, . . . , ak, N1 . . . , N`). Indeed, this follows from the fact that the cell groups
corresponding to the cells holding constant values in R(a1, . . . , ak, N1 . . . , N`)
have counterparts in Upd′ that cover the corresponding cells in Upd′(J) under
hid. In this simplified setting, according to Definition 12, the value of these cell
groups must be the same constant, since distinct constants are incomparable,
and there are no lluns that can be used to generalize constants.

Let us now consider cells with a labeled null Ni in hid(ti). We now show
that the values of these cells are exactly h(Ni), i = 1 . . . l. In fact, the original
cells in ti had value Ni, and by construction, the corresponding cell groups in
Upd′ have value h(Ni).

Based on this, we know that, given a tuple ti : R(a1, . . . , ak, N1 . . . , N`)
in Upd(J), its image according to h, R(a1, . . . , ak, h(N1), . . . , h(N`)), is a tuple
hid(ti) in Upd′(J) and therefore h is an homomorphism of Upd(J) into Upd′(J).
This proves the claim and concludes the proof of the first part.

We now show that core solutions (forMde) correspond to minimal solutions
for Mmap

de , and minimal solutions of Mmap correspond to core solutions of
Mde

map.

Minimal Solution to Core Solution We first show that minimal solutions
of Mmap correspond to core solutions of the data exchange scenario Mde

map.
Let Updmin be a minimal solution of Mmap. Let Jmin = Updmin(J = ∅) be
the corresponding target instance. We have previously shown that Jmin is a
solution of Mde

map.

Assume, for the sake of contradiction, that Jmin is not a core.

Let us first prove that Jmin is a universal solution. Assume Jmin is not
universal. Since we assume thatMde admits solutions, there exists a universal
solution Ju such that:

(i) there exists no homomorphism of Jmin into Ju;

(ii) there exists an homomorphism h of Ju into Jmin.

We now construct an update Updu such that Updu(∅) = Ju, and show that
Updu≺Π,UserUpdmin, thus contradicting the hypothesis that Updmin is a mini-
mal solution.
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We define Updu to be the update in standard form associated with Ju, i.e.,
for each occurrence occ of a value v ∈ nulls∪consts, we define gv,occ = 〈v →
occ, by ∅〉.

Since Updu(∅) = Ju, and Ju is a universal solution, we know that Updu is
a solution to Mmap

de . In addition, by (i) above and Claim 14, we know that
Updmin 6 �Π,UserUpdu.

We now show that Updu�Π,UserUpdmin, i.e., Updu≺Π,UserUpdmin. Consider
the id mapping hid that map each tuple id tid in Ju to h(t).id in h(Ju). Since hid
is based on an homomorphism, it is functional by construction. Since Updu is in
standard form, it contains only singleton cell groups. As a consequence, is easy
to see that for any cell group g ∈ Updu there exists a cell group g′ ∈ Updmin

such that hid(g)�Π,Userg
′, for some g′ in Updmin. This proves that Jmin is

universal.
This means that there exists a proper subinstance J ′ ⊂ Jmin and J ′ is the

core solution for Mde
map and I. Furthermore, there exists a homomorphism

h′ : Jmin → J ′.
We next define an update Upd′ such that Upd(J = ∅) = J ′ and furthermore,

Upd′≺Π,UserUpdmin. More precisely, consider the non-empty set of tuples ∆ =
Jmin − J ′. Update Upd′ is obtained from Updmin by changing its cell groups
in such a way to remove any occurrence with a tuple id in ∆. More precisely:

• from any cell group in Updmin, we remove occurrences whose tuple ids
appear in ∆;

• at the end of the process, we remove cell groups with empty occurrences.

It is easy to see that Upd′ is still a solution to the mapping and cleaning
scenario. In fact, Upd′(∅) = J ′, since any cell with a tuple id in J ′ has exactly
the same value it had in Updmin, and we know that J ′ is a solution to the data
exchange scenario.

In addition, Upd′�Π,UserUpdmin. Indeed, consider the id mapping hid that is
the identity on the tuples of J ′. For any cell group g ∈ Upd′, there exists a cell
group g′ ∈ Updmin that has at least the same occurrences, equal justifications
(if any), and equal value. Therefore g�Π,Userg

′.
However, we can show also that Upd′≺Π,UserUpdmin. In fact, we distinguish

between the following two cases:
(a) either it is not the case that Updmin�Π,UserUpd′′, and therefore
Upd′≺Π,UserUpdmin but not the other way around. This immediately contra-
dicts the hypothesis that Updmin is a minimal solution and we have proven our
claim; or
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(b) we have that Updmin�Π,UserUpd′. In this case, let us consider again hid,
i.e., the id mapping from tuple ids in Upd′ to tuple ids in Updmin; we know
that hid is the identity over the tuple ids in Updmin. Since the set of tuples
∆ = Jmin−J ′ is not empty, we know that hid is not surjective. With the same
argument, we can show that h′id, the id mapping of Updmin into Upd′, must be
surjective. In fact, its restriction to the tuple ids in J ′ is the identity mapping.

As a consequence, also in this case we have that Upd′′≺Π,UserUpdmin, and
this contradicts the hypothesis that Updmin is a minimal solution.

This concludes the proof of the claim that Jmin is a core solution.

Core Solution to Minimal Solution For the converse, let Jcore be a core
solution of Mde. Let Updcore be the corresponding solution of Mmap

de . We
show that Updcore is a minimal solution. Suppose the contrary. We distinguish
between the following two cases:

(a). there exists a Upd′ �Π,User Updcore but not the other way around.

(b). there exists a solution Upd′ �Π,User Updcore with non-surjective id map-
ping hid and Updcore �Π,User Upd′ with surjective id mapping h′id;

For case (a) we may assume that Upd′ is minimal and thus J ′ = Upd′(J) is
a core solution, as we have just shown. This implies that J ′ and Jcore are two
core solutions and thus isomorphic. Recall that by construction, Updcore is an
update in standard form. Since Upd′ �Π,User Updcore, we may further assume
that Upd′ is also in standard form.

Let h : Jcore → J ′ be an isomorphism and define an id mapping, hid, such
that hid(t.tid) = h(t).tid. We notice that hid is functional by construction
(since it is based on h). We will now show that Updcore�Π,UserUpd′ according
to hid, which is in contradiction with the hypothesis in case (a).

Let c be a constant in dom(Jcore) occurring in cell occ. Then gc,occ ∈
Updcore and clearly hid(gc,occ) = gc,hid(occ) where hid(occ) is a single cell as
well (because of the isomorphism). Since J ′ and Jcore are isomorphic, there
must exists a cell group g′ ∈ Upd′ such that gc,hid(occ) �Π,User g

′, since h maps
c to the same value in the corresponding cell in J ′.

Let N be a null value in dom(Jcore). Consider gN ∈ Updcore. We have that
hid(gN ) = 〈N → hid(occN ), by ∅〉 and hid(occN ) consists of as many cells as
occN (because of the isomorphism). Since h maps N to a (possibly different)
null value N ′ in J ′, and because hid is functional there must be a cell group
g′ = 〈N ′ → occN ′ ,by ∅〉 in Upd′ such that hid(occN ) ⊆ occN ′ . In other words,
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Updcore �Π,User Upd′ which contradicts our assumption. Thus, case (a) cannot
occur.

For case (b) observe that we have just shown that Upd′ �Π,User Updcore

implies that Updcore �Π,User Upd′ and furthermore, Updcore(J) and Upd′(J) are
isomorphic. Consider Upd′′ obtained from Upd′ by relabeling nulls such that
Upd′′(J) = Updcore(J). Suppose, for the sake of contradiction, that there is a
functional id mapping hid from Upd′ to Updcore that is not surjective. Then,
hid can also be used to map Upd′′ to Updcore. Denote this mapping by h′′id.
By definition, h′′id is the identity because Upd′′(J) = Updcore(J) and since it
is non-surjective, this implies that we have that Upd′′(J) is a proper subset of
Jcore. Furthermore, we also have that Updcore �Π,User Upd′′ and thus there is
a homomorphism from Jcore to a strict subset of Jcore. This contradicts the
assumption that Jcore is a core solution.

Hence, Updcore is indeed a minimal solution of Mde. �

Theorem 6 Given a cleaning scenario CS = {〈S, T 〉,Σe,Π} and an input
instance 〈I , J 〉, there always exists a solution for CS and 〈I , J 〉.

Proof: Indeed, there is always a solution corresponding to the update that
changes all cells of J to a single llun L, and justifies it by all cells in I, i.e.,
Updtop = 〈L → cells(J), by cells(I), isBckw〉. We make the straightforward
assumption that this solution is never refused by the user function, User. �

Theorem 7 Given two solutions Upd,Upd′ for a scenario CS over instance
〈I , J 〉, one can check Upd �Π Upd′ in O(n + kmlog(m)) time, where n is the
number of cells in J , k is the maximum number of cell groups in Upd, Upd′,
and m is the maximum size of a cell group in Upd, Upd′.

Proof: Notice that in a cleaning scenario the set of target cells is fixed (there are
no insertions due to tgds), and therefore we only consider identity id mappings.
The crux of the proof is that every cell in J may belong to a single cell group.
We may therefore use hashing to map the cell group for a cell c according to
Upd, to the corresponding cell group according to Upd′. Then, a sort-scan
algorithm can be used to check containment of occurrences and cardinalities.

�
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Theorem 8 Given a mapping & cleaning MC = {S,Sa, T ,Σt,Σe,Π,User},
instances I of S ∪ Sa and J of T , and oracle User, the chase of 〈I , J 〉 with
Σt,Σe,User may not terminate after a finite number of steps. If it terminates,
it generates a finite set of results, each of which is a solution for MC over
〈I , J 〉. Even if the chase terminates, not every minimal solution is generated.

Proof: The existence of non-terminating mapping & cleaning scenarios is an
immediate consequence of the fact these are a conservative extension of map-
ping scenarios for which such non-terminating examples are known [FKMP05].
If the chase terminates, then by the definition of chase this means that no chase
rule is applicable, which in turns means that all tgds and egds are either satis-
fied (in the standard sense) or are satisfied after upgrades. Mapping scenarios
exists for which the chase does not compute a universal solution, although there
exists one. These scenarios carry over to our setting.

For soundness recall that, according to the Definition 16, a solution for
MC is an update Upd s.t. (i) J�Π,UserUpd and (ii) 〈I,Upd(J)〉 satisfies after
upgrades Σt∪Σe under �Π,User. Regarding the point (ii) we know, by definition,
that every leaf is a valid update Upd` such that there is no dependency or user
inputs applicable to 〈I,Upd`(J)〉. For (i) it suffices to observe that for each
path J,Upd0, . . . ,Upd` in the chase tree from the root, J to a leaf, Upd`, the
following condition holds: J�Π,UserUpd0(J)�Π,User . . .�Π,UserUpdk(J). This is
due to the fact that going from Updi to Updi+1 cell groups are changed in four
possible ways:
(a) Updi+1 is the result of a chase step for user inputs, where User applies to a
cell group g ∈ Updi, and Updi+1 contains a cell group gUser with the same occur-
rences, justifications and backward flag of g, and it has a user-provided value.
Clearly g�Π,UsergUser, and since Updi+1 differs only on g, Updi�Π,UserUpdi+1;
(b) Updi+1 is the result of a chase step for a tgd, where an extended tgd m
applies to Updi, and Updi+1 is the canonical update for m. Updi+1 contains
new cell groups for existential variables in m, and it changes cell groups for
universal variables adding new cell occurrences only, and keeping the same
value, justification and backward flag. So Updi�Π,UserUpdi+1;
(c) it is the case that an Updi+1 is the result of a forward chase step of an
extended egd e on Updi. Updi+1 is obtained from Updi merging the cell groups
for variables x and x′ as described in Definition 24. Since the merged cell group
satisfies the cell-containment properties with both g(x) and g(x′), and its value
is strict, Updi�Π,UserUpdi+1;
(d) finally it is the case that an Updi+1 is the result of a backward chase step
of an extended egd e on Updi. It is obtained by changing a cell group gij in



i
i

i
i

i
i

i
i

113

Updi to another cell group g′ij that has same occurrences and justifications,
backward flag set, and it has a strict value. So Updi�Π,UserUpdi+1; �

Theorem 9 Given a mapping & cleaning MC = {S,Sa, T ,Σt,Σe,Π,User},
instances I of S ∪ Sa and J of T , and oracle User, if Σt is a set of weakly-
acyclic tgds, then the chase of 〈I , J 〉 with Σt,Σe,User terminates after a finite
number of steps, and each leaf in the chase tree is a solution for MC.

Proof: The crux of the proof stands in the conservative nature of our chase
procedure wrt cell groups (a cell group created during the chase is never “bro-
ken” at subsequent steps), and in the notion of satisfaction after upgrades. We
give the proof for non recursive tgds. The generalization to weakly acyclic tgds
is rather straightforward.

Consider a tgd m : φ(x̄) → ∃ȳ : ψ(x̄, ȳ) in Σt. Given 〈I , J 〉, we define
the premise tuples, prem-tuples(m, 〈I , J 〉) for m over 〈I , J 〉 as the set of all
tuple ids in 〈I , J 〉 for atoms that appear in φ(x̄). Let us call n the size of
prem-tuples(m, 〈I , J 〉). It is easy to see that, when chasing 〈I , J 〉 with m,
m can be fired for a number of times that is bounded by a function of n. In
fact, any homomorphism h for which m can be fired needs to map φ(x̄) into a
distinct combination of tuples from prem-tuples(m, 〈I , J 〉).

In addition, we notice that, whenever m fires at step k for homomorphism
h using some of the tuples in prem-tuples(m, 〈I,K〉), it generates a new
instance of the target, K ′, by a canonical update, in which (a) new tuples
h(ψ(x̄, ȳ)) are added to the target; (b) new cell groups relating the cells of
tuples in h(φ(x̄)) and those of h(ψ(x̄, ȳ)) are generated. It is important to
note that, at subsequent chase steps – either of the tgds or of the egds – the
canonical update is preserved. Therefore, m will remain satisfied after upgrades
for homomorphism h, and no new tuples will be added to the target.

Since Σt is non-recursive, we can stratify the tgds in such a way that for
each tgd m in stratum i, atoms in prem-tuples(m, 〈I,K〉) at any chase step
K may come from 〈I , J 〉, or come from firing tgds at strata below i.

We may therefore show that every tgd m ∈ Σt stops firing after a finite
number of steps. This is easily proven by induction on the number of strata.

Base case: tgds in the first stratum can only fire once for any homomor-
phism h of φ(x̄) into prem-tuples(m, 〈I,K〉); in fact, since the tgds are non-
recursive, during the chase no other tgd adds tuples to the relations in φ(x̄).
Similarly for egds, that may change the cell groups, but do not add new tuples,
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neither break homomorphisms for which m has been already fired. Therefore,
the tgd stops firing after a finite number of steps.

Recursive case: consider now a tgd m in stratum i; suppose that we are
at step K of the chase, and that all tgds at strata below i have stopped
firing; then, m may only fire once for each homomorphisms of φ(x̄) into
prem-tuples(m, 〈I,K〉); however any tuple in prem-tuples(m, 〈I,K〉) was
either already in prem-tuples(m, 〈I, J〉), or it was generated by a sequence of
chase steps of tgds at strata that precedes i. Therefore, also m will stop firing
after a finite number of steps.

For soundness, see the proof of Therorem 8. �

Theorem 10 Given a cleaning scenario CS = {S,Sa, T , ∅,Σe,Π,User} and
an instance 〈I , J 〉, the chase of 〈I , J 〉 with Σe (i) terminates; (ii) it generates
a finite set of results, each of which is a solution for CS over 〈I , J 〉.

Proof: For termination, it suffices to observe that for each path
J,Upd0, . . . ,Updk in the chase tree from the root, J to a leaf, Updk, the
following condition holds J�Π,UserUpd0(J)�Π,User . . .�Π,UserUpdk(J). This is
due to the fact that, going from Updi to Updi+1 by a chase step, cell groups
grow monotonically (either the set of occurrences/justifications grows due to
a forward step, or the value is upgraded due to a backward step). Due to
our semantics, there is a topmost element (the top update Updtop = 〈L →
cells(J), by cells(I), isBckw〉). Hence, every path in the chase tree is bounded
in length as, in the worst case, it reaches Updtop. For soundness, see the proof
of Theorem 9.

�

Theorem 11 Given a cleaning scenario CS = {S,Sa, T , ∅,Σe,Π,User} and an
instance 〈I , J 〉, CS may have at most an exponential number of solutions over
〈I , J 〉, and each solution is computed in a number of steps that is polynomial
in the size of 〈I , J 〉.

Proof: In general, it is readily verified that a cleaning scenario can have at most
an exponential number of solutions. When considering the disjunctive chase
procedure, as outlined above, one can verify that each solution is computed in
a number of steps that is polynomial in the size of the data. For this, it suffices
to observe that one can associate an integer-valued function f on updates such
that f(Upd) < f(Upd′) whenever Upd→e,H Upd′ during the chase. Intuitively,
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f depends on the number of llun values and sizes of cell groups in the updates.
Since both the number of lluns and size of cell groups is bounded by the input
instance, we may infer that f cannot be increased further after polynomially
many steps, i.e., when a solution is obtained.

In contrast, computing all solutions by means of the chase takes exponential
time in the size of instance. Indeed, given the polynomial size of each branch
in the chase tree, as argued above, and the fact that the branching factor is
polynomially bounded by the input, the overall chase tree is exponential in
size. �

Theorem 12 Consider the chase tree chaseΣt,Σe,User(〈I , J 〉), generated by the
chase of MC over 〈I , J 〉 as defined in Section 8. If the chase of 〈I , J 〉 with
Σt,Σe,User terminates, then the revised chase of 〈I , J 〉 with Σt,Σe,User also
terminates. In this case, the revised chase procedure generates a chase tree
revised-chaseΣt,Σe,User(〈I , J 〉) such that for any node in chaseΣt,Σe,User(〈I , J 〉),
there is an identical node in revised-chaseΣt,Σe,User(〈I , J 〉).

Proof: The proof of the first part is very similar to the proof of Theorem 8.
We will prove by induction on the level of nodes in the chase tree that for

any node Upd in chaseΣt,Σe,User(〈I , J 〉), there is an identical node Updrev in
revised-chaseΣt,Σe,User(〈I , J 〉).

Base case: the root node in both chase trees is the empty repair 〈I , J 〉;
Recursive case: suppose that the theorem is true for any node from the

root to level n−1. Consider now a node Updn in chaseΣt,Σe,User(〈I , J 〉) at level
n. We can identify its father Updn−1, and since this is a node at level n − 1,
there is an identical node Updrev

n−1 in revised-chaseΣt,Σe,User(〈I , J 〉).
If Updn is the result of a chase step for a tgd or a user input we have nothing

to prove, because the revised chase differs from the standard one only on the
definition of a chase step for egds.

We now consider the case that Updn is the result of the forward or backward
chasing of an egd e on 〈I,Updn−1(J)〉 with homomorphism h. This means
that h violates the condition for 〈I,Updn−1(J)〉 to satisfy after upgrades e :
∀x(φ(x) → x = x′), i.e. h(x) 6= h(x′) and neither gh(x)�Π,Usergh(x′) nor
gh(x′)�Π,Usergh(x).

Since Updrev
n−1 is equivalent to Updn−1, the same homomorphism h of e is

applicable to Updrev
n−1. Let’s call H the homomorphism class for Updrev

n−1 and e
that contains h. We know that H generates a violation for Updrev

n−1(J) and e,
because it contains in the set of conclusion groups c-groupsH, the cell groups
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gh(x) and gh(x′), that we know to be different. Recall that, by definition 31,
the revised chase step over for Updrev

n−1 and e will generate a new update for
each valid repair strategy rsH of H. We need to prove that there exists a repair
strategy that applied to Updrev

n−1 generates an update Updrev
n identical to Updn.

We need to distinguish two cases:

• Updn is the result of a forward chase, then by definition is

Updn = Updn−1 − {gh(x), gh(x′)} ∪merge�Π,User
(gh(x) ∪ gh(x′)).

In order to generate the same update, consider a repair strategy rsfH for
H that maps any cell group in c-groupsH to “unaffected”, except gh(x)
and gh(x′) that are marked as “forward”. The chase of the chase step

strategy cssf : {e,H, rsfH} over Updrev
n−1 generates the following update:

Updrev
n = Updrev

n−1 − forw-grsfH
∪merge�Π,User

(forw-grsfH
)).

Since Updn−1 and Updrev
n−1 are identical, and forw-grsfH

= {gh(x), gh(x′)},
the resulting update Updrev

n is identical to Updn.

• Updn is the result of a backward chase, then it is defined as

Updn = Updn−1 − {gij} ∪ {g′ij}

where gij is the cell group of the cell cj ∈ cellsh(xi) in Updn−1, and xi is a
witness variable in e. We know, by definition 25, that val(gij) ∈ consts
and auth-cells(gij) = ∅.
Consider now the repair strategy rsbH for H that maps any cell group in
c-groupsH to “unaffected”, except gh(x) that is marked as “backward”.
Assume also that this repair strategy choose, for each target cell ci ∈
gh(x), to backward repair the cell cj . Since both ci and cj are covered by
the same homomorphism h, and the cell group of cj according to Updrev

n−1

has a constant value and empty justification (recall that Updrev
n and Updn

are identical), this is a valid repair strategy for Updrev
n−1. Now it is easy

to verify that the chase of the chase step strategy cssb : {e,H, rsbH} over
Updrev

n−1 generates a repair Updrev
n identical to Updn.

�
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Details on Examples and
Experiments

Updates for Solutions in Figure 1.2

Consider our Example 1. Following is two updates Upd1,Upd2, that represent
the solutions shown in Figure 1.2.

Upd1{g1 : 〈SF→ {t4.City[NY]}, by {te8 .Cityauth[SF] }〉,
g2 : 〈F. Lennon→ {t5.Name[L. Lennon]}, by {tm.Nameauth[F. Lennon]}〉,
g3 : 〈122-1876→ {t5.Ph[122-1876], t6.Ph[000-0000]}, by ∅}〉,
g4 : 〈Sky Dr.→ {t5.Str[null], t6.Str[Fry Dr.]}, by {{tm.Strauth[Sky Dr.]}〉,
g5 : 〈L0 → {t5.CC#[781658], t6.CC#[784659]}, by ∅〉,
g6 : 〈F. Lennon→ {t6.Name[L. Lennon]}, by {tm.Nameauth[F. Lennon]}〉,
g7 : 〈L1 → {t10.SSNnew, t11.SSNnew, t12.SSNnew, t13.SSNnew}, ,

by {t1.SSN[123], t2.SSN[123], t3.SSN[124]}〉,
g8 : 〈W. Smith→ {t10.Namenew}, by {t1.Name[W. Smith]}〉,
g9 : 〈3456→ {t10.Phnew, t11.Phnew}, by {t1.Ph[0000], t3.Ph[3456]}〉,
g10 : 〈Pico Blvd→ {t10.Strnew}, by {t1.Str[Pico Blvd]}〉,
g11 : 〈LA→ {t10.Citynew}, by {t1.City[LA]}〉,
g12 : 〈null→ {t10.CC#new}, by ∅〉,
g13 : 〈W. Smith→ {t11.Namenew}, by {t3.Name[W. Smith]}〉,
g14 : 〈Pico Blvd→ {t11.Strnew}, by {t3.Str[Pico Blvd]}〉,
g15 : 〈LA→ {t11.Citynew}, by {t3.City[LA]}〉,
g16 : 〈null→ {t11.CC#new}, by ∅〉,
g17 : 〈25K→ {t7.Salary[10K], t8.Salary[25K]}, by ∅〉,
g18 : 〈Dental→ {t8.Treat[Cholest]}, by {te4 .Treatauth[Dental]}〉,
g19 : 〈null→ {t12.Salarynew, t13.Salarynew}, by ∅〉,
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g20 : 〈Med→ {t12.Insurnew}, by {t2.Insur[Med]}〉,
g21 : 〈Eye surg.→ {t12.Treatnew}, by {t2.Treat[Eye surg]}〉,
g22 : 〈12/01/2013→ {t12.Datenew}, by {t2.Date[12/01/2013]}〉,
g23 : 〈Lapar→ {t13.Treatnew}, by {t3.Treat[Lapar]}〉,
g24 : 〈03/11/2013→ {t13.Datenew}, by {t3.Date[03/11/2013]}〉}

Upd2{g10, g11, g12, g13, g14, g15, g16, g17, g20, g21, g22, g23, g24,
g26 : 〈L2 → {t5.SSN[222]}, by ∅, bckw〉,
g27 : 〈123→ {t10.SSNnew, t12.SSNnew}, by {t1.SSN[123], t2.SSN[123]}〉,
g28 : 〈L5 → {t10.Namenew}, by {t1.Name[W. Smith]}, bckw〉,
g29 : 〈0000→ {t10.Phnew}, by {t1.Ph[0000]}〉,
g30 : 〈3456→ {t11.Phnew}, by {t3.Ph[3456]}〉,
g31 : 〈124→ {t11.SSNnew, t13.SSNnew}, by {t3.SSN[123]}〉,
g32 : 〈L3 → {t7.Insurance[Abx]}, by ∅, bckw〉,
g33 : 〈L4 → {t8.Insurance[Abx]}, by ∅, bckw〉,
g34 : 〈null→ {t12.Salarynew}, by ∅〉,
g35 : 〈null→ {t13.Salarynew}, by ∅〉
}

Experimental Settings

We consider three scenarios, of different nature and sizes. The first two are
based on real data from the US Department of Health & Human Services
(http://www.medicare.gov/hospitalcompare/), and the third one is synthetic. For
each of them we report the schemas, the s-t tgds, the target tgds, and the target
cleaning egds.

Hospital-Norm The first dataset is Hospital-Norm, the normalized version of
the hospital data, of which we considered 3 tables with 2 foreign keys, a total
of 20 attributes, and approximately 150K tuples.

Schema:

Hosp(ProviderNumber,HospitalName,Addr1,Add2,Addr3,ZipCode,CountyName,PhoneNumber)
Zip(ZipCode,City,State)
Meas(ProviderNumber,Diagnosis,Cases,Footnote,Mid)

Target tgds:

mt1.Hosp(pn, hn, a1, a2, a3, zc, cn, ph)→ Zip(zc,Y0,Y1)
mt2.Hosp(pn, hn, a1, a2, a3, zc, cn, ph)→ Meas(pn,Y0,Y1,Y2,Y3)
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Target cleaning egds:

e1.Hosp(pn, hn, a1, a2, a3, zc, cn, ph),Hosp(pn, hn′, a1′, a2′, a3′, zc′, cn′, ph′)→ hn = hn′

e2.Hosp(pn, hn, a1, a2, a3, zc, cn, ph),Hosp(pn, hn′, a1′, a2′, a3′, zc′, cn′, ph′)→ a1 = a1′

e3.Hosp(pn, hn, a1, a2, a3, zc, cn, ph),Hosp(pn, hn′, a1′, a2′, a3′, zc′, cn′, ph′)→ a2 = a2′

e4.Hosp(pn, hn, a1, a2, a3, zc, cn, ph),Hosp(pn, hn′, a1′, a2′, a3′, zc′, cn′, ph′)→ a3 = a3′

e5.Hosp(pn, hn, a1, a2, a3, zc, cn, ph),Hosp(pn, hn′, a1′, a2′, a3′, zc′, cn′, ph′)→ zc = zc′

e6.Hosp(pn, hn, a1, a2, a3, zc, cn, ph),Hosp(pn, hn′, a1′, a2′, a3′, zc′, cn′, ph′)→ cn = cn′

e7.Hosp(pn, hn, a1, a2, a3, zc, cn, ph),Hosp(pn, hn′, a1′, a2′, a3′, zc′, cn′, ph′)→ ph = ph′

e8.Zip(zc, ci, st),Zip(zc, ci′, st′)→ st = st′

e9.Meas(pn, di, ca, fn,mi),Meas(pn′, di′, ca′, fn′,mi)→ pn = pn′

e10.Meas(pn, di, ca, fn,mi),Meas(pn′, di′, ca′, fn′,mi)di = di′

e11.Meas(pn, di, ca, fn,mi),Meas(pn′, di′, ca′, fn′,mi)→ ca = ca′

e12.Meas(pn, di, ca, fn,mi),Meas(pn′, di′, ca′, fn′,mi)→ fn = fn′

Hospital-Den Hospital-Den is a highly denormalized version of the same data,
with 100K tuples and 19 attributes. This second version has been used in
data quality experiments to test algorithms that were restricted to single-table
databases. For both Hospital datasets, in our scalability tests we generated
instances of size up to 1M tuples by replicating the original data several times.

Schema:

Hosp(ProviderNumber,HospitalName,Addr1,Addr2,Addr3,Zip,
County,Phone,City,State,Type,Owner,Emergency,
Condition,MsCode,MsName,Score,Sample,StAvg)

Target cleaning egds:

e1.Hosp(p, n, a1, a2, a3, z, c, h, i, s, t, o, e, d,mc,mn, x, l, v),
Hosp(p′, n′, a1′, a2′, a3′, z, c′, h′, i′, s′, t′, o′, e′, d′,mc′,mn′, x′, l′, v′)→ i = i′

e2.Hosp(p, n, a1, a2, a3, z, c, h, i, s, t, o, e, d,mc,mn, x, l, v),
Hosp(p′, n′, a1′, a2′, a3′, z′, c′, h, i′, s′, t′, o′, e′, d′,mc′,mn′, x′, l′, v′)→ z = z′

e3.Hosp(p, n, a1, a2, a3, z, c, h, i, s, t, o, e, d,mc,mn, x, l, v),
Hosp(p′, n′, a1′, a2′, a3′, z′, c′, h, i′, s′, t′, o′, e′, d′,mc′,mn′, x′, l′, v′)→ i = i′
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e4.Hosp(p, n, a1, a2, a3, z, c, h, i, s, t, o, e, d,mc,mn, x, l, v),
Hosp(p′, n′, a1′, a2′, a3′, z′, c′, h′, i′, s′, t′, o′, e′, d′,mc,mn′, x′, l′, v′)→ mn = mn′

e5.Hosp(p, n, a1, a2, a3, z, c, h, i, s, t, o, e, d,mc,mn, x, l, v),
Hosp(p′, n′, a1′, a2′, a3′, z′, c′, h′, i′, s′, t′, o′, e′, d′,mc,mn′, x′, l′, v′)→ d = d′

e6.Hosp(p, n, a1, a2, a3, z, c, h, i, s, t, o, e, d,mc,mn, x, l, v),
Hosp(p, n′, a1′, a2′, a3′, z′, c′, h′, i′, s′, t′, o′, e′, d′,mc,mn′, x′, l′, v′)→ v = v′

e7.Hosp(p, n, a1, a2, a3, z, c, h, i, s, t, o, e, d,mc,mn, x, l, v),
Hosp(p′, n, a1′, a2′, a3′, z′, c′, h′, i′, s′, t′, o′, e′, d′,mc′,mn′, x′, l′, v′)→ a1 = a1′

e8.Hosp(p, n, a1, a2, a3, z, c, h, i, s, t, o, e, d,mc,mn, x, l, v),
Hosp(p′, n, a1′, a2′, a3′, z′, c′, h′, i′, s′, t′, o′, e′, d′,mc′,mn′, x′, l′, v′)→ a2 = a2′

e9.Hosp(p, n, a1, a2, a3, z, c, h, i, s, t, o, e, d,mc,mn, x, l, v),
Hosp(p′, n, a1′, a2′, a3′, z′, c′, h′, i′, s′, t′, o′, e′, d′,mc′,mn′, x′, l′, v′)→ t = t′

Customers Customers is the third dataset and corresponds to our running
example in Figure 1.1. The source database schemas contain 3 tables, plus 1
master data table and 2 additional tables encoding constants in CFDs. The
target database schema contains 2 tables. Dependencies are the ones in Section
1.

Schema:

Patients(ssn, name, phone, street, city, conf)
Surgeries(ssn, insurance, treatments, date)
MedTreatments(ssn, name, phone, street, city, insurance, treatment, date, conf)
Hospitals(ssn, name, phone, street, city)
Cste4(insurance, treatment)
Cste8(insurance, city)

Source to target tgds:

m1.Pat(ssn, name, phn, str, city, conf), Surg(ssn, ins, treat, date)
→ ∃Y1, Y2 : Cust(ssn, name, phn, conf, str, city, Y1),Treat(ssn, Y2, ins, treat, date)

m2.MedTreat(ssn, name, phn, str, city, ins, treat, date, conf)
→ ∃Y3, Y4 : Cust(ssn, name, phn, conf, str, city, Y3),Treat(ssn, Y4, ins, treat, date)

Target tgd:

m3.Treat(ssn, sal, ins, treat, date)→ ∃Y5, Y6, Y7, Y8, Y9, Y10 :
Cust(ssn, Y5, Y6, Y7, Y8, Y9, Y10)
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Target cleaning egds:

e1.Cust(ss, n, p, s, c, cc),Cust(ss, n, p’, s’, c’, cc’)→ p = p’

e2.Cust(ss, n, p, s, c, cc),Cust(ss, n, p’, s’, c’, cc’)→ cc = cc’

e3.Cust(ss, n, p, s, c, cc),Cust(ss’, n, p’, s, c, cc’)→ ss = ss’

e4.Treat(ssn, s, ins, tr, d),Cste4(ins, tr’)→ tr = tr′

e5.Cust(ssn, n, p, s, c, cc),MD(ssn, n’, p, s’, c’)→ n = n’

e6.Cust(ssn, n, p, s, c, cc),MD(ssn, n’, p, s’, c’)→ s = s′

e7.Cust(ssn, n, p, s, c, cc),MD(ssn, n’, p, s’, c’)→ c = c′

e8.Cust(ssn, n, p, s, c, cc),Treat(ssn, sal, ins, tr, d),Cste8(ins, c’)→ c = c’

e9.Treat(ssn, s, ins, tr, d),Treat(ssn, s’, ins’, tr’, d’)→ s = s’
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