
Automatic annotation of data extracted from
large web sites

(extended abstract)

Luigi Arlotta1, Valter Crescenzi1, Giansalvatore Mecca2, and Paolo Merialdo1

1Università Roma Tre 2Università della Basilicata

1 Introduction

The extraordinary amount of data that is currently available on the Web cannot
be fully exploited because web pages are intended to be browsed by humans,
and not computed over by applications. This drawback has motivated several
researchers to study methods and techniques aimed at facilitating the creation
of wrappers, i.e. web data extraction programs (see [9] for a survey on wrappers).

Some recent proposals, based on machine learning approaches, are able to
semi-automatically create wrappers. Since the major effort of the programmer
is the production of the training set, several researchers have focused on the
development of systems that offer sophisticated user interfaces to assist the pro-
grammer in building the training set for the target pages. These systems allow
us to quickly build wrappers for pages that contain data we are interested in.

However, since the creation of wrappers as well as their maintenance require
a human intervention, the costs of a reliable application dramatically augment
with the number of wrapped sources.

In order to reduce the wrapper production and maintenance costs, recent
studies have concentrated on the automatic generation of wrappers. In the con-
text of the RoadRunner project, we have developed a system that, based on a
grammar inference approach [3, 2], automatically infers a wrapper from a collec-
tion of similar pages. Based on different techniques, systems for the same goal
have been recently developed also by Arasu and Garcia-Molina [1] and by Wang
and Lochovsky [11].

Automatic systems leverage on the observation that data published in the
pages of very large sites usually come from a back-end database and are embed-
ded within a common HTML template. Therefore many pages share a common
structure, and differences correspond to the data coming from the database.
The wrapper generation process aims at inferring a description of the common
template, which is then used to extract the embedded data values.

These proposals reduce but do not eliminate the need for a human inter-
vention. Since wrappers are built automatically, the values that they extract
are anonymous and a human intervention is still required to associate a mean-
ingful name to each data item. The automatic annotation of data extracted by
automatically generated wrappers is a novel problem, and it represents a step
towards the automatic extraction and manipulation of web data.

This paper reports our recent researches for automatically annotating data
extracted from data-intensive web sites. Our proposal is based on the observation
that web pages are designed to be consumed by human users, and therefore they
usually contains text strings, i.e. labels, whose goal is to explicate to the final
user the intentional meaning of the published data.

We have developed and experimented a working prototype, called Labeller,
that works as a companion system to our wrappers generator. Although La-
beller has been developed in the framework of the RoadRunner project,
its underlying approach can be applied together with other wrapper generator
systems.

The paper is organized as follows: Section 2 presents the problem we address;
Section 3 overviews our approach and describes the algorithm we have imple-
mented to annotate anonymous data. Experiments with the prototype system
are reported in Section 4. Section 5 discusses limitations and opportunities of
our approach. Finally Section 6 presents some related work.

2 Problem Description

We have analyzed about 50 automatically generated wrappers that work on
pages from several web sites: a large majority of the data extracted by the wrap-
pers are accompanied with a string representing a meaningful name of the value.
This is not surprising: since web pages are intended to be browsed by humans,
it is a common practice that the published data are accompanied by textual
descriptions to help the user to correctly interpret the underlying information.
Therefore, our approach for labelling data extracted from automatically gener-
ated wrappers relies on the observation that important information about the
semantics of data is often available on the web pages themselves.

Let us introduce an example to present the overall context and the issues we
address. Consider the HTML pages shown in Figure 1. Feeding our wrappers
generator system with a set of sample pages like these, we obtain a grammar
description of the common template, as follows:1

<html>. . .(. . .Brand:$J<hr>Model:$K<hr>. . .
<div>Our Price:
$Q</div>. . .)+. . .</html>

This grammar works as wrapper by considering the non-terminals symbols
($J, $K, ...) as place-holders: during the parsing of the input pages, they match
with the strings to extract. Data extracted from the two pages by this wrapper
are shown in Figure 2.

It is worth noting that the extracted data are anonymous; nevertheless, look-
ing at the source pages in Figure 1, we observe that useful labels are available on
the pages themselves as part of the common template. For instance, the bold-
face “Brand” compares nearby the extracted value “Seiko”, “Model” is close
to “SXJZ32”, “SZZB14”, and so on. More interestingly, many of the anonymous

1 For the sake of presentation, we report a partial and simplified version of the real
grammar.

Fig. 1. Input HTML Pages from http://www.watch.com

Fig. 2. Data Extraction Output

fields extracted by the wrapper could be named after some terminal symbol of
the grammar itself. For instance the terminal symbol Brand could be the label
for all the values of $J.

The goal of Labeller is that of analyzing the wrapper and a set of sample
pages in order to locate inside the common template meaningful labels for the
otherwise anonymous data.

We fix the terminology in this settings by calling variants the non-terminal
symbols and invariants the non-tag terminal symbols of the grammar.We call
data-values the strings that match with variants (e.g. “Seiko”, “SXJZ32”, “SZZB14”)
and labels those matching with invariants (e.g. “Brand”, “Model”). More pre-
cisely, Labeller’s goal is that of associating to each variant a meaningful label
chosen among the invariants.

3 The RoadRunner Labeller

Our technique to annotate extracted data is inspired by the following observa-
tion: since web pages are designed to be presented on a browser to a human user,
usually values and labels are visually close to each other.

Therefore, first Labeller computes the coordinates of the bounding boxes
of every data-value and every label in a given sample page (as rendered by a
graphical web browser in standard 800×600 resolution). Then it tries to find the
optimal association label/data-value by analyzing their spatial relationships.

We have developed several heuristics to establish the correct associations:
(i) values and labels are close to each other, (ii) usually a label is vertically,
horizontally, or centrally aligned to its associated values, (iii) labels are usually
placed either to the left or above values, (iv) it is not allowed that either a label
or a value is between another value and its label.

Also, we impose the constraint that a variant cannot have more than one
label.

Actually, the same variant/invariant could occur many times if the sample
pages contain list of items, such as tables. In this cases, we simply consider only
the first occurrences of each variant/invariant.

3.1 The Labelling Algorithm

The algorithm implemented by Labeller takes as input a wrapper and a set of
sample pages; as output, it produces a set of label/variant associations for the
given wrapper.

Initially it chooses an arbitrary order for the set of labels L = {li, i = 1 . . . Nl}
and for the set of variants V = {vj , j = 1 . . . Nv} of the wrapper. Then it calls
the function labels to compute a set of label/variant associations (li/vj) on
each of the given samples.

labels tries to exploit the spatial relationships between data-values and la-
bels in the graphical rendering of one web page as displayed by an ordinary

browser. It computes an Nl ×Nv matrix M of scores, that is positive real num-
bers such that M [i, j] is a measure of the “goodness” of li as label for vj ; as
smaller are the scores as better are the associations.

Some associations are immediately discarded without further evaluation by
setting the corresponding score in M to +∞. Namely, we discard (li/vj) if any of
the following conditions holds: (i) li is below or to the right of vj ; (ii) the distance
between li and vj is greater than Dmax pixels; (iii) li is placed on the diagonal
of vj ; (iv) there exists another variant/invariant which is located between li and
vj . The first three conditions reflect the fact that a label is usually placed above
or to the left of the corresponding data-value, never too far from it. The last
condition considers that anything between a data-value and its label would keep
the reader from intuitively associating them.

Given a pair (l/v) and the corresponding bounding-boxes on a page s, our
score function is defined as follows:

score(l, v, s) = distance(l, v, s) · sin(2 · alignment(l, v, s))

This definition captures two aspects: distance and alignment, because labels are
usually close and aligned to the corresponding data-values.

The distance is simply defined as the minimum distance between the two
bounding boxes. The alignment factor is a measure of the alignment and is
computed as the smallest angle amongst several possibilities. Namely, we con-
sider the line crossing at the two midpoints, and all the lines crossing at the two
farthest point on the same side (left, right, top, or bottom) of the two bounding-
boxes; then we consider all possible (absolute values of) angles encompassed be-
tween one coordinate axis and these lines. Note that sin(2 · alignment(l, v, s))
has a minimum when the boxes are perfectly aligned, and a maximum when one
is perfectly on the diagonal of the other.

Function labels terminates by producing the associations (li/vj) according
to a trivial best first strategy.

The results of every labels invocation are then collected and only the asso-
ciations which have been established without contradictions in all input samples
are considered part of the final output. That is, if the same label has been asso-
ciated to different variants in different samples, it will not be part of the output.

While it is clearly possible that associations inferred according to the scores
are due to random factors, i.e. a data-value and one label are incidentally close
each other in one sample, it is unlikely that the two will be rendered so close
in many samples if the web-designer did not “plan” this way. The experiments
have confirmed this observation: the comparison of the results on several samples
reduced the number of false positives.

4 Experiments

Based on the above algorithm, we have developed Labeller, a working proto-
type of the labelling system and used it to run a number of experiments on real
web sites. We have generated wrappers for 19 collections of pages, each collection

containing about 10 pages. We have then used these wrappers to extract data
from the input pages. Finally, we have run Labeller to annotate the extracted
data with a label extracted from the input pages.

To evaluate the effectiveness of the system we have manually defined and
stored in a database the correct associations between data-values and labels.
The results produced by Labeller have been compared against this collection.

samples wrappers results
site description nesting #invariant #variants #ok #error #fp #fn

www.fifaworldcup.com players 1 93 30 22 0 1 0
www.fifaworldcup.com teams 1 57 31 7 0 1 0

half.ebay.com used books 2 26 29 5 2 0 1
it.finance.yahoo.com stock quotes 1 52 26 16 1 1 0

match.com mate finder 0 50 25 19 0 0 0
postershop.com posters 1 29 16 6 0 0 0

www.allrecipes.com recipes 1 42 21 9 0 2 1
www.allrecipes.com recipe index 1 22 11 2 0 1 1
superstore.ubid.com products 1 35 15 6 0 2 0
www.watchzone.com watches 1 12 16 8 0 0 0

www.polo.com dresses 1 11 11 1 0 0 0
autos.yahoo.com cars 2 70 58 46 0 2 1
www.hotjobs.com job listing 1 29 10 4 0 2 0

www.overstock.com jewelries 1 35 13 3 0 0 0
ncdc.noaa.gov storms 1 51 11 9 0 1 0
www.fbi.com most wanted 0 17 18 12 0 0 0

www.vitacost.com drugs 1 30 23 15 0 0 0
houseandhome.msn.com house finder 1 169 104 45 0 2 3

cinema.com movies 1 13 12 10 1 0 1

totals 843 480 245 4 15 8
totals (%) 90,07% 1,47% 5,51% 2,94%

Fig. 3. Experimental Results

The table in Figure 3 reports the results of our experiments and contains
the following elements:(i) samples: the url of the site and a short description of
the collection of pages considered for the experiment. (ii) Wrapper: some ele-
ments about the inferred wrapper; in particular we report the level of nesting
of the inferred schema (nesting), the number of variants (#variants) and the
number of invariants (#invariants) of the inferred wrapper. (iii) Results: the
results obtained from the Labeller; namely: number of correctly labelled data
attributes (#ok); number of errors, i.e. number of variants the system has asso-
ciated a wrong label with (#error); number of false positives (#fp), i.e. number
of variants that although do not have a label in the source page, they have been
associated with a label; number of false negative (#fn), i.e. number of variants
for which the system was not able to associate a label, although a label was
present in the source page.

As it can be seen from the table, for a large majority of variants (around 90%)
the system is able to correctly identify the right label, even in the presence of
nested structures. The system produces a small number of false positives (around
5%) and a very small number of errors (around 1.5%).

Finally, note that the system correctly associates a label with 51% of the
wrapper variants. Here it is important to observe the association variant-label
is at the schema level. Most of the labelled variants represent data-values which
are repeated in the pages, e.g. data-values associated with variants $J, $K, ...
in Figure 2. As a consequence the labels cover a large majority of the extracted
data-values (for our set of pages, around 82% of data-values).

5 Limitations and Opportunities

The encouraging results of our experiments show that our technique can be
adopted as a starting point for more sophisticated approaches. The capability
to label data can sensibly improve the degree of automation of related tech-
niques [11, 10, 4, 5]. Our approach essentially requires only the distinction be-
tween variants and invariants and can be easily adapted to different automatic
wrapper generation systems [1, 11].

The most restrictive hypothesis of our data annotation approach is rather
obvious: we need that textual labels describing the meaning of the extracted
fields are present in the page. However, many data are published on web pages
leaving their meaning implicit.In fact, often pages do not include explicit la-
bels for those data whose semantics can be clearly understood from the context
(e.g. the title of a book in a page describing details about that book). On the
other hand, we observe that it is unlikely, especially in a data-intensive web
site, that a large number of relevant attributes are left unlabelled. Just to give
an example, consider a bookstore site, such as amazon.com: usually the authors
and the title of books are not explicitly labelled; on the contrary, detailed data,
such as ISBN, publisher, prices and many other attributes, are presented with
an associated label. More important, labels are usually associated with those
data that can assume an ambiguous meaning; following the bookstore example,
labels like "our price", "saving", "list price" are associated with data dealing
with prices: these labels are indispensable to correctly interpret the published
information.

We observe that the meaning of data implicitly described by the context can
be interpreted by domain ontologies; on the contrary, ontology based approaches
cannot work with several ambiguous data, such as the prices of our example.
Therefore we believe that it might be interesting to combine our approach with
ontology-based annotation systems.

6 Related Work

The problem we address is somehow new, since the development of automatic
wrapper generator systems is a recent result.

A related problem is that of identifying instances of specific value domains,
such as people names, phone numbers, prices, and so on. Software modules spe-
cialized to this issue are the so called recognizers [8]. However their usage in
the context of web data extraction is limited and the number of domains they

can work on is relatively small. Also they cannot associate different labels with
data-values of the same domain; for example they can identify several variants
representing a price in a page, but they cannot distinguish the different meanings
(list price, price and saving) of the variants.

Knoblock et al. have addressed problem which is reminiscent to ours in the
context of the wrapper maintenance issue [10]. They have developed a wrapper
generator system that needs to be trained by a set of labelled samples. Whenever
a wrapper fails they have to regenerate the wrapper; to this end their system
tries to automatically build a set of labelled examples by using the data extracted
before the wrapper failure [7].

Some wrapper generation approaches are based on domain ontologies [6]: they
derive the data extraction rules from knowledge about the domain. Therefore,
in principle they do not need to face the labelling problem, since the extracted
data represent instances of known concepts. The strong dependence on domain
is the major limitation of these approaches.

References

1. A. Arasu and H. Garcia-Molina. Extracting structured data from web pages. In
ACM SIGMOD 2003, 2003.

2. V. Crescenzi and G. Mecca. On automatic information extraction from large web
sites. Technical Report rt-dia-76-2003, Università di Roma ”Roma Tre”, 2003.
http://web.dia.uniroma3.it/research/2003-76.pdf.

3. V. Crescenzi, G. Mecca, and P. Merialdo. roadRunner: Towards automatic data
extraction from large Web sites. In International Conf. on Very Large Data Bases
(VLDB 2001), Roma, Italy, September 11-14, 2001.

4. A. Doan, P. Domingos, and A. Y. Halevy. Reconciling schemas of disparate data
sources: A machine-learning approach. In SIGMOD Conference, 2001.

5. D. W. Embley, D. Jackman, and L. Xu. Multifaceted exploitation of metadata for
attribute match discovery in information integration. In Workshop on Information
Integration on the Web, pages 110–117, 2001.

6. D. W. Embley and J. Y. S. N. Y. Record-boundary discovery in web documents.
In ACM SIGMOD International Conf. on Management of Data, pages 467–478,
1999.

7. C. Knoblock, K. Lerman, S. Minton, and M. I. Accurately and reliably extracting
data from the web: A machine learning approach. IEEE Data Engineering Bulletin,
23(4):33–41, 2000.

8. N. Kushmerick. Wrapper induction: Efficiency and expressiveness. Artificial Intel-
ligence, 118:15–68, 2000.

9. A. Laender, B. Ribeiro-Neto, A. Da Silva, and T. J. A brief survey of web data
extraction tools. ACM SIGMOD Record, 31(2), June 2002.

10. I. Muslea, S. Minton, and C. Knoblock. Hierarchical wrapper induction for
semistructured information sources. Journal of Autonomous Agents and Multi-
Agent Systems, 4:93–114, 2001.

11. J. Wang and F. Lochovsky. Data-rich section extraction from html pages. In
Proceedings of the 3rd International Conference on Web Information Systems En-
gineering (WISE 2002), 12-14 December 2002, Singapore, Proceedings, pages 313–
322. IEEE Computer Society, 2002.

