
Model Finiteness and Functionality

in a Declarative Language with Oid Invention

Luca Cabibbo, Giansalvatore Mecca

Dipartimento di Informatica e Sistemistica

Università di Roma “La Sapienza”

Via Salaria 113 — I-00198 Roma, Italy

{cabibbo,mecca}@infokit.dis.uniroma1.it

Abstract

Two important properties of IsaLog programs are studied: model finiteness and
functionality. Finiteness refers to the property of a program of having a finite
model over every input instance. Functionality requires a model to contain no
contradictory information about object values. These two properties are shown
to be undecidable. This is a consequence of the ability of IsaLog programs
to simulate computations of arbitrary Turing machines, provided their input is
coded as a suitable instance.
Weakly recursive programs, a restricted class of IsaLog programs, is then in-
vestigated. It is shown that every weakly recursive program admits a finite model
over every input instance. Moreover, models for this class of programs can be
computed in polynomial time with respect to the number of objects in the input
instance.

1 Introduction

Since the introduction of the Datalog language, the so called “deductive” query
languages have had much of attention from the database community. This is essen-
tially due to the high flexibility and to the capacity of expressing recursive queries,
whereas the lack of recursive primitives in traditional relational languages (such as
relational algebra and calculus) has represented a major limitation [3].

This work was partially supported by MURST, within the Project “Metodi formali e strumenti
per basi di dati evolute”, and by Consiglio Nazionale delle Ricerche, within “Progetto Finalizzato
Sistemi Informatici e Calcolo Parallelo, Obiettivo LOGIDATA+”.



In the last years, the goal of coupling declarative languages and object-oriented
data models has been strongly pursued. What an object-oriented data model offers
— among others, object identity, object sharing, and inheritance hierarchies —
represents a group of very attractive features for next generation database systems.
These features, indeed, are even more interesting when embedded in a declarative
framework. For example, the presence of oid identity, and thus the need for the
creation of new objects, each one required to have a new unique object identifier
(oid), has brought to the introduction of the notion of oid invention [2]. Special
care has to be devoted to the definition of the semantics of a clause written in a
deductive language that performs oid invention. An interesting proposal comes from
the ILOG [14] language, in which oid invention is made fully declarative by exploiting
a special technique, called implicit Skolemization, in which function symbols are used
in order to create new objects.

In previous papers [4, 5], the IsaLog data model and language have been pre-
sented. Its semantics is much in the spirit of ILOG, since function symbols are
exploited as object creators, with some new features:

• functors are made explicit, where ILOG ones were essentially implicit, thus
providing a mechanism for copy control and generation;

• inheritance hierarchies are allowed, and the language is strongly typed. The
two things are tightly related, since suitable constraints on the syntax of pro-
grams are needed in order to correctly deal with inheritance [8].

In this paper we intend to discuss some interesting aspects of the language due to
the interaction among declarative semantics and object-oriented features, namely
oid invention, hierarchies, and strong typing. The problems we discuss here are
model finiteness and functionality, two important properties for IsaLog programs.

Finiteness refers to the property of a program of having a finite model over every
input instance. This is a strong requirement in a object-oriented database context,
since the generation of an infinite number of new objects must be carefully avoided
(because it would correspond to a non-terminating computation).

On the other side, a program is said to be functional if it preserves the require-
ment of unique identification associated with object identity (that is, each object
— existing or newly created — has a unique, well-defined, associated value). This
is a desired property of programs, since the semantics of a non-functional program
cannot be properly defined.

In this paper, both properties are shown to be undecidable for IsaLog programs.
Sufficient conditions in order to enforce finiteness are introduced, leading to the
definition of the class of weakly recursive programs, which is heavily based on the
strong typing of the language. Besides finiteness, such programs also enjoy the nice
property that the problem of finding their model is computationally tractable —



a model for a weakly recursive program can always be computed in ptime (with
respect to the number of objects in the input instance).

The technique we use to prove the undecidability results consists in simulating
computations of Turing machines, provided their input strings are coded as suitable
instances. This sheds further light on the problem of characterizing the expressive
power of the language, problem that will be dealed with in a forthcoming paper [6].

The paper is organized as follows. Section 2 briefly reviews the IsaLog data
model and language. Section 3 is devoted to the simulation of Turing machines by
means of IsaLog programs. Some undecidability results about IsaLog programs
descend from this ability. The class of weakly-recursive programs — which enjoy
the finiteness property — is introduced in Section 4, where we also discuss some
complexity issues. Future research directions are sketched in Section 5. For the sake
of space, proofs are omitted; they can be found in the full version of the paper [7].

2 The Data Model and Language

In this section we briefly present the IsaLog data model and language. For a
complete presentation of the IsaLog framework we refer the reader to our previous
works [4, 5]. In this paper we actually describe a slightly refined version of IsaLog,
called IsaLog

impl , which exploits an implicit skolemization mechanism such as the
one elegantly introduced in the ILOG language [14]. We do this in order to simplify
the notation throughout the paper, with special regard to the language syntax.
Every result obtained in such a way can be easily extended to the original model.
Indeed, the two frameworks can be proven to be equivalent; hence, we blur the
distiction between them and refer to both just as IsaLog.

2.1 The Data Model

The data model is based on a clear distinction between scheme and instance. Data
are organized by means of two constructs: classes and relations. A class is a col-
lection of objects; each object is identified by an object identifier (oid) and has
an associated tuple value. A relation is a collection of tuples, used to express re-
lationships among objects and values. Tuples in relations and object values may
contain domain values and oid’s, used as references to objects. Isa hierarchies are
allowed among classes, with multiple inheritance and without any requirement of
completeness or disjointness.

We fix a countable set D of constants, called the domain. An IsaLog scheme is
a four-tuple S = (C,R,typ, isa), where:

• C (the class names) and R (the relation names) are finite, pairwise disjoint
sets;



• typ is a total function on C ∪ R that associates a flat tuple type (A1 :
τ1, . . . , Ak : τk) with each class in C and each relation in R; the Ai’s are
called attributes, and each τi (the type of Ai) is either a class name in C or the
domain D;

• isa is a partial order over C, such that if (C ′, C ′′) ∈ isa (usually written in
infix notation, C ′

isa C ′′, and read C ′ is a subclass of C ′′), then typ(C ′) is
a subtype 1 of typ(C ′′). Multiple inheritance is allowed, with some technical
restrictions.

It is convenient to define the types of a scheme S, where each type is a simple type
(that is, either the domain D or a class name) or a tuple type (whose attributes have
simple types associated).

Given two scheme S = (C,R,F,typ, isa) and S′ = (C′,R′,typ′, isa′), we say
that S′ is a subscheme of S (denoted by S′ ⊆ S) if the following conditions are
satisfied: (i) C′ ⊆ C and R′ ⊆ R; (ii) if R is a relation name in R′, then typ

′(R) =
typ(R); (iii) if C is a class name in C′, then typ

′(C) = typ(C) and for each C0 in
C such that C isa C0 it is the case that C0 ∈ C′ and C isa

′ C0.
A scheme gives the structure of the possible instances of the database. The values

that appear in instances are: (i) constants from D; (ii) object identifiers (oid’s) from
a countable set O, disjoint from D; (iii) tuples over tuple types, whose components
are oid’s or constants.

An instance 2 s of a scheme S = (C,R,typ, isa) is a triple s = (c, r, o), where:

• c is a function that associates with each class name C ∈ C a finite set of oid’s,
preserving the containment constraints (associated with subclass relationships)
and disjointness constraints (associated with distinct taxonomies);

• r is a function that associates with each relation name R ∈ R a finite set of
tuples over typ(R);

• o is a function that associates tuples with oid’s in classes, with the appropriate
type;

• if a tuple type has an attribute A whose type is a class C ∈ C, then the value
of the tuple over A is an oid in c(C) (this condition is required in order to
avoid “dangling references”).

1A tuple type τ ′ is a subtype of another tuple type τ ′′ if, for each attribute in τ ′′, the attribute
also appears in τ ′, with the same type or — if the type is a class name — with a type that is a
subclass. See [8].

2This definition is slightly different from that in [4], where a pre-instance is defined as an
instance here, whereas an instance is defined as an equivalence class of pre-instances. However,
the discussion in this paper is not affected from this definition.



2.2 IsaLog Syntax

The IsaLog language is declarative and strongly typed, a suitable extension of Dat-
alog [9] capable of handling oid invention and hierarchies. The language semantics
is based on the well-known semantics of ordinary logic programming with function
symbols, due to the presence of functors in the model. Functors are essentially func-
tion symbols; they are used in IsaLog programs as a tool to make oid inventions
fully declarative. In this paper we adopt the technique consisting in keeping functors
hidden, using them at the semantic level to invent new objects.

Let a scheme S = (C,R,typ, isa) be fixed. Also, consider two disjoint countable
sets of variables: VD (value variables, to denote constants) and VC (oid variables, to
denote oid’s).

The terms of the language are:

• value terms, that are: (i) the constants in D and (ii) the variables in VD;

• oid terms: (i) the oid’s in O and (ii) the variables in VC;

• the oid-invention term ∗: it is used in order to represent oid’s to be invented.

The atoms of the language may have two forms (where a term ti in a component is
an oid term or a value term depending on the type τi associated with the attribute
Ai):

• class atoms: C(oid : t0, A1 : t1, . . . , Ak : tk), where C is a class name in C,
typ(C) = (A1 : τ1, . . . , Ak : τk), and t0 is an oid term or the oid-invention
term;

• relation atoms: R(A1 : t1, . . . , Ak : tk), where R is a relation name in R, with
type typ(R) = (A1 : τ1, . . . , Ak : τk).

The notions of (positive) literal, rule, fact, and clause are as usual. The head and
body of a clause γ are denoted with head(γ) and body(γ), respectively. There are
three relevant forms of clauses. A clause γ is:

• a relation clause if head(γ) is a relation atom;

• an oid-invention clause if head(γ) is a class atom C(oid : ∗, A1 : t1, . . . , Ak :
tk);

• a specialization clause if head(γ) is a class atom C(oid : X, . . .), where X is
an oid variable and body(γ) contains (at least) a class atom C ′(oid : X, . . .)
such that C and C ′ have a common ancestor (that is, a class C0 such that
C isa C0 and C ′

isa C0).



Hereinafter we consider only clauses of the above three forms.
An IsaLog program P over a scheme S is a set of clauses that satisfy some

technical conditions: well-typedness (about typing of oid terms), safety (as usual),
visibility (no explicit oid’s are allowed), and ∗-usage (the oid-invention term ∗ occurs
only in the head of oid-invention clauses).

An input-output scheme (or, simply, i-o scheme) is a pair 〈Sin,Sout〉, where Sin

and Sout are schemes called the input scheme and the output scheme, respectively.
When a program is applied to a database, its semantics is defined identifying

some classes and relations as its input (say, the extensional part), and others as its
output (the intensional part). Because of the presence of isa hierarchies, we do not
require disjointness among the input and output schemes. In this paper, to simplify
the presentation, we assume that Sin is a subscheme of Sout, that is, the whole input
and temporary classes and relations are considered as part of the output as well.
Furthermore, when the input scheme is not important for the discussion, we simply
refer to the scheme of a program meaning its output scheme.

2.3 Semantics of IsaLog Programs

In [4] three different semantics for IsaLog programs have been defined and shown
to be equivalent. The first semantics is a model-theoretic semantics, the second is a
fixpoint semantics, and the third one is based on a reduction to logic programming
with function symbols. Here we mainly refer to (a variant of) the latter one.

As in ILOG [14], the semantics of IsaLog programs can be easily reduced to
ordinary model-theoretic semantics of logic programs with function symbols once
one introduces the notion of implicit Skolemization of a program.

First, note that each instance s = (c, r, o) of a scheme S = (C,R,typ, isa)
corresponds to a set of atoms φ(s) of the language; in particular, φ(s) contains:

• an atom R(A1 : t1, . . . , Ak : tk) for each tuple (A1 : t1, . . . , Ak : tk) in r(R);

• an atom C(oid : o, A1 : t1, . . . , Ak : tk) for each oid o in c(C), where A1, . . . , Ak

are the attributes of C and (A1 : t1, . . . , Ak : tk) is the restriction of o(o) to
A1, . . . , Ak.

Now, let P be a IsaLog program. The Skolemization of P, denoted skol(P), is
obtained by the following transformation from P:

1. for each class C ∈ C introduce a functor FC , called the Skolem functor for C.
Then, if typ(C) equals (A1 : τ1, . . . , Ak : τk), we define FC(A1 : t1, . . . , Ak : tk)
as a (functor) term of the language;

2. replace the head of each invention rule in P having the form C(oid : ∗, A1 :
t1, . . . , Ak : tk) by C(oid : FC(A1 : t1, . . . , Ak : tk), A1 : t1, . . . , Ak : tk).



The semantics of an IsaLog program P over an i-o scheme 〈Sin,Sout〉 is a
function that maps instances of Sin to instances of Sout. Given an instance s of Sin,
the semantics of P over s can be found by means of the following steps, described
informally:

1. find the skolemization skol(P) of P;

2. find the set of atoms φ(s);

3. skol(P)∪φ(s) represents essentially a set of clauses of Datalog with function
symbols; its minimum model, Mskol(P)∪φ(s), can be found via a fixpoint

computation that uses a special operator, T isaskol(P)∪φ(s) [5], in order to deal
with inheritance; ifMskol(P)∪φ(s) exists, we call it the model of P over s;

4. ifMskol(P)∪φ(s) exists and is finite, it is something similar to a set of atoms
of the language, apart from the presence of Skolem terms. In order to obtain
an instance of the scheme, we must coherently replace functor terms by new
oid’s;

5. finally, if the set of facts that represents the result of the previous step satisfies
some suitable conditions (see below), then it is possible to find the correspond-
ing instance s′ by means of a transformation that is the inverse of φ; if such
s′ exists, we call it the semantics of P over s. Otherwise, the semantics is
undefined.

The main difference with respect to the semantics of a Datalog program is the
possibility that the semantics of an IsaLog program over an instance is undefined.
There are two main reasons for this fact, corresponding to some of the extensions of
the model and language with respect to the traditional Datalog framework, where
minimum models always exist [9], and thus the semantics is always defined:

• Recursion through oid invention can lead to the generation of infinite sets of
facts, against the hypothesis of finite structures. In this case the model of the
program over the input instance would be infinite and the semantics would be
undefined. Consider, for example, the following clause, in which the class C0

has type (), and C1 is a subclass of C0 with type (Cref : C0):

γ : C1(oid : ∗, Cref : X)← C1(oid : X,Cref : Y ).

The program made of this single clause has clearly no finite model unless the
class C1 is empty in the input instance. This is due to the fact that, according
to γ, for each object in C1 a new object must be invented, leading to a non
finite number of objects in the model of γ.



• The presence of isa hierarchies and specialization clauses allows for multiple
and inconsistent specializations of an oid from a superclass to a subclass: this
may lead to non functional relationships from oid’s to object values. In this
case the semantics is undefined as well. In fact, as it is shown in [4], it is
always the case that a model Mskol(P)∪φ(s) exists, even though infinite. If
the model is finite, in order to find the corresponding output instance, we need
only to check functionality of the relationship among oid’s and values, that is,
the satisfaction of the following condition:

fun (functionality): there cannot be two different facts C ′(oid : t′0, . . . , A :
t′, . . .) and C ′′(oid : t′′0, . . . , A : t′′, . . .), with t′0 = t′′0 and t′ 6= t′′. That is,
two facts for the same oid term must have respectively identical values
for the common attributes.

Condition fun is not always satisfied by a model of an IsaLog program, as
the following example from [4] shows. Consider the following scheme:

CLASS person (name:String)
CLASS husband isa person (name:String, wife:person)
RELATION marriage (husband:person, wife:person)

Suppose we know all the persons and want to fill the class of the husbands, on
the basis of the relation marriage, using the following rule:

husband(oid:X, name:H, wife:Y) ← marriage(husband:X, wife:Y),
person(oid:X, name:H).

The problem of inconsistent multiple specializations for the same object arises
if persons with more than one wife are allowed in the input instance. In this
case, the program made of this rule has a model, but it contains contradictory
facts, so that the semantics is undefined.

We say that a program is finite (resp., functional) if admits a finite (resp., functional)
model over every input instance — possibly allowing for non-functionality (resp.,
non-finiteness). If a program is both finite and functional we say that is defined;
only defined programs admit a semantics that is a total function. The problem
of determining whether a program is defined (resp., finite, or functional) is called
definedness (resp. finiteness, or functionality).

As it is shown in Section 3, the above problems are undecidable in general.



3 Recursive Programs

The IsaLog data model allows for modeling types that are defined inductively, such
as lists, trees, and (in some sense) sets. This is an interesting feature, since it allows
for managing complex data structures even though the data model, which has been
kept as simple as possible, does not explicitly provide complex types. This modeling
ability is a consequence of having class names as user-defined types of a scheme, in
such a way that the type of an attribute of a class may be another class name. At
the instance level, the value associated with an object may be an oid — an indirect
reference to another object. Furthermore, the presence of isa hierarchies allows to
define a type as the “union” of different types — a class as the disjunction of its
subclasses. And this is all we need to have inductively defined types.

Example 1 A type string, that is, a list of characters, is inductively defined as
(i) the empty string; or (ii) a character followed by a string. We can represent
this definition by means of the following scheme Sstring:

CLASS string ()
CLASS stringǫ isa string ()
CLASS stringnǫ isa string (ch:char, s:string)

The above scheme allows for having instances representing unbounded structures,
that is, structures over a finite alphabet containing an arbitrarily large number of
objects.

Example 1 (Cont.’ed) Indeed, we can represent by means of Sstring a string
of any length (over a fixed alphabet, represented by class char). Given a string
w in char∗, let us define the instance sw of Sstring representing string w. Instance
sw contains, in class string, all and only the strings that are suffixes for w. That
is, if w = a1 . . . an, with n ≥ 0, then sw would contain n+1 objects o0, o1, . . . , on,
where c(stringǫ) = {o0} (just the empty string), c(stringnǫ) = {o1, . . . , on}, with
o(oi+1) = (ch : an−i, s : oi). Using functors, this can be equivalently stated as
oi+1 = Fnǫ(ch : an−i, s : oi), where Fnǫ is the functor for class stringnǫ. Finally,
c(string) = {o0, o1, . . . , on}.

Note that Datalog, which refers to the relational model, does not provide the ca-
pability of “inventing” new values, so that a Datalog program may only admit finite
minimal models. In contrast, now we show that there exist IsaLog programs that
define unbounded structures, that is, that may have no finite model over an input
instance. Those programs are said to be recursive through oid invention. Intuitively,
a program is recursive through oid invention when the invention of an object in a



class depends (directly or indirectly) on the presence of other objects in the same
class. Seen from another perspective, in a program that involves recursion through
oid invention, the invention of an object in a class can give rise to the invention
of an unbounded number of other objects in the same class. In the following, we
refer to programs that are recursive through oid invention simply as recursive pro-
grams, since no ambiguity can arise with respect to the notion of recursion defined
for Datalog programs.

Example 2 Consider program PKleene, over a scheme obtained by extending
Sstring of Example 1 with a unary relation R, defined as follows.

stringǫ(oid : ∗) ← true.
stringnǫ(oid : ∗, ch : C, s : S) ← R(ch : C), string(oid : S).

The first clause invents only a new object (being true a predicate which is always
satisfied) corresponding to the empty string. The second clause takes characters
from a unary relation R, concatenating them in all possible ways. In this way,
class string would contain all the strings over the alphabet R. Program PKleene

is recursive (in fact, invention of objects in class stringnǫ, that will belong to
class string as well, depends on the existence of other objects in class string).
Note that this program admits a finite model over an instance s if and only if
the relation R is empty in s.

Program PKleene in the example above does not enjoy the finiteness property,
according to the definition in Section 2.3. Indeed, instances exist over which PKleene

has no finite model (namely, all those instances having R non-empty).
In the rest of the section we study decidability of the finiteness problem, starting

from the problem of determining whether a given program admits a finite model
over a given instance. We also study the functionality problem.

The results we obtain are negative. Indeed, both the problems are shown to be
undecidable. The proof is by simulating the computation of an arbitrary Turing
machine on an input string. The used technique is particularly interesting since it
also points out a big potential for the expressive power of the IsaLog language.

3.1 Simulating Turing Machines

In this section we show how to write an IsaLog program that simulates the com-
putation of a Turing machine on an input string, provided the string is coded as a
suitable IsaLog instance.

The following definitions are from [19]. A Turing machine M is a quadruple
(K,Σ, δ, s), where:



• K is a finite set of states, not containing the halt state h;

• Σ is a finite alphabet, containing the blank symbol #;

• s ∈ K is the initial state;

• δ is a total function from K × Σ to (K ∪ {h})× Σ× {←,→,−}.

If q ∈ K, a ∈ Σ, and δ(q, a) = (p, b, d), then M , when in state q and scanning
symbol a, will enter state p, rewrite a as b, and move its head in the direction shown
by d (that is, if d equals ← (→) then move the head to the left (right), and do not
move the head if d equals −).

A configuration of a Turing machine M = (K,Σ, δ, s) is a member of (K ∪
{h}) × ((Σ − {#})Σ∗ ∪ ǫ) × Σ × (Σ∗(Σ − {#}) ∪ ǫ), where ǫ denotes the empty
string. Intuitively, the configuration (q, wL, c, wR) contains the complete description
of a current global state of a computation, in which: q is the current state, c is the
character being scanned by the head, and wL (wR) is the string representing the
content of the tape at the left- (right-) hand side of the head.

The yields in one step binary relation on the configurations ofM (denoted by ⊢M)
is defined in such a way that if M in configuration C = (q, wL, c, wR) using δ(q, c) =
(q′, b, d) reaches configuration C ′ = (q′, w′

L, c
′, w′

R), then C ⊢M C ′. Moreover, ⊢∗M
denotes the reflexive and transitive closure of ⊢M , which is called yields.

Let Σ0 and Σ1 be alphabets not containing the blank symbol #. We say that a
Turing machine M = (K,Σ, δ, s) computes a function f from Σ∗

0 to Σ∗
1 if Σ0,Σ1 ⊆ Σ

and for any w ∈ Σ∗
0, if f(w) = u, then (s, ǫ,#, w#) ⊢∗M (h, ǫ,#, u#).

Now we turn to the problem of simulating an arbitrary Turing machine by means
of an IsaLog program.

Consider the Turing machine M = (K,Σ, δ, s). The simulation is defined over
a scheme that contains Sstring of Example 1 as a subscheme. Moreover, we define
class input as a subclass of string, without further attributes, to contain objects
representing strings on which the simulation must be carried on. In this context we
will assume that input contains only one object, that is, the object that properly
encodes the input string for a computation of the Turing machine; with other words,
we can say that we deal basically with computations over a single input string. The
input scheme for our simulation is defined as Sstring extended with class input.

The output scheme contains other classes and relations, as follows.
Class output, a subclass of string without further attributes, will contain the

object representing the string (if any) computed by M on the given input.
Class state contains as objects the states of M , that is, it represents the set K,

whereas the alphabet Σ is represented by class char.
Class Conf0 will contain configurations of the Turing machine, where typ(Conf0)

is equal to (state:state, left:string, ch:char, right:string). Each object in Conf0 is a
configuration reached by the computation of M on the input string, where: state



represents the state; ch the character scanned by the head; right codes the portion
of the tape on the right-hand side of the head; and left codes the portion on its left,
using the convention that it is in reverse order, that is, read from the right to the left.
Class Conf0 has two subclasses: Confinit, of the same type as Conf0, to represent
the initial configuration of a computation; and Conf, for non-initial configurations,
with type (state:state, left:string, ch:char, right:string, previous:Conf0); attribute
previous links subsequent configuratios: if an object o in class Conf has for previous
the value o′ —which must be an object in Conf0 — this means that the configuration
represented by o is yielded in one step from the one represented by o′.

Relation toCreate, of type (ch:char, tail:string), is used to mantain a request pool
for the invention of the new strings needed for the computation to evolve. Mainly,
it is used to deal with “expansions” of the working area, that occur when the head
reaches the left- or right-end of the tape. Finally, relations first and tail, of type
(string:string, ch:char) and (string:string, tail:string) respectively, are used to access
the first character and the tail of a string. We need them in order to correctly deal
with the empty string.

Let us go to the description of the IsaLog program 3 PM simulating the Turing
machine M .

Class Conf is initialized by:

Confinit(oid : ∗, s, E,#, X) ← input(oid : X), stringǫ(oid : E).

For each pair (q, a) such that δ(q, a) = (q′, a′,−), that is, for each non-moving
transition, we have a clause:

Conf(oid : ∗, q′, L, a′, R, P ) ← Conf0(oid : P, q, L, a, R).

For each pair (q, a) such that δ(q, a) = (q′, a′,→), that are, right-moving transi-
tions, we have clauses:

toCreate(a′, L) ← Conf0(oid : I, q, L, a, R).
Conf(oid : ∗, q′, L′, X,R′, P ) ← Conf0(oid : P, q, L, a, R),

first(R,X), tail(R,R′), first(L′, a′), tail(L′, L).

Similarly for left-moving transitions δ(q, a) = (q′, a′,←):

toCreate(a′, R) ← Conf0(oid : I, q, L, a, R).
Conf(oid : ∗, q′, L′, X,R′, P ) ← Conf0(oid : P, q, L, a, R),

first(L,X), tail(L, L′), first(R′, a′), tail(R′, R).

Moreover we have clauses defining first, tail, and new objects in string, with
respect to creation requests in relation toCreate — where we have the first clause
repeated for each character a ∈ (Σ− {#}):

3In order to simplify the presentation and without loss of generality, from now on we use a
positional syntax for atoms, omitting attribute names. For example, if R is a relation name and
typ(R) = (A1 : τ1, . . . , Ak : τk), we write here R(t1, . . . , tk) rather than R(A1 : t1, . . . , Ak : tk).



stringnǫ(oid : ∗, ch : a, s : S) ← toCreate(a, S), string(oid : S).
stringnǫ(oid : ∗, ch : #, s : S) ← toCreate(#, S), stringnǫ(oid : S).

f irst(X,F ) ← stringnǫ(oid : X, ch : F, s : R).
f irst(X,#) ← stringǫ(oid : X).

tail(X,R) ← stringnǫ(oid : X, ch : F, s : R).
tail(X,X) ← stringǫ(oid : X).

Finally we include the clause that (possibly) detects the termination of the com-
putation:

output(oid : X) ← Conf0(oid : I, h, E,#, X),
string(oid : X), stringǫ(oid : E).

Now, the computation of M on input string w ∈ Σ∗ can be simulated by program
PM over input instance sw, where sw is defined as in Example 1, but having also
c(input) = {on}, where on represents the whole string w.

The intuition is that, if the computation of M on input w halts, this happens
having M reached a finite number of configurations, which can be represented by a
finite number of strings. On the other hand, if the computation does not halt, the
number of reached configurations is not finite. Indeed, we have the following result:

Lemma 1 Let M be a Turing machine, PM the corresponding IsaLog program, w
a string, and sw the corresponding instance. PM has a finite model over sw if and
only if M halts on input w.

It is worth noting that this finite model contains only an object in class output,
which represents the string result of the computation.

Now we can state the main results of this section:

Theorem 1 The following problems concerning model finiteness of IsaLog pro-
grams are undecidable:

1. Given a program P and an instance s, has P a finite model over s?

2. Finiteness: Given a program P over i-o scheme 〈Sin,Sout〉, has P a finite
model over every instance of Sin?

3. Given two programs P1 and P2 and an instance s, have P1 and P2 the same
model over s?

Proof. (Sketch). Part 1 is a consequence of Lemma 1 and undecidability of the
halting problem for Turing machines.

For part 2, consider again the program PM simulating a Turing machine M . A
generic instance s of its input scheme represents a set of input strings for M , and



PM has a finite model over s if and only if M halts on all this set of strings. So, PM

has a finite model over every input instance if and only if M halts on every input
string in Σ∗, which is undecidable.

Part 3 descends from the undecidability of the equivalence of two partial recursive
functions. ✷

As a consequence of the previous theorem, the finiteness property has been
proved to be undecidable in the general case. In the next section we study suf-
ficient conditions that guarantee model finiteness for particular classes of IsaLog
programs.

Using similar arguments, we can prove the following:

Theorem 2 The following problems concerning functionality of IsaLog programs
are undecidable:

1. Given a program P and an instance s, is P functional over s?

2. Functionality: Given a program P over i-o scheme 〈Sin,Sout〉, is P functional
over every instance of Sin?

4 Weakly Recursive Programs

This section is concerned with the finiteness of IsaLog programs, that is, the prop-
erty of a program to have a finite model over every possible instance.

We have proved the last section that the problem is undecidable in general.
What we try to do now is to give some sufficient conditions over the scheme and
the program in order to enforce model finiteness. This is a very appealing aim,
being infiniteness of models a situation to be carefully avoided, because it would
correspond to non-terminating computations. In [14], the notion of weakly recursive
program is introduced. Here we claim that in a strongly-typed framework, such as
IsaLog, easier conditions can be stated. This is basically due to the restrictions on
the syntax of programs in order to guarantee type correctness. Some computational
aspects are also presented.

Intuitively, a first sufficient condition for finiteness is having no cyclic types in
the scheme. This idea leads to the following characterization of schemes.

We say that an IsaLog scheme S = (C,R,typ, isa) is cyclic if there exist an
n > 0, a sequence of class names C1, . . . , Cn ∈ C, and a sequence of attribute names
A1, . . . , An such that:

• for i ∈ {1, . . . , n} it is the case that Ai is an attribute of Ci, whose type τi is
a class name;

• τi ∼ Ci+1 for i ∈ {1, . . . , n−1} and τn ∼ C1, where C
′ ∼ C ′′, with C ′, C ′′ ∈ C,

if C ′ and C ′′ have a common ancestor in S.



Furthermore, we say that S is acyclic if it is not cyclic.

Example 3 Consider the IsaLog scheme Sstring of Example 1. This scheme is
cyclic. In the cyclicity conditions, assume n = 1, C1 = stringnǫ and A1 = s. We
have that the type of s in the class stringnǫ is string and stringnǫ ∼ string.

We have already seen in Example 1 how to represent a string of length m by
means of an IsaLog instance. The latter contains an object o0 from the scratch (the
object corresponding to the empty string) plus m objects defined by means of o0
and a functor. Now, it is possible to define such an instance for every m arbitrarily
large.

Such a situation, in which an object in a class can cause the invention of another
object in the same class, is likely to produce infiniteness. Clearly, programs over
acyclic schemes cannot produce such an effect. This observation is formalized in the
following lemma (proof omitted).

Lemma 2 Let S be an acyclic scheme and s an instance of S; suppose n denotes the
cardinality of the active domain of s. Given a program P over S, if P is functional
over s, then the semantics s′ of P over s is finite and the cardinality of its active
domain is at most pS(n), where pS is a polynomial depending only on S.

As a consequence, referring to the fixpoint semantics of IsaLog [4], the problem
of finding a model for a program over an acyclic scheme is computationally tractable.

Corollary 1 Let S be an acyclic scheme, and s an instance of S, For every program
P over S, the following answers can be computed in polynomial time with respect to
the active domain of s:

• the model of P over s;

• if P is functional over s, the semantics of P over s.

Now we give a graph-based characterization for (a)cyclic schemes. On one
hand, the following characterization is important because several object-oriented
data models define scheme as (labelled) graphs [11]. On the other hand, definitions
concerning weakly recursive programs (see below) are more natural if expressed in
a graph-based fashion.

Let us define the dependency graph Gdep
S

for a scheme S as follows:

• Gdep
S

contains a node nC for each class C ∈ C;

• for each pair of classes C,C ′, such that C isa C ′, Gdep
S

contains: a blue edge
directed from nC to nC′ and a red edge directed from nC′ to nC ;



• for each class C ∈ C and for each of its attributes Ai such that the type of Ai

is a class C ′ ∈ C, Gdep
S

contains a black edge directed from nC to nC′ .

With respect to the dependency graph of a scheme, we have the following result.

Theorem 3 A scheme S is cyclic if and only if its scheme dependency graph Gdep
S

contains a cycle with a black edge.

The above discussion highlights that every program over an acyclic scheme satis-
fies the finiteness property. It essentially states that, if there is no cyclic structure in
the scheme, that is, no type defined in terms of itself, it is not possible for a program
to generate an infinite number of objects. However, requiring scheme acyclicity to
ensure finiteness is a very strict condition. In fact, sometimes programs over cyclic
schemes admit finite models (for example, if the cyclic part of the scheme is “read-
only”). So, now we turn to the problem of finding sufficient conditions for programs
over cyclic schemes to have the finiteness property.

The dependency graph Gdep
P,S for a program P over a scheme S is defined as follows:

• Gdep
P,S contains a node nC for each class C ∈ C;

• for each pair of classes C,C ′, such that CisaC ′, andP contains an oid invention
clause for C, Gdep

P,S contains a red edge directed from nC′ to nC ;

• for each pair of classes C,C ′, such that C isaC ′, andP contains a specialization
clause from C ′ to C, Gdep

P,S contains a blue edge directed from nC to nC′;

• for each class C ∈ C and for each of its attributes Ai such that the type of Ai

is a class C ′ ∈ C, and P contains an oid-invention clause for C, Gdep
P,S contains

a black edge directed from C to C ′.

We can extend the notion of cyclicity to programs by defining a weakly recursive
program as a program such that its dependency graph Gdep

P,S does not contains a cycle
with a black edge.

In a weakly recursive program, no recursion through oid invention occurs, and
this justifies the definition. Thus, even if the program refers to a cyclic scheme,
non finiteness problems cannot arise, since the creation of recursive objects does not
happen.

Clearly, every program over an acyclic scheme is weakly recursive, so that we
can state the following results, that generalize the previous ones.

Lemma 3 Let S be a scheme and s an instance of S; suppose n denotes the cardi-
nality of the active domain of s. Given a program P over S, if P is weakly recursive
and functional over s, then the semantics s′ of P over s is finite and the cardinality
of its active domain is at most pP,S(n), where pP,S is a polynomial depending only
on P and S.



For weakly recursive programs, the problem of finding a model is still computa-
tionally tractable.

Corollary 2 Let S be a scheme, and s an instance of S, For every weakly recursive
program P over S, the following answers can be computed in polynomial time with
respect to the active domain of s:

• the model of P over s;

• if P is functional over s, the semantics of P over s.

5 Discussion

5.1 Towards the Language Expressive Power

We have shown that the IsaLog language is powerful enough to simulate arbitrary
Turing machines. This can be done because of the ability of building unbounded
recursive structures, made of objects. Hence, we can expect a great potential of
expressive power. Nevertheless, it turns out that IsaLog is not computationally
complete for relational transformations, in the sense that it cannot express all com-
putable queries of [10]. Consequently, with respect to the ability of expressing object-
oriented queries, IsaLog is complete neither in the sense of [2] nor in that of [21].
This inability is not in contradiction with our simulation, where we have assumed
some restrictions on the nature of the computations, as follows:

• we assume the input instance to code an input string for the Turing machine
in a suitable way. In the most general and usual case, the input is supposed to
be a set of relations, that is, an arbitrary instance of a given scheme, without
further limitations;

• we assume the alphabet to be fixed and finite; in general we must consider a
domain which is countable.

So, a more complicated simulation is needed in order to prove completeness results
for IsaLog.

In this paper we basically referred to a positive framework. However, it turns out
that extending the language with some form of negation yields greater expressive
power. It can be shown that IsaLog

6=, that is, IsaLog allowing programs to
use safe inequality atoms in bodies of rules, is able to simulate the domain Turing
machines of [13] (which express all computable queries) still provided the input is
coded in a suitable way. This simulation at least guarantees independence of the
domain, because domain Turing machines have this property. It is worth noting
that a rule-based language that uses positive literals and inequality atoms can only



express monotonic queries. This is the reason why we cannot expect for IsaLog and
IsaLog

6= the ability of expressing all computable queries. However, it is clear that
IsaLog

6= properly subsumes IsaLog. We conjecture that IsaLog
6= is powerful

enough to express all monotonic computable queries.
Extending the language with negative literals allows for non-monotonic queries as

well. In [5] we have proposed IsaLog
¬, that is, IsaLog extended with isa-coherent

stratified negation, a notion of stratification that takes into account the presence of
isa hierarchies. Note that, in contrast to results related to Datalog, where stratified
negation is strictly weaker than negation with inflationary semantics [17, 18], it turns
out that, in presence of oid invention (or an equivalent construct) stratified and
inflationary negation have the same expressive power [12]. We claim that IsaLog¬

expresses all computable queries and all the list-constructive queries of [21]. A
deeper analysis of the expressive power of the language will be done in a forthcoming
paper [6].

5.2 Further Issues about Model Finiteness

Two important properties for IsaLog programs have been studied, namely, func-
tionality and model finiteness. The corresponding problems of deciding functionality
and finiteness of a given IsaLog program are shown to be unsolvable in the general
case. The problem of functionality has been previously studied in [1] for Datalog
programs, where is also shown to be undecidable, even in presence of functional
dependencies.

With respect to model finiteness, an interesting class of programs, the weakly
recursive programs, has been introduced. These programs, which basically do not
involve recursion through oid invention, were first defined in [14]; they always have
a finite model and their model can be computed in time polynomial with respect
to the number of objects in the input instance. An interesting problem consists in
finding larger classes of programs, which enjoy the property of model finiteness.

Consider for example the following query, which refers to an input scheme with
two classes, C0 with type () and C1, which is a subclass of C0 with type (ref : C0),
and a relation R of type (ref : C0):

γ1 : C1(oid : ∗, ref : X)← C1(oid : X, ref : Y ), R(ref : X).

The clause involves recursion through oid invention, but it has clearly finite model
whatever the input instance is, since the recursion is “bounded” to the active domain
of the input instance by the presence of the atom R(ref : X).

Such programs, that involve domain bounded recursion, and thus could be called
domain bounded recursive, represent a larger class than weakly recursive programs.
They enjoy the property of finiteness and their semantics is still tractable. Even
larger classes, which correspond to less restrictive sufficient conditions could be



defined [6]. An interesting problem is concerned with extending such definitions to
a language where inequality atoms or negative literals are allowed. In this context,
reasonable finite queries that go beyond ptime are expressible.

Acknowledgements

The authors would like to thank Paolo Atzeni and Jan Van den Bussche for the
fruitful discussions on the subject of this paper.

References

[1] S. Abiteboul and R. Hull. Data functions, Datalog and negation. In ACM
SIGMOD International Conf. on Management of Data, pages 143–153, 1988.

[2] S. Abiteboul and P. Kanellakis. Object identity as a query language primitive.
In ACM SIGMOD International Conf. on Management of Data, pages 159–173,
1989.

[3] A.V. Aho and J.D. Ullman. Universality of data retrieval languages. In Sixth
ACM Symp. on Principles of Programming Languages, pages 110–117, 1979.

[4] P. Atzeni, L. Cabibbo, and G. Mecca. IsaLog: A declarative language for
complex objects with hierarchies. In Ninth IEEE International Conference on
Data Engineering, Vienna, pages 219–228, 1993.

[5] P. Atzeni, L. Cabibbo, and G. Mecca. IsaLog
¬: a deductive language with

negation for complex-objects databases with hierarchies. In Third Int. Conf.
on Deductive and Object-Oriented Databases, pages 222–235, 1993.

[6] L. Cabibbo and G. Mecca. In preparation.

[7] L. Cabibbo and G. Mecca. Model finiteness and functionality in a declarative
language with oid invention. Technical report, Dipartimento di Informatica e
Sistemistica, Università di Roma “La Sapienza”, 1994.

[8] L. Cardelli. A semantics of multiple inheritance. Information and Computation,
76(2):138–164, 1988.

[9] S. Ceri, G. Gottlob, and L. Tanca. Logic Programming and Data Bases.
Springer-Verlag, 1989.

[10] A.K. Chandra and D. Harel. Computable queries for relational databases.
Journal of Comp. and System Sc., 21:333–347, 1980.



[11] M. Gyssens, J. Paredaens, and D. Van Gucht. A graph-oriented object database
model. In Ninth ACM SIGACT SIGMOD SIGART Symp. on Principles of
Database Systems, pages 417–424, 1990.

[12] R. Hull and J. Su. Deductive query languages for recursively typed complex
objects. Technical report, University of Southern California, 1989.

[13] R. Hull and J. Su. Algebraic and calculus query languages for recursively typed
complex objects. Journal of Comp. and System Sc., 47(1):121–156, August
1993.

[14] R. Hull and M. Yoshikawa. ILOG: Declarative creation and manipulation of
object identifiers. In Sixteenth International Conference on Very Large Data
Bases, Brisbane, pages 455–468, 1990.

[15] N. Immerman. Relational queries computable in polynomial time. Information
and Control, 68:86–104, 1986.

[16] M. Kifer, R. Ramakrishnan, and A. Silbershatz. An axiomatic approach to de-
ciding query safety in deductive databases. In Seventh ACM SIGACT SIGMOD
SIGART Symp. on Principles of Database Systems, pages 52–60, 1988.

[17] P.G. Kolaitis. The expressive power of stratified logic programs. Information
and Computation, 90(1):50–66, January 1991.

[18] P.G. Kolaitis and C.H. Papadimitriou. Why not negation by fixpoint? Journal
of Comp. and System Sc., 43(1):125–144, August 1991.

[19] H. Lewis and C. Papadimitriou. Elements of the Theory of Computation.
Prentice-Hall, 1981.

[20] O. Shmueli. Decidability and expressiveness aspects of logic queries. In Sixth
ACM SIGACT SIGMOD SIGART Symp. on Principles of Database Systems,
pages 237–249, 1987.

[21] J. Van den Bussche, D. Van Gucht, M. Andries, and M. Gyssens. On the
completeness of object-creating query languages. In 33rd Annual Symp. on
Foundations of Computer Science, pages 372–379, 1992.

[22] M. Vardi. The complexity of relational query languages. In Fourteenth ACM
SIGACT Symp. on Theory of Computing, pages 137–146, 1988.


