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Abstract

Genome Databases contain genetic information about human beings and other
species of living organisms. Since 1986, year in which the Human Genome
Project started, they have grown exponentially in size every year. Due to
the unusual structure of the stored information, traditional DBMS and query
languages have provided only little support so far. In this paper we discuss some
of the issues related to genomic information management. We mainly focus
on query languages and present a logic, called Sequence Datalog, designed to
be an effective tool for querying genome data.

1 Introduction

In the last ten years, a bunch of new applications (e.g. CAD and CASE), have repre-
sented a powerful driving force towards database technology change. New paradigms
have arisen (e.g. object oriented databases [2]), providing better flexibility in data
management and query languages with respect to the traditional relational model. In
this paper we discuss an example of these applications, namely the ones connected with
the Human Genome Project, which are pointing out further interesting directions in
database research and development.

The Human Genome Project is a research effort started back in 1986 as an initiative
of two U.S. institutions, the Department of Energy (DOE) and the National Institute
of Health (NIH). The focus of the project is the study of genetic information, which
represents the base for the life of every living organism. The purpose is to gain a better
understanding of the nature of genetic and cellular mechanisms, that will provide an
unvaluable source of information for medicine and health care in the next years.

Computer science and especially database technology has been by the side of ge-
netics and molecular biology from the start. In fact, the huge amount of experimental
data produced and the great complexity of experimental protocols require sophisti-
cated computing applications to manage and interpret data. The main feature of these



applications is represented on one side by the sequential structure of data to be stored,
and on the other side by the complex nature of the transformations required to study
these data. It is rather apparent the fact that commercial DBMS based on relational
technology are not completely suited to this purpose. In fact, commercial products
have been rather unsuccessful in this field so far.

This paper tries to sketch some of the issues related to sequential data management
in the context of Genome databases, pointing out where the main weaknesses of current
technology are. The paper mainly focuses on aspects related to query languages. In
this context, a query language explicitly designed for handling genome sequences, called
Sequence Datalog [15] is presented, and some interesting examples of queries are shown.
Many of these examples are derived from our experience with the Sequence Datalog
prototype, which is currently under development at “La Sapienza” University in Rome.

Due to the interdisciplinary nature of the matter, the paper is organized as follows.
In Section 2 we introduce a few basic notions of molecular biology, necessary to gain a
better understanding of the domain of interest and of examples throughout the paper.
For a detailed introduction to the subject, we refer the reader to [14, 7]. Then, the
Human Genome Project is briefly presented in Section 3. Technological issues related
to Genome databases are discussed in Section 4, whereas Section 5 specifically focuses
on aspects related to querying genomic data. Finally, the Sequence Datalog query
language is presented in Section 6 and some examples are given in Section 7.

2 Notions of Molecular Biology

The term genome is used to refer to the whole genetic information of an organism.
This information, stored in nucleic acids, the deoxiribonucleic acid (DNA), and the
ribonucleic acid (RNA), contains the master blueprint for all cellular structures and
activities.

Nucleic acids are complex molecules. Their constituents, called nucleotides or bases,
are simpler molecules that we can divide in two groups: (i) purines, that is, adenine,
usually denoted a, and citosine (c); (ii) pyrimidines, that is, guanine (g) and timine
(t). Nucleotides bind to form long strands called polynucleotides, which are essentially
polymers 1 in which nucleotides are linked to each other. A DNA molecule is made
of two strands wrapped around each other to form a double helix. The double helix
spatial configuration is due to weak hydrogenous bonds that are established between
nucleotides on the two strands. This bonds, often referred to as base pairings, respond
to a precise complementarity relationship according to which a only pairs with t and
c only pairs with g. The bond is directional, that is, the DNA molecule has a head
(usually called the 5′ end) and a tail (called the 3′ end), and one of the strands is called
the direct strand and the other the complementary strand.

Example 1 The term DNA sequence denotes the arrangement of nucleotides in each
of the two strands of a DNA molecule. Such sequences are naturally represented as
strings over the alphabet {a, c, g, t}.

1A polymer is a long sequence of similar bonded elements.



For example, the following is a representation of a DNA fragment.

... a c t t g c c a a ...

5’ | | | | | | | | | 3’

... t g a a c g g t t ...

2

The high grade of redundancy, which makes possible to produce high-fidelity copies
of DNA molecules, is the very base of the replication process occurring in living cells.

In fact, the genetic information of an organism is stored in one or more long DNA
molecules, called chromosomes. For example, in human beings, each cell contains in
its nucleus 23 pairs of chromosomes. As long as the organism grows, that is, its cells
duplicates, this information is passed on to new cells. In particular, whenever a cell
duplicates, each of the daughter cells receives a copy of the chromosome set of the
original cell. In order to do this, the cell first replicates its whole genome. During such
replication, hydrogen bonds in DNA molecules break and strands separate; then, free
nucleotides in the nucleus are used to build a new complementary strand for each of
the original strands, thus originating two identical copies of the cell genome. In this
way, each cell in the living organism has in its nucleus the whole genomic information,
and can use it to perform its functions.

The means by which chromosomes affect the structure and the functions of liv-
ing cells are proteins, that can be considered a primary component of living things.
From the structural point of view, proteins are polymers themselves, made of basic
constituents called amino acids. There are 20 different amino acids in nature. Amino
acids form peptide bonds to create long chains called polypeptides; the sequence of
amino acids that form a protein is called its primary structure, usually expressed as a
string over a conventional 20-symbol alphabet {A, C,K,M,N, . . .}.

Indeed, the primary role of nucleic acids is to carry the encoding of the structure of
specific proteins. We call a gene each portion of chromosome containing information
about the primary structure of a protein. It is worth noting that only about 10% of
the whole human genome is known to contain protein-coding regions. The remaining
part consists of noncoding regions – such as control regions – and other completely
meaningless regions.

Roughly speaking, we can say that there is one gene for each specific protein in
a living organism. There are, in fact, at least 100.000 different genes in humans. A
simple and powerful code is used for storing such information. In particular, to each
non-overlapping triplet of nucleotides in a gene, called a codon, corresponds a particular
amino acid. Four distinguished codons are used as stop codons, that is, to signal the end
of the coding sequence. It is easy to note that also in this case the code is redundant,
since there are 43 different codons and only 20 amino acids (plus the stop signal).

When a protein is syntesyzed in a living cell, the DNA fragment representing the
corresponding gene undergoes several transformations.

• the DNA sequence is first transcribed into an RNA sequence; RNA is a nucleic
acid whose structure is very similar to the one of DNA; the only difference is that



a new nucleotide, called uracil (u), takes the place of timine (t); RNA molecules
are single-stranded, so that each RNA fragment can be easily represented as a
string over the alphabet {a, c, g, u}; when the transcription of a DNA fragment
occurs, the two strands separates and one of them is used as a template to build
a RNA strand, according to a slightly different complementarity relationship (the
only difference is that each a is transcribed to a u);

• then, the RNA molecule travels out of the nucleus, and undergoes a splicing
process; in fact, genes are not necessarily contiguous inside chromosomes; if we
consider the chromosome region containing a gene, there will be some gene re-
gions that actually code for proteins, called exons, and some interleaving regions,
called introns, which do not contain useful information; when DNA is expressed,
introns need to be spliced out, so that exons can be connected together and the
whole coding region can be processed; such splicing happens in specialized ap-
parates called spliceosomes, which take a transcripted RNA sequence and splice
out regions corresponding to introns, connecting exons together; the resulting
molecule is called messenger RNA,

• the resulting RNA sequence is ready to be expressed; to do this, other apparates,
called transfer RNAs, translate the sequence by simply reading the sequence
codon by codon – that is, three symbols at a time – and, for each codon, ap-
pending the corresponding amino acid to the protein. For example, whenever
the codon aug is encountered, the corresponding amino acid, methionine, is ap-
pended to the amino acid sequence. The four stop codons, namely gct, gcc, gca
and gcg, signal that this translation process has to stop.

Example 2 As an example, consider the following DNA fragment representing a gene.

1 2 3 4 5 6 7 8 9 0 1 2 3 4

t a c g c c a a c t t a c t

5’ | | | | | | | | | | | | | | 3’

a t g c g g t t g a a t g a

Suppose also that we know that the exons are from base 01 to base 06 and from base 09
to base 14. When the direct strand undergoes transcription, the following messenger
RNA is produced.

a u g c g g u u g a a u g a

After splicing, the two exons are spliced together, so that the sequence to translate and
the resulting protein are the following.

a u g c g g g a a u g a

<met> <arg> <glu> <stop>

Here, met, arg and val stand for the methionine (M), arginine (A) and glutamic acid
(G) aminoacids, respectively.2



3 The Human Genome Project

The final goal of the Human Genome project is to determine the exact sequence of
the whole human genome, i.e. of every gene present in the human race, and the
corresponding functions. To give a measure of the effort, it is worth noting that human
genomes are about 3 billion base long. If compiled in books, the data would fill an
estimated 200 volumes, each the size of a 1000 pages telephone book, and reading it
would require about 30 years working around the clock.

The achievement of such an ambitious goal is unfortunately very far away for now,
as the current experimental technology does not allow to read sequences longer than a
few hundred bases. In fact, time and cost considerations make large-scale sequencing
projects totally impractical. Consider that the smallest human chromosome (chromo-
some Y) is 50 million bases. The best available equipment can sequence only 50.000
to 100.000 bases per year at an approximate cost of $1 to $2 per base. At this rate,
an incceptable amount of 30.000 work-years and at least $3 billion would be required
for sequencing alone. It is apparent how the study of new sequencing technologies is a
major concern in genome research these days.

Such a strong limitation imposes complex experimental protocols to reduce long
chromosomes into manageable fragments. On the other side, the study of chromosomes
is usually focused on different kinds of information rather than on the actual sequence.
The objective is to build maps of chromosomes, that is, to find the approximate position
of relevant sites on the chromosomes, corresponding to functionally important regions.

Due to the enormous size of human genomes and to the difficulty to perform ex-
periments on human beings, much of the research work is performed on other species,
as mice, insects, yeasts and bacteria. The following table gives an idea of the size of
different genomes studied so far.

Comparative Sequence Sizes

Yeast Chromosome 3 350.000 bases
Escherichia Coli (bacterium) genome 4.6 million bases
Entire yeast genome 15 million bases
Smallest human chromosome (Y) 50 million bases
Largest human chromosome (1) 250 million bases
Entire human genome 3 billion bases

4 Genome Databases

The huge amount of data generated by genome research will be used as a primary
information source for human biology and medicine into the future. A main issue is
therefore the management and distribution of genome data. Experimental information,
sequences, maps need to be collected and stored in order to be fully accessible to the
research community.

Clearly, a strong database technology is necessary to provide full support for these
activities. Unfortunately, traditional DBMS have shown serious shortcomings in terms
of genome data management [9].



The first category of limitations is concerned with the data model. In fact, DNA
data requires a flexible sequence data type to be properly represented. Relational
database systems do not provide such a type, so that the only way to implement a
DNA sequence type is to store sequences as text strings. This technique, anyway, do
not seem to be completely satisfactory, since, on one side a 8-bit per base representation
is a clear waste of disk space - DNA sequences can be easily represented in a compress
way by using only 2 bits per base; on the other side, manipulation of text fields, when
present in commercial systems, is usually associated with serious limitations in terms of
access. For example, indexing is usually not provided, and operators such as substring
and concatenation need to be implemented by the user.

Indeed, these limitations have made the role of relational DBMSs a very poor one in
genome research. As an example, consider the world most famous sequence database,
GenBank [3]. GenBank is the NIH genetic sequence database, a collection of all known
DNA sequences. There are approximately 230 million bases and 238.000 sequences as of
December 1994. It represents a fundamental reference for the research community, since
often sequenced DNA regions are required to be submitted to GenBank for electronic
publication even before they are published in printed form. Information in GenBank
is organized in records called entries; each entry contain a sequence along with some
annotations, which provide details about the source organism, gene or DNA region,
and the internal structure of the reported sequence, i.e. the number and position of
exons, introns and relevant control regions.

Example 3 The following is an example of GenBank entry.

LOCUS HUMNF1AB 8959 bp ss-mRNA PRI 02-JAN-1992
DEFINITION Human type 1 neurofibromatosis protein mRNA, complete cds.
ACCESSION M82814
KEYWORDS NF1 GAP-related protein; NF1 gene product;

type 1 neurofibromatosis protein.
SOURCE Homo sapiens cDNA to mRNA.

ORGANISM Homo sapiens
Eukaryota; Animalia; Chordata; Vertebrata; Mammalia;
Theria; Eutheria; Primates; Haplorhini; Catarrhini;
Hominidae.

REFERENCE 1 (bases 1 to 8959)
AUTHORS Wallace,M.R., Marchuk,D.A., Andersen,L.B., Letcher,R.,

Odeh,H.,Saulino,A.M., Fountain,J., Brereton,A.,
Nicholson,J., Mitchell,A.,Brownstein,B.H. and Collins,F.S.

TITLE Type 1 Neurofibromatosis gene:
identification of a large transcript
disrupted in three NF1 patients

JOURNAL Science 249, 181-186 (1990)
STANDARD full automatic

REFERENCE 2 (bases 1 to 8959)
...
FEATURES Location/Qualifiers

CDS 212..8668



/gene="NF1"
/note="putative"
/product="GAP-related protein"
/codon_start=1
/translation="MAAHRPVEWVQAVVSRFDEQLPIKTGQQNTHTKVSTEHNKECLI
NISKYKFSLVISGLTTILKNVNNMRIFGEAAEKNLYLSQLIILDTLEKCLAGQPKDTM

...
source 1..8959

/organism="Homo sapiens"
BASE COUNT 2598 a 2024 c 1888 g 2449 t
ORIGIN

1 ccccagcctc cttgccaacg ccccctttcc ctctccccct cccgctcggc gctgaccccc
61 catccccacc cccgtgggaa cactgggagc ctgcactcca cagaccctct ccttgcctct
121 tccctcacct cagcctccgc tccccgccct cttcccggcc cagggcgccg gcccaccctt

....
7801 aaaggctcct aaaaggcaag aaatggaatc agggatcaca acacccccca aaatgaggag
//

Entries are structured according to a fixed format, in which fields associated to
sequences are used to annotate them. In this way, additional information about the
sequence is stored in the database.2

Although GenBank uses a relational DBMS for internal data manipulation, external
access to the database is not possible through a relational interface. In fact, the most
common way to access the database is to download a flat file, text-based dump of the
current version, in which all entries are listed sequentially.

Other very popular databases have also adopted alternative models of representa-
tion. For example, the ACeDB [19], the integrated nematode worm genome database,
use a specialized hierarchical file system to represent information, and the user can
navigate the database by following links from one record to the other. This model has
proven very successful in the genome community, and other researchers are implement-
ing databases for other species based on a similar architecture.

The lack of a unifying model for representing information is probably the first
obstacle to be solved on the way of a real integrated access to genome data. In fact,
the different databases spread in the world, containing informations about proteins,
maps, metabolic pathways, speak different languages in terms of data models and data
access facilities, so that today is not possible to ask for biologically relevant queries
that involve data contained in different databases.

5 Query languages for genomic data

The other important cathegory of limitations of current database systems is related
to query languages. The very rich structure of genomic sequences makes querying
a critical activity. We can say that there are two different aspects of queries over
sequences that have to be taken into account.



On one side, an expressive query language should provide powerful pattern matching
capabilities. In fact, testing similarities of newly sequenced sequences against existing
databases is a fundamental activity. Right now, a researcher willing to test the degree
of omology of a new sequence against a database needs to recur to dedicated packages.
In particular, there are some well known query servers, for example BLAST [1] or
FASTA [16] which can be invoked through the Internet to test local alignment of short
sequences against GenBank. Unfortunately, such specialized resources do not have
a flexible query interface, so that, for example, one cannot specify queries such as
“test the similarities of sequence X against any sequence in the database in which the
organism field equals human”, in which additional conditions are specified to narrow
the range of interesting sequences and speed up the search.

To solve these problems, in the literature, several pattern languages have been
proposed (e.g. [12, 18]). These languages usually provide a flexible syntax for defining
patterns, that is, expressions that correspond to a set of strings over a given alphabet.
In principle, one can think to enrich a relational query language, say SQL, by means
of an extended selection operator, that, given a pattern, allows for extracting the set
of strings in the database that match the pattern. Although the resulting language
might represent a good solution to many sequence analysis problems, it would still be
too weak in terms of data restructurings.

In fact, restructurings also play a central role. The raw sequence data usually
provides little insight about the structure and functions of the corresponding DNA. For
example, given a DNA sequence, one would like to be capable of finding all the regions
of interest inside the sequence, that is, (i) exons; (ii) introns; (iii) important control
regions responding to particular patterns or consensus sequences. More important,
all these conceptually derived data should be accessible exactly as the base, stored
data is, that is, the language should provide a flexible view definition mechanism to
restructure information in the database. As an example, a simple way to represent exons
and introns inside a given sequence is to identify them by means of the starting and
ending position inside the sequence, but then, a primitive to retrieve the corresponding
subsequence is necessary.

Moreover, sequences often need to be transformed. For example, it should be pos-
sible to find the reverse complement of a given sequence, or, given the set of exons of
a gene inside a DNA sequence, splice exons together and translate them into the cor-
responding protein primary structure. This means that some primitives for computing
sequence mappings are needed, potentially introducing new sequences in the database.

On the basis of the these considerations, we can briefly sketch a set of important
requirements for a genome sequence query language as follows:

• the language should be expressive, that is, able to capture the complexity of
genomic data, both in terms of pattern extraction and sequence restructurings;

• the language has to be declarative and easy to use; it should have a clear semantics
and a nice syntax, and a suitable view definition mechanism, so that it can
eventually become an effective tool for biologists;

• last but not least, the language should be safe in the sense that queries should



always terminate, and the semantics be tractable; note, in fact, that queries
on sequences may end up in nonterminating computations even when the base
alphabet is finite; in fact, by growing in lenght, sequences can easily become
infinite.

It is apparent how a good query language is the result of a good compromise between
expressive power and effective computability. Various proposals have appeared in the
recent literature about languages for querying sequences. Indeed, in most cases the
trade-off between expressiveness, finiteness and effective computability is a hard one.
In many cases [8], powerful logics for expressing sequence transformations are proposed,
but a great part of the expressive power has to be sacrificed to enforce finiteness. In
other cases [11], both expressiveness and finiteness are achieved, but at expense of
an effective procedure for evaluating of queries, i.e., at the expense of an operational
semantics.

In the following section, we present a language for querying sequences, called Se-
quence Datalog, which meets most of the requirements listed at the beginning of the
section, that is, it has a nice horn-logic like syntax, a clear declarative semantics, a
simple operational semantics and allows for the definitions of sublanguages which are
expressive, safe and tractable at the same time.

6 Sequence Datalog

In this section we refer to a data model which extends the relational model to em-
bed sequences. Our databases are collections of tables; each table is a set of records
containing typed fields. We essentially allow two types of data:

• traditional atomic data, essentially fixed lenght strings and integers;

• sequences, that is, textual information of unbounded lenght usually stored in files;
these fields are used to store genomic sequences.

The Sequence Datalog language [15] is a Datalog [4] like language for this extended
relational model. The semantics of Sequence Datalog programs is similar to the one of
Datalog. Programs are set of rules of the form:

p0(. . .)← p1(. . .), . . . , pn(. . .).

where p0 is a derived predicate, and each of the pi, i = 1, . . . , n in the body is either a
base predicate corresponding to a database relation or a derived predicate itself.

With respect to Datalog, two special, interpreted function symbols are introduced to
manipulate sequences. More specifically, Sequence Datalog programs use indexed terms
to extract subsequences and constructive terms to concatenate them. Any indexed term
of the form s[n1:n2] is interpreted as a subsequence of s, whereas a constructive term of
the form s1 • s2 is interpreted as the concatenation of s1 and s2, that is, conceptually,
a supersequence of both.

So, for example, the following rule extracts all the prefixes of the sequences in
relation R1



prefix(X[1:N ]) ← R1(X).

This rule specifies that, for every sequence X in R1, a prefix of X is any subsequence
starting with the first element and ending with the N -th element, as long as N is not
greater than the length of X.

Since the universe of strings over a given alphabet, Σ∗, is an infinite set, in order
to keep the semantics of programs finite we do not evaluate rules over the whole uni-
verse Σ∗. In fact, we introduce a new active domain for sequence databases, called
the extended active domain; this domain contains all the sequences occurring in the
database, plus all their subsequences. 2 Then, we require that substitutions range over
this domain when rules are evaluated. 3

This extended active domain is not fixed during the evaluation of a query. In fact,
it can grow, since new sequences can be added by means of constructive terms, which
concatenate existing sequences to produce new ones. When this happens, the new
sequence – and its subsequences – become part of the extended domain. Note that
because Sequence Datalog is a Horn-like logic, we can give a declarative meaning based
on fixpoint theory to this apparently procedural notion.

For example, the following query constructs all the possible concatenations of se-
quences in relation r1 and adds them to the extended active domain of the database;

answer(X • Y ) ← R1(X), R1(Y ).

The rule takes any pair of sequences X and Y in relation R1, concatenates them and
stores the result in answer, potentially introducing new sequences into the extended
active domain of the input database.

Compared to Datalog with function symbols or Prolog, two differences are appar-
ent. The first is that noninterpreted functors are not allowed in Sequence Datalog,
so that it is not possible to build arbitrarily nested structures. On the other hand,
Sequence Datalog has a richer syntax than the list constructor [Head|Tail] of Prolog.
This has a great impact on the way structural recursion is handled in Sequence Data-
log. In fact, Sequence Datalog distinguishes syntactically between structural recursion
inside existing sequences and recursion through construction of new sequences, whereas
typically, languages for list manipulations do not discriminate the two types. In fact,
in Sequence Datalog, structural recursion over existing sequences – which is inherently
safe, since it does not make the active domain grow – is handled by means of indexed
terms of the form X[n1:n2], whereas recursion through construction of new sequences
is performed with constructive terms of the form X • Y , which can be unsafe, since it
introduces new elements in the domain.

Example 4 As an example, suppose we are interested in sequences that are multiple
repeats – that is, contain one or more copies – of other sequences, as in abcdabcdabcd.

2In this paper, we always refer to contiguous subsequences, that is, subsequences of a given sequence
identified by a start and an end position in the sequence. So, for example, bcd is a contiguous
subsequence of abcde, whereas bd is not.

3Note that the the extended domain has at most quadratic size with respect to the size of the
domain of the database. In fact, the number of different contiguous subsequences of a given sequence
of length k is

∑2
i=0

(
k
i

)
, that is, k(k+1)

2 + 1.



Such repeats are patterns of great importance in Genome databases. There are two
straightforward ways of expressing this query in Sequence Datalog. Both involve struc-
tural recursion, but their semantics is very different.

rep1(X, X) ← true.
rep1(X, X[1:N ])) ← rep1(X[N + 1:end], X[1:N ]).

rep2(X, X) ← true.
rep2(X • Y, X) ← rep2(Y, X).

When these rules are evaluated over an input database, predicate rep1 looks for multiple
repeats “inside” existing sequences, that is, sequences in the active domain of the input
database; it is easy to see that, even though in the answer there can be sequences
that are not in the database, they will be subsequences of existing sequences, so that
the semantics is finite over every database. We call this safe structural recursion.
In contrast, predicate rep2 “builds up” new sequences by recursively concatenating
each sequence in the database with itself; in this way, all possible multiple repeats of
sequences in the given database are generated, causing a nonterminating computation,
unless the database is empty.2

In general, predicates such as rep2, that are recursive through constructions of new
sequences are potentially unsafe, that is, can produce infinite answers. Since we are
only interested in finite answers, that is, in safe programs, we enforce termination by
carefully limiting the amount of recursion through constructions in our programs. In
order to do this, we use safe recursion, that is, recursion over sequences in the domain,
to control unsafe recursion, as in the following example.

Example 5 The following rules compute the reverse complement of each sequence
in relation R1, supposing that relation compl encodes the complementarity relation
between nucleotides.

answer(X, Y ) ← R1(X), rev complement(X, Y ).
rev complement(ε, ε) ← true.
rev complement(X, Z • Y ) ← compl(X[1], Y ),

rev complement(X[2:end], Z).

The rules constructs the reverse complement of each sequence by appending the com-
plementary base for each base in the original sequence, in reverse order. Note that
predicate rev complement is recursive through constructions. Though, the set of an-
swers produced is finite over every database. In fact, safe recursion over the first
attribute is used to control the generation of new sequences in the second attribute,
so that it is not possible to construct new sequences that are longer than the longest
sequence in the initial active domain: by bounding above the lenght of the constructed
sequences, termination is guaranteed.

Predicate rev complement can be seen as if encoding the computation of an abstract
machine – a transducer, essentially – that takes a sequence as input and produces its
reverse complement as output. The computation of this machine is controlled by the
lenght of its input, so that it always terminate for finite lenght inputs. 2



These considerations allow for a straightforward definition of finite subsets of the
logic, that is, restrictions that guarantee termination. In [15], two different sublan-
guages of Sequence Datalog are defined and their expressive power is established. The
first one expresses exactly the class of ptime sequence functions. This language, which
provides an interesting charachterization of ptime, represents a good compromise be-
tween expressive power and a feasible semantics. The second language, on the other
side, can expess any sequence mapping with hyper-exponential time complexity.

7 Querying genome databases

Sequence Datalog represents a flexible tool for querying Genome databases, as shown
in the following examples. In fact, the language has both powerful pattern matching
and restructuring capabilities. In the following, we discuss both aspects and give some
interesting examples of Sequence Datalog queries.

7.1 Pattern matching

Roughly speaking, we can define a pattern as a set of sequences sharing some structural
similarity. Patterns are usually defined by means of formal grammars [13]. The ac-
tivity of recognizing a pattern is thus reduced to parsing the corresponding grammar.
Sequence Datalog allows for a simple parsing of context free languages [13], as shown
in the following example.

Example 6 Genes, that is, DNA coding regions, are usually preceeded by an upstream
region, which contains important signals, called promoters, which control gene expres-
sion. The following is a simple context-free grammar that reproduces the structure of
these promoter regions, based on some important patterns such as caat boxes and tata
boxes. In the following, a, t, c, g are terminals, whereas nonterminals are written in the
form 〈nonterminal〉. The start symbol of the grammar is 〈upstream〉.

〈upstream〉 → 〈caatbox〉〈gap〉〈tatabox〉
〈tatabox〉 → tata〈base〉a
〈caatbox〉 → 〈base〉caat
〈base〉 → a

〈base〉 → g

〈base〉 → c

〈base〉 → t

〈gap〉 → 〈base〉〈gap〉
〈gap〉 → ε

This grammar can be used to parse DNA sequences in order to recognize upstream
regions. Given a database relation DNA sequence(id, sequence), the following Se-
quence Datalog program parses every sequence and returns upstream regions in pred-
icate upstream region; the idea of the program is to associate a predicate to each
nonterminal in the grammar, as follows.



upstream region(X) ← DNA sequence(X, Y ), upstream(Y ).
upstream(X) ← caatbox(X[1:N1]),

gap(X[N1 + 1:N2]),
tatabox(X[N2 + 1:end]).

tatabox(X) ← X[1:4] = tata,
base(X[5:end− 1]),
X[end] = a.

caatbox(X) ← base(X[1:end− 4]),
X[end− 3:end] = caat.

base(X) ← X = a.
base(X) ← X = t.
base(X) ← X = c.
base(X) ← X = g.
gap(ε) ← true.
gap(X) ← base(X[1]),

gap(X[2:end].

The rules of the program are derived from the grammar productions in a straight-
forward way. It is easy to prove that the program correctly recognizes the language
associated with the grammar. 2

Note that GenBank entries are structured according to a context-free grammar, so
that parsing can be easily used to extract information from the flat-file text dump and
introduce it into a custom database.

Although other list-based languages as Prolog [5] also parse context free languages,
Sequence Datalog allows for more powerful parsing that goes beyond context-free lan-
guages. In fact, it would be possible to prove that any context-sensitive language can
be parsed in Sequence Datalog. We show this by means of an example.

Example 7 Suppose we are interested in all sequences of the form anbncn, n ≥ 0 in
relation r1; these patterns are known to be beyond context free languages, and usually
a complex context sensitive grammar would be necessary for the parsing. Nevertheless,
the query can be expressed with a simple Sequence Datalog program, as follows.

answer(X) ← R1(X),
abcn(X[1:N1], X[N1 + 1:N2], X[N2 + 1:end]).

abcn(ε, ε, ε) ← true.
abcn(X, Y, Z) ← X[1] = a, Y [1] = b, Z[1] = c,

abcn(X[2:end], Y [2:end], Z[2:end]).

Predicate abcn is true for every triple of sequences of the form (an, bn, cn) in the extended
active domain of the database; answer(X) is true for a sequence X in R1 if it is possible
to split X in three parts such that abcn is true.2

These flexible parsing capabilities are very important in the context of Genome
databases, since it has been proven [6] that not all the pattern of interest in a DNA
molecule are context-free. The main example are multiple repeats in DNA sequences



(see Example 4), which are have important biological functions and are not a context-
free language. It is worth noting that this represents a true peculiarity of genomic data,
since in other fields context-free languages are considered an acceptable compromise.
Since context-sensitive grammars are too complex and parsing is rather inefficient, the
computational linguistic of DNA has become a field of great interest, and several models
of grammars that stand in between context-free and context-sensitive languages have
been defined [17, 18]. The definition of these models is beyond the scope of this paper.
Anyway, Sequence Datalog allows for a simple parsing of these grammars as well.

7.2 Data restructurings

The transducer-like model of computation introduced in section 6 has great expressive
power in terms of sequence restructurings. In particular, all the transformations over
sequences produced in the cell can be easily modelled. In fact, cell apparates are
nothing more than very sophisticated biological transducers, that take a sequence as
input and transform it into an output sequence.

Example 8 Suppose that our database contains the following predicates:

• DNA sequence(id, sequence, length), containing information about a set of DNA
sequences, each with a numeric identifier;

• exon(sequenceid, start, end) and intron(sequenceid, start, end), that specify the
starting and ending positions of each exon and intron contained in a sequence in
relation DNA sequence.

In this case, the splice of a given sequence can be derived by means of the following
query;

γ0 : splice(X, Y ) ← DNA sequence(X, S, L),
splicing(X, Y, L).

γ1 : splicing(X, ε, 0) ← DNA sequence(X, S).
γ2 : splicing(X, Y, N2) ← DNA sequence(X, S),

splicing(X, Y, N1),
intron(X, N1 + 1, N2).

γ3 : splicing(X, Y • S[N1 + 1:N2], N2) ← DNA sequence(X, S),
splice(X, Y, N1),
exon(X, N1 + 1, N2).

Using this splice predicate, we can define the protein predicate, which associates
the corresponding protein with each DNA sequence in the database. We suppose that
predicate rna compl encodes the complementarity relationship between DNA and RNA
nucleotides, and that predicate codon associates an amino acid with each codon.



γ4 : protein(X,P ) ← DNA sequence(X, DNA),
trascribe(DNA, MRNA),
splice(MRNA, RNA),
translate(RNA, P ).

γ5 : transcribe(ε, ε). ← true.
γ6 : transcribe(X, Z • Y ) ← rna compl(X[1], Z),

transcribe(X[2:end], Y ).

γ7 : translate(ε, ε). ← true.
γ8 : translate(X, Z • Y ) ← codon(X[1:3], Z),

translate(X[4:end], Y ).

It is easy to see how each DNA sequence is first transcribed into an RNA molecule,
then exons are spliced out and the resulting coding sequence is translated into the
corresponding protein.2
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