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Abstract. The paper discusses the issue of views in the Web context.
We introduce a set of tools and languages for managing and restructur-
ing data coming from the World Wide Web. We present a specific data
model, called the Araneus Data Model, inspired to the structures typi-
cally present in Web sites. The model allows us to describe the scheme of
a Web hypertext, in the spirit of databases. Based on the data model, we
develop the Araneus View language, to support a sophisticate view def-
inition process; the language has two main components: the first, called
Ulixes, is used to build database views of the Web, which can then be
analyzed and integrated using database techniques; the second, called
Penelope, allows the definition of derived Web hypertexts from rela-
tional views. This can be used to generate hypertextual views over the
Web.

1 Introduction

Database Systems offer efficient and reliable technology to query structured data.
However, because of the explosion of the World Wide Web [13], an increas-
ing amount of information is stored in repositories organized according to less
rigid structures, usually as hypertextual documents, and data access is based on
browsing and information retrieval techniques.

Since browsing and search engines present severe limitations, several query
languages [24, 26, 28] for the Web have been recently proposed. These approaches
are mainly based on a loose notion of structure, and tend to see the Web as a
huge collection of unstructured objects, organized as a graph. Clearly, traditional
database techniques are of little use in this field, and new techniques need to be
developed.

⋆ This work was supported by Università di Roma Tre, MURST, and Consiglio
Nazionale delle Ricerche.



In this paper, we explore an alternative approach; we aim at studying the
applicability of more traditional database techniques to the Web framework . In
order to do this, instead of considering Web data as essentially non-structured,
we try to describe and exploit the structure according to which information is or-
ganized. Indeed, in many cases Web data are quite structured, that is, pages are
organized in a rigid way, and present strong regularities. This is due to the fact
that many Web sites are essentially interfaces towards traditional database sys-
tems, i.e. actual data are kept in a DBMS and pages are automatically produced
starting from the database;1 clearly, in these cases, the hypertext organization
somehow reflects the structure of the underlying database. This is especially
true in Intranet applications, where the Web essentially acts as a corporate in-
formation system providing access to databases, designed and mantained by
administrators. On the other side, webmasters of large sites often need to adopt
ad hoc design methodologies [18, 21], based on precise data models, in order to
reduce design, data management, and maintenance costs. Because of these rea-
sons, we can consider these sites as highly structured. It is important to note that
this structure tends to be stable, with rare modifications; in fact, it is difficult to
reorganize a huge amount of data, and users do not like to browse information
whose organization often changes.

The Araneus project aims at defining methods and tools for the manage-
ment of Web sites. In this paper we discuss some of these tools, and concentrate
on the activity of querying a site. We first present a simple, page oriented data
model, called the Araneus Data Model (adm), to be used to describe the struc-
ture of sites of interest. Then, based on the scheme, we show how it is possible
to define views over the site using the Araneus View Language (avl). The view
language has two main components: the first one, called Ulixes allows to define
relational views over Web data; these views can then be queried using any rela-
tional query language. The second one, called Penelope, allows the definition
of new structures from relational views, thus allowing the user to restructure
query results and access them as an hypertext or to define derived Web sites.

Experiencing our approach on existing sites taught us two important lessons:
first, from the logical viewpoint, the ways Web data are structured are often
very similar to the ones common in database systems, although the physical or-
ganization may be different; moreover, the knowledge about the structure highly
facilitates the process of querying the site, increasing the flexibility and effec-
tiveness of query languages. We have modeled several existing Web sites from
different domains, ranging from book publishers to university sites and virtual
museums: adm allows to describe the site structure in a natural and intuitive
way, it is easy to use and its constructs reflect the user’s perception of the site.
The resulting schemes are concise and describe the content of the sites in a syn-
thetic and complete fashion. On these sites, the view definition language can be
effectively used to access data, possibly correlating pieces of information from
different sites. In this sense, the main contributions of the paper consist in the
data model and the view definition language.

1 Many commercial database systems now offer these functionalities.



The paper is organized as follows. Section 2 contains an overview of Ara-

neus; Section 3 presents the Araneus data model; Sections 4 and 5 develop the
view definition languages. Finally, the architecture of the Araneus system and
some related work are discussed in Section 6. Many examples in the paper refer
to pages in the Web site of the Uffizi Museum in Florence [3].

A prototype of the Araneus system is currently under development at the
Università di Roma Tre. A demo of the system can be found at [1].

2 Overview

The Web is usually considered as a collection of data with little structure and
high dynamics. In fact, other query languages proposed for the Web (see, for
example [24, 26, 28] or, with a different perspective, [29, 7]) make essentially no
assumption on the structure of data.

In this paper, we undertake a different approach, aimed at investigating the
benefits of structure in querying Web data; differently from other approaches, we
exploit the presence of structure to study the applicability of traditional database
techniques to the Web context. We show how, in many cases, the management
of Web data can highly profit from database technology. In fact, Web data often
have structure. There are two main sources of structure in the Web. On the one
hand, there is the hypertextual structure, according to which pieces of information
logically connected are usually physically linked too. On the other hand there
is the textual organization, due to the nature of HTML [19] documents. Data is
organized inside text in many different ways, using the primitives of the HTML
language. For example, given an HTML page, it is easy to recognize its title, or
also some complex structures, like for example, lists of items, based on HTML
tags.

In many cases, these structures are rather tight, so that we can assimilate
the site, from the logical viewpoint, to a conventional database, in the sense that
pages can be reconducted to a relatively small number of different types; this
requires that pages referring to similar concepts have the same structure, that
is, can be considered as having the same “scheme” and the number of different
schemes is much smaller than the number of pages in the site. There are many
examples of this kind: many university sites can be considered on-line databases
about courses, instructors, departments, and research activities; similarly, some
computer manufacturers offer highly structured information about products and
prices; another example, the one we shall use throughout the paper, is that of
on-line museums, in which pieces of art, artists, and rooms can be visited.

It is worth noting that this approach generalizes the models adopted in other
query languages for the Web [24, 26, 28], in which pages are considered as essen-
tially unstructured objects; this means that adm can be used also when there
is little structure, as shown in [12]. However, in addition, it allows to model ex-
isting structures and regularities, when considered interesting. In fact, in those
sites in which pages referring to similar concepts can be considered as having



the same scheme, the model provides a concise and effective description of the
site’s content.

We have developed several tools and methods for managing data coming
from the Web. In this paper we mainly focus on the querying process; however,
many of the ideas developed in the paper can be applied to the design process
of a Web site as well. These latter aspects will be dealt with in a forthcoming
paper [11].

Our approach to querying the Web consists in deriving the scheme according
to which data are organized in the site, and then use this scheme to pose queries
in a high level query language. To describe the scheme, we use a new data
model, called the Araneus Data Model (adm). We say that adm is a page
oriented model, in the sense that the main construct of the model is that of
page scheme. Each page scheme describes the structure of a set of homogeneous
pages in the site; the main intuition behind the model is that HTML pages can
be seen as objects with an identifier, the URL, and several attributes, one for
each relevant piece of information in the page. The values of these attributes can
be usually extracted by accessing the HTML source code and applying suitable
text restructuring procedures. The attributes in a page can be either simple,
like text, images2 or links to other pages, or complex. Complex attributes are
essentially lists of items, possibly nested. Based on this perspective, the scheme
of a Web site can be seen as a collection of page schemes, connected using links.
This scheme is essentially a structured view of the site: on such view we can then
pose queries using some high level query language.

To provide a flexible paradigm to access data, we reconsider the issue of path
expressions in this framework.We introduce the notion of navigational expression
as a means to express a set of navigations in the site; in fact, to access data
in the site, it is natural to start from some entry-point, like, for example, the
home page, and navigate until data of interest are found. Based on this notion
of navigation, we define a flexible view definition language, called the Araneus

view language (avl). The view language has two components, to supports a two-
way data-restructuring process. The first component, called Ulixes, is used to
build relational views over Web data. The main idea, here, is that each navigation
can be seen as a tuple of values and each navigational expression as a relation.
These relations can be locally materialized and queried using any relational query
language. Besides, considering the hypertextual nature of Web data, we often
want to see query results not as a table, but as a derived hypertext, that is, a
local set of pages containing data returned by the query in hypertextual form;
this hypertext, which is again a view over the original site, can then be explored
using a Web browser. The second component, called Penelope, supports this
process: it allows to define new page schemes and present tuples in a relational
table under the form of derived pages. Based on these ideas, a possible querying
process can be summarized as follows: (i) the user first looks at the site scheme
and identifies data of interest; (ii) the view language is then used to define a set

2 It is possible to include other multimedia types as sound, postscript documents,
movies and so on. Here, for the sake of simplicity, we do not consider these aspects.



of relational views over the site, which in turn can be locally queried using any
relational query language; (iii) finally, table-based query results are restructured
and local pages are created and returned to the user.

3 The Araneus Data Model

The Araneus Data Model (adm) is used to describe data contained in Web
sites. We say that it is page oriented in the sense that it recognizes the central
role that pages play in this framework. Each Web page is considered as an object
with an identifier (the URL) and a set of attributes. Since we want to model
the common features of similar pages, we introduce the notion of a page scheme,
which resembles the notion of relation scheme in relational databases or class in
object-oriented databases. Attributes of a page may have simple or complex type.
Simple type attributes aremonovalued and correspond essentially to text, images
or links to other pages.3 Consider for example the pages describing paintings at
the Uffizi virtual museum;4. We can see that there is a set of elements that
appear in each of these pages, such as a small image of the painting (which is
also a link to a different page containing a larger image), the name of the painter,
the title, and so on. It is natural to model the structure of these pages as a page
scheme with several attributes, which include MiniImage, of type IMAGE, with
the associated link, ToImage, to a larger image; Painter; and Title both of
type TEXT.

Beside monovalued attributes, Web pages often contain (ordered) collections
of objects, that is, multivalued attributes. We model them using lists of tuples.
Consider, for example, the page in the Uffizi site listing all paintings in room
number 9 of the Gallery5. It has some simple attributes again, such as room
number and room name. However, it also has a complex attribute, that is, the
list of paintings in the room. For each painting, the painter, the title and an
optional link to the painting page are included. This is essentially a multivalued
attribute of the page and can be naturally modeled as a list, each element of
which contains information about one painting, namely the Painter, the Title,
plus an optional link to the corresponding painting page. Component types in
lists can be in turn multivalued, and therefore nested lists may arise. It should
be noted that we have chosen lists as the only multivalued type since repeated
patterns in Web pages are physically ordered.

There is one specific aspect in this framework with no counterpart in tradi-
tional data models: usually a site includes pages that have a special role and are

3 Strictly speaking, an HTML link is a pair (anchor, reference), where the anchor is of
type text or image, and the reference is the URL of the destination page. However,
to simplify the formalism, we ignore anchors, assuming that, if needed, they are
modeled as independent attributes.

4 See, for example, the Birth of Venus by Botticelli at http://www.uffizi.firenze.-
it/Dipinti/botveneE10.html and the Sacrifice of Isaac by Caravaggio, at http://-
www.uffizi.firenze.it/Dipinti/caraisaccE16.html

5 http://www.uffizi.firenze.it/Sale/salaE9.html



“unique,” in the sense there there are no other pages with the same structure.
Typically, at least the home page of each site falls in this category. For the sake
of homogeneity, we also model these pages by means of page schemes. See, for
example, the page containing the list of all paintings having works in the Uf-
fizi museum6; the page contains a nested list of elements, one for each painter;
the painter’s name, some biographical information, a list of rooms (those that
contain his paintings), and a list of paintings are reported. This page is clearly
unique, in the sense that no other page of the web site has a similar structure.

In order to formalize, as usual in models with object identifiers, we need two
interrelated definitions, for types and page schemes, as follows.

Definition 1. [Types] Given a set of base types containing the types text and
image, a set of attribute names (or simply attributes), and a set of page scheme
names, the set of adm types is recursively defined as follows (each type is either
monovalued or multivalued):

– each base type is a monovalued adm type;

– link to P is a monovalued adm type, for each page name;
– list of(A1 : T1, A2 : T2, . . . , An : Tn) is a multivalued adm type, if A1, A2,

. . . , An are attributes and T1, T2, . . . , Tn are adm types; attributes may be
labeled as optional;

– nothing else is an adm type.

Definition 2. [Page scheme] An adm page scheme has form P (A1 : T1, A2 :
T2, . . . , An : Tn), where P is a page name, each Ai is an attribute and each Ti

is an adm type. Attributes may be labeled optional. The page scheme may be
labeled as unique.

The page schemes discussed in the previous examples can be defined as fol-
lows using theAraneus data definition language (DDL), whose syntax naturally
follows from the previous definitions. Painting pages have the following scheme,
in which only monovalued attributes appear:

PAGE SCHEME PaintingPage:

Painter: TEXT;

Title: TEXT;

Date: TEXT;

Description: TEXT;

MiniImage: IMAGE;

ToImage: LINK TO ImagePage;

END PAGE SCHEME

Pages for rooms have a multivalued attribute, i.e. the list of paintings in the
room, and can be described as follows:

6 http://www.uffizi.firenze.it/indiceartisti.html



PAGE SCHEME RoomPage:

RoomNo: TEXT;

RoomName: TEXT;

PaintList: LIST OF (Painter: TEXT;

Title: TEXT;

ToPaint: LINK TO PaintingPage

OPTIONAL);

END PAGE SCHEME

Note that pages may have a nested structure, like the page containing the
list of all artists:

Now, we define the notion of adm scheme simply as a set of page schemes.

Definition 3. [Scheme] Given a set of page names, P , an adm scheme is a
set of page schemes, exactly one for each of the page names in P .

We can represent the scheme as a directed multigraph; nodes in the scheme
graph are page schemes; each unique page scheme is denoted as a single page,
whereas non-unique page schemes are represented as to “stacks” of pages; edges
are used to denote links. A fragment of the Uffizi Web site scheme is shown in
Figure 1, which also contains an explanation of the other graphical primitives.
Similarly, Figure 2 represents a fragment of the Louvre Web site [2].

Note that, to see actual pages in the site as instances of the page-scheme, we
need to access the HTML source and apply suitable text restructuring proce-
dures. Attribute values are extracted from the HTML source using the Editor

language [10], a formalism for text manipulation. In the current implementation
we wrap pages using Java classes; every page-scheme in the site corresponds to
a specific class, with one method for each attribute; each method implements an
Editor program that accesses the HTML source and returns a complex value
for the attribute.

Based on this perspective, at the instance level, a site can be seen as a graph
in which links connect trees corresponding to pages. In fact, each instance of a
page-scheme is a tree (because of its nested structure), and may contain links to
other instances. Nodes of trees (and therefore of the overall graph) are essentially
tuples; each tuple attribute may either have a simple value or be the root of a
subtree; optional attributes may have a null value.

4 Ulixes: Accessing Data in a Web Site

The presence of a structure in the site, described by means of a scheme, allows
us to express queries on the Web. The query process is based on the notion of
navigation in the site graph. In fact, note that a site offers in essence a set of
navigations, i.e. paths in the site graph; these navigations allow to follow links
between different pages, but also to explore the hierarchical structure of a page:
they represent a natural means to query the page. Consider again the Uffizi site,
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and suppose we are interested in the titles of all paintings in rooms of the virtual
museum. Based on the scheme in Figure 1, we know that one way to answer the
query is by navigating data in the following way: we start at the page containing
the list of all rooms7 and follow all possible paths in the page tree; some paths
end with a link to a room page; we cross the link, and reach the corresponding
room page; then we can navigate to reach all paintings titles. These navigations
can be denoted with the following navigational expression, in which we use the
dot operator (.) to navigate inside pages, and the link operator (→) to follow
links:

RoomsPage.RoomList.ToRoom→ RoomPage.PaintList (1)

The semantics of the expression is easily interpreted as all possible navigations,
i.e. paths, in the site graph starting with the unique page over page scheme
RoomsPage, traversing each element in RoomList, following the associated link
(if it exists), reaching a room page and ending with a painting in PaintingList.

It is worth noting that each of these navigations can be represented as a
tuple of values, one value for each monovalued attribute associated to nodes
in the navigation; thus, each navigational expression can be represented as a
relation, in the relational model sense.8

To give another example, suppose now we are interested in all data about on-
line paintings in the virtual museum. These can be reached using the following
navigational expression:

RoomsPage.RoomList.ToRoom → RoomPage.PaintList.ToPaint →

PaintingPage

corresponding to all possible navigations in the site graph from RoomsPage to
painting pages. In this case, only paintings for which a page exists are considered.
Also in this case, a relation can be associated to this expression.

It is now straightforward to give the semantics of a navigational expression as
a set of navigations, i.e. paths in the site graph. Given a navigational expression,
N , we call sem(N ) the corresponding relation. We assume that attributes are
suitably renamed whenever needed.

Given the relational nature of navigations, the definition of relational views
over adm schemes can be directly based on navigation specifications. We have a
DEFINE TABLE statement to be used for this purpose, with the form:

DEFINE TABLE R(B1, B2, . . . , Bn)
AS N
IN S
USING A1, A2, . . . , An

7 http://www.uffizi.firenze.it/descrizioneE.html
8 In fact, a navigational expression could be seen as a list, that is, an ordered (multi)set
of tuples. However, in this context, ordering is irrelevant and duplicates meaningless.



where: (i) R is a relation name and B1, B2, . . . , Bn are attributes; (ii) S is an
adm scheme; (iii) N is a navigational expression over S; and, (iv) A1, A2, . . . , An

are attributes of sem(N ). The semantics of a DEFINE TABLE can be immediately
defined on the basis of previous notions: relation R is defined as the projection
of sem(N ) onto A1, A2, . . . , An, with each Ai renamed to Bi, that is:

R = ρB1←A1,...,Bn←An

(πA1,A2,...,An
sem(N ))

In our implementation, each DEFINE TABLE statement generates a materialized
relation, which can then be imported in a DBMS. Alternatively, this relation
might also be considered as virtual; this is irrelevant from the user point of view
(except for performances).

As an example, consider one of the navigational expressions discussed in the
previous section:

RoomsPage.RoomList.ToRoom → RoomPage.PaintList.ToPaint →

PaintingPage

It can be the basis for the definition of a relational view, as follows:

DEFINE TABLE AllPaintings (Painter, Title, RoomNumber, RoomName)

AS RoomsPage.RoomList.ToRoom → RoomPage.PaintList.ToPaint →
PaintingPage

IN UffiziScheme

USING PaintingPage.Painter, PaintingPage.Title, RoomPage.RoomNo,

RoomPage.RoomName

In this expression, we are essentially giving a name, AllPaintings, to a
relation corresponding to the navigational expression that includes only a subset
of attributes, namely those listed in the USING clause, that is, painter name, title,
and room number and name.

The relations defined by means of DEFINE TABLE statements can be queried
by using any relational query language, such as SQL or QBE. For example the
query: “Retrieve all titles of paintings by Botticelli in Room 9” can be expressed
in SQL as follows, by including the view AllPaintings in the range list:

SELECT Title

FROM AllPaintings

WHERE RoomNo = ’Room 9’ AND

Painter LIKE ’%Botticelli%’

To give another example, suppose we are also interested in paintings in the
Louvre virtual museum. Figure 2 shows a fragment of the Louvre Web site: col-
lections are organized in departments, and each department has several sections,
each containing some works. Based on the two schemes, we can correlate data
in the two sites, by defining views in each of them, and then specifying a query
that involves views from different sites (usually joining them). For example, we
might ask the following query: “Retrieve all names of painters having paintings



in both the Louvre and the Uffizi museums”. This is done in two steps. First we
use two navigational expressions, one for each site, to define views containing all
painters names:

DEFINE TABLE UffiziPainters (ArtistName)

AS ArtistsPage.ArtistList

IN UffiziScheme

USING ArtistsPage.ArtistList.ArtistName

DEFINE TABLE LouvreArtists (DeptName, Author)

AS CollectionsPage.DeptList.ToDept →
DepartmentPage.SectionList.ToSection →
SectionPage.WorkList

IN LouvreScheme

USING DepartmentPage.DeptName, SectionPage.WorkList.Author

Then, we use SQL to correlate the two relations; in particular, we have a join
of relation UffiziPainters with the selection of LouvreArtists that produces
the painters, i.e. artists in the paintings department:

SELECT ArtistName

FROM LouvreArtists, UffiziPainters

WHERE DeptName= ’Paintings’ AND

ArtistName = Author

We would like to emphasize the flexibility and effectiveness of the chosen
approach. It is flexible since, once a relational view has been defined and a
table has been generated, any relational query language can be used to access
data. In these examples we SQL, but nothing forbids the use of some more
sophisticated language, provided that it can manipulate tables. At the same
time, the approach is effective, in the sense that it provides a high-level tool for
selecting and correlating data; note that computing the shown queries only by
means of browsing and search engines would require a significant effort for the
user.

5 Penelope: Building new Structures: Page

Restructuring

The approach discussed in the previous subsection is interesting but could be
considered as extraneous to the Web framework, where users access information
by navigating hypertexts. We thus would like to extend somehow the querying
paradigm in such a way that, once data have been retrieved, they are presented to
the user as an hypertext. Here, we show how relational views can be transformed
back into pages, new pages, with a structure that does not appear in the existing
site(s). This technique, called restructuring, can be used in two ways: first, as
a support to casual queries, where the user wants to browse the results (this
could be particularly useful with respect to complex queries with large results);



second, as a means to define a derived site, a sort of materialized view over the
input sites or over a database.

In order to reach this goal, we introduce a new mechanism, which allows the
definition of new page schemes for the query result, according to which data will
be organized.

The restructuring process in Araneus is composed of three steps. In the
first step, the navigations of interest over the base sites are specified and the
corresponding relational views are defined, with DEFINE TABLE statements. In
the second, additional views are defined as needed, in a relational language (say,
SQL). In the third, new pages are defined using a specific statement, DEFINE
PAGE. Let us illustrate the process by means of an example, again on the Uffizi
Web site. Assume we are interested in seeing the images of all on-line paintings
by Botticelli, each in a page that also contains the title and the date of the
painting. More precisely, we could be interested in having (i) a page for each
painting, with title, date and a large image of the painting and (ii) a unique
page, with the list of all selected paintings by Botticelli, each with title and
link to the respective page. Clearly, these pages have a structure that does not
appear in the site scheme, since, for example, titles and (large) images are not
included together in a common page. Therefore we need a restructured scheme as
described in Figure 3; the two page schemes are called BotticelliPaintingList

and BotticelliPaintingPage.
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Fig. 3. New page schemes for paintings by Botticelli

In the example, as a first step, we would define a table for the navigations
that relate painters with painting images:

DEFINE TABLE PaintingsWithImages (Painter, Title, Date, PaintImage)

AS ArtistsPage.ArtistList.PaintList.ToPaint →
PaintingPage.ToImage → ImagePage

IN UffiziScheme

USING PaintingPage.Painter, PaintingPage.Title, PaintingPage.Date,



ImagePage.PaintImage

Then, we select data of interest, using SQL: we define a view, Botticelli-
Paintings, over the table PaintingsWithImages, with the standard CREATE

VIEW statement.

CREATE VIEW BotticelliPaintings AS

SELECT Title, Date, PaintImage

FROM PaintingsWithImages

WHERE Painter LIKE ’%Botticelli%’

Finally, we specify the structure of the pages to be showed using the following
DEFINE PAGE statements. Note that attributes of the source table Botticelli-
Paintings are enclosed in angle brackets <>.

DEFINE PAGE BotticelliPaintingList UNIQUE

AS (URL result.html;

PaintList: LIST OF (Title: <Title>;

ToPaint: LINK TO BotticelliPaintingPage

(URL(<Title>))));

FROM BotticelliPaintings

DEFINE PAGE BotticelliPaintingPage

AS (URL URL(<Title>);

Title: <Title>;

Date: <Date>;

Image: <PaintImage>);

FROM BotticelliPaintings

These statements generate the HTML code for the new pages, on the basis of
the attributes specified. The first DEFINE PAGE statement defines Botticelli-
PaintingList as a unique page scheme with a multivalued attribute PaintList,
corresponding to a list of paintings; note how a local URL, whose value is the
string result.html, is assigned to the corresponding instance. Since we declare
the page scheme as unique and indicate a single URL, we are assuming that a
unique page will be generated by the statement. The second statement defines
BotticelliPaintingPage as a page scheme whose attributes are the painting
title, the date and the painting image. Here the definition of the URL to be
associated with each page is more complex, since it has to be generated, and
each time we need a new, different URL. We use function terms to generate
URLs; in fact, term URL(<Title>) specifies that the system has to generate an
URL for each page over scheme BotticelliPaintingPage, and that the URL
must be uniquely associated with the title value.9 In this way we can connect the
query result page with the associated paintings pages. Here, we are implicitly

9 This technique is somehow similar to the use of Skolem functors to invent new OID’s
in object-oriented databases [6, 23, 20].



supposing that a different URL can be generated for each painting, i.e. that the
title uniquely identifies the painting.

We now want to define more precisely the semantics of DEFINE PAGE state-
ments. For the sake of space, the development will be rather informal. The main
idea, here, is to create pages starting from tuples in (nested) relations. We first
need to introduce two important concepts, namely local URLs and structures.

Local URLs are local file names used to identify pages; they can be ei-
ther constant strings, or strings built using the function symbol URL from at-
tributes in relations. For example result.html is a constant local URL, whereas
URL(<Title>) denotes a local URL built from values of attribute Title; func-
tion URL generates a different (and new, that is, not already used) file name for
each different value of the attribute. The other important concept are structures.
They are very similar to types, in the sense that describe how page structures
can be created starting from attributes in relations.

A DEFINE PAGE statement has the form:

DEFINE PAGE P [UNIQUE]
AS S

FROM R

where: (i) R is a relation; (ii) P is a page scheme name; and (iii) S is a structure
built using attributes of R. The UNIQUE keyword is optional; intuitively, it is
used to specify that the defined page scheme is unique.10 The semantics of these
statements can be informally defined as follows:

– relation R is first extended by adding local URLs to each tuple as new at-
tributes; first, the page URL is generated and added to the relation as a new
attribute, URL; then, for any structure of the form link to P (LocalURL),
an attribute ToP is added to the relation; for each of these attributes, if the
function term URL() has been used, a file name is generated for each tuple
in the table; we also suppose that attributes are renamed accoding to the
new page structure; consider for example the DEFINE PAGE statement in the
previous example:

DEFINE PAGE BotticelliPaintingList UNIQUE

AS (URL result.html;

PaintList: LIST OF (Title: <Title>;

ToPaint: LINK TO BotticelliPaintingPage

(URL(<Title>))));

FROM BotticelliPaintings

Suppose BotticelliPaintings is the following relation:

10 To avoid inconsistencies, we have to impose some constraints for unique page
schemes; for example, the corresponding local URL must be a constant string; sec-
ond, the associated page structure must contain a single attribute, which has to be
multivalued.



Title Date PaintImage

The Return of Judith 1472 circa botgiudi9.jpeg

The Discovery of the Murder of ... 1472 botolo9.jpeg

. . . . . . . . .

Sant’Ambrogio Altarpiece 1467-70 circa bottamb10.jpeg

Adding local URLs yields the following table, in which URLs for painting
pages are generated by the systems from values of the Title attribute:

URL Title Date PaintImage ToPaint

result.html The Return... 1472 circa botgiudi9.jpeg returnjudith.html

result.html The Discovery... 1472 botolo9.jpeg discoveryhol.html

. . . . . . . . . . . . . . .

result.html Sant’Ambrogio... 1467-70 circa bottamb10.jpeg ambrogioaltar.html

– this relation is then projected onto the attributes occurring in S, plus the
URL; since only the title and the link to BotticelliPaintingPage are re-
ported in the DEFINE TABLE statement, the following table is produced:

URL Title ToPaint

result.html The Return of Judith returnjudith.html

result.html The Discovery of the Murder of ... discoveryhol.html

. . . . . . . . .

result.html Sant’Ambrogio Altarpiece ambrogioaltar.html

– next, the projected relation is nested [30] according to structures in S; more
specifically, for each multivalued structure in S, the relation is nested on
the corresponding attributes; with respect to the example, a new attribute
PaintList is introduced by nesting with respect to Title and ToPaint; the
new relation is the following:

URL PaintList

Title ToPaint

result.html The Return of Judith returnjudith.html
The Discovery of the Murder of ... discoveryhol.html
. . . . . .

Sant’Ambrogio Altarpiece ambrogioaltar.html

– finally, a local page is generated for each tuple in the resulting relation.
Nested attributes are conventionally translated using HTML list environ-
ments. Note that, coherently with the fact that the page scheme has been
defined as being unique, the nested relation for BotticelliPaintingList

contains a single tuple, and thus a single page is generated.

A similar algorithm can be used to generate the pages for BotticelliPainting-
Page. In such a case, however, no nesting has to be performed, so the final table
has several tuple, one for each painting, and different pages are generated.



6 Discussion

We briefly comment on some of the choices and limitations of our model, and
on the main features of the current implementation.

First of all, it is important to stress that in this paper we refer to actual Web
sites, over which we have no control: by means of the model one can abstract
properties that are of interest from his/her point of view, and different schemes
could be built from the same site. The model is not aimed at representing all
HTML features, but only those that we found relevant in modeling repeated
patterns and interrelated pages.

The model has a lot of similarities with complex-object models with object
identifiers (OIDs) [6, 25], with some differences and restrictions. Let us comment
on two aspects. First, it is clear that URLs play here a role that is similar
to that of OIDs in complex-object models. However, there is one difference:
OIDs are completely transparent, whereas URLs are visible and, although in
most cases they are used just as references, it is possible to make use of their
actual structure and values (for example, they can be examined to check physical
location over sites). The second aspect worth mentioning is that complex-object
models usually have various constructors: set, list, multiset (or bag), tuple. Here,
we have a first level structure that is a tuple, and then we have only a list
constructor (whose components are in turn tuples). The choice is motivated by
the fact that single elements in an HTML page can be singled out as simple
attributes or as elements of a list.11 HTML does not contain anything similar to
set or multiset. HTML tables can be modelled by means of our lists as well.

In the current implementation, in order to see pages as instances of page
schemes and extract attribute values, we wrap them using Java classes. Every
page scheme in the site corresponds to a specific class with one method for each
attribute. Attribute values are extracted from the HTML source using a text
restructuring language. For instance, the name of a painter, i.e. the value of
the Painter attribute of page scheme PaintingPage, is marked up by tags <b>
and </b>, while the title of the picture, i.e. the value of the Title attribute, is
marked up by tags <i> and </i>. Different tools (see, for example, [17]) can be
used for text extraction. In the Araneus System we use Editor Programs [10],
a formalism for text extraction and restructuring. Given a page scheme, each
method in the corresponding class is essentially an editor program accessing the
HTML source and returning a complex value for the attribute. In essence, the
class acts as a wrapper for the site pages.

We see each page as a nested relation [5, Chapter 20], [8, Chapter 8], in which
list attributes are modeled using tables. Due to the absence of duplicates, our
relations can be decomposed in flat relations.12 Based on this perspective, the
semantics of navigational expressions can be easily defined using joins. To do
this, for each page in a navigation, we generate the associated table, and then

11 For example, defined by means of the possibly nested <li> construct in HTML.
12 This is due to the fact that we suppose nested structures to be in Partitioned Normal

Form (PNF) [30]



join them using a local SQL engine. This is also used to query the resulting
relational view.

Navigational expressions are somehow similar to path expressions [22] in
complex-object databases, with an important difference. Since the scheme de-
scribes a virtual database, we do not have access methods to page schemes. Thus,
to evaluate a navigational expression, we have to start from a unique page whose
URL is known, and actually navigate a site.

There are a few important features (that is, HTML constructs) that we have
not considered here, but we believe that their relevant aspects could be incor-
porated in our model with a reasonable effort. Again, we comment on the two
aspects we consider most important. First, we have not modelled the fact that
HTML links can refer (by means of named anchors) to specific locations in pages,
rather than to the page as a whole. We could model this by allowing edges in
our schemes to have a head that is not just a page (or the highest-level tuple
of it), but any component in its structure. However, this aspect is not essential
from our point of view. Second,and more important, we have not discussed here
a widely used HTML construct, namely forms. Forms essentially allow to “se-
lect” data specifying some parameters; usually, in response to the submission of
a filled-in form, the user receives an HTML page that is not physically stored in
the site but is dynamically generated. In Araneus, we consider these dynamic
pages in the same way as static ones, and forms as “virtual” lists that cannot be
scanned but only directly accessed by means of the specification of parameters.
The extension involves some details that cannot be included here for the sake of
space, but can be carried out with the same philosophy.
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