
The Araneus Guide to Web-Site Development

G. Mecca1, P. Merialdo1,2, P. Atzeni2, and V. Crescenzi2

1 D.I.F.A. – Università della Basilicata
2 D.I.A. – Università di Roma Tre

{mecca,merialdo,atzeni,crescenz}@dia.uniroma3.it

Abstract. Web sites are rapidly becoming a world-wide standard plat-
form for information-system development. The paper reports on the re-
cent advancements in our research on Web-site development conducted
in the framework of the Araneus project. We present models, tools,
methodologies, techniques for Web design and development, as well as
ideas coming from a number of concrete experiences in developing data-
intensive Web sites using the system. We also discuss research directions
we are following to define a unified framework for data and application
management on the Web.

1 Introduction

Web-site development has recently imposed itself as a new and challenging
database problem. This has justified a number of research proposals coming from
the database area (e.g., [5, 9, 4, 16, 15]) for data management in Web sites; other
relevant works in the field have investigated the extension of design methodolo-
gies to these sites, and their interaction with development tools [6, 10]. Indeed,
the notion of a Web site has recently evolved from a small, home-made collection
of HTML pages into a number of different forms, including rather complex and
sophisticated information system. Given the large number and diversity of Web
sites, we find useful to classify them in categories, according to their complexity
in terms of data and applications (i.e., services), as shown in Figure 1.

1. we call Web-presence Sites those with low complexity both in terms of data
and applications; these sites usually contain a small number of pages (in the
order of the dozens), and mainly serve for marketing purposes; we believe
that a vast portion of Web sites do fall in this category; however, given the
relatively small size, these are usually made by hand, possibly with the help
of HTML editors or simple site-manager software;

2. the service-oriented sites are mainly dedicated to some specific service. There
are several examples of these sites: one example are search engines; another
typical example are free email services. In both cases, although the site may
have a large back-end database, the structure of the data and of the hypertext
is quite simple (typically one single class of objects), and the complexity is
rather in the underlying applications that guarantee the service;

✻

✲

of Data

Complexity of Applications

Web-Presence

Catalogue WBIS

Service-Oriented

low high

low

high

Complexity

Sites

Sites Sites

Fig. 1. Classification of Web Sites

3. catalogue (or data-intensive) sites publish lots of data, and typically have a
complex hypertext structure, but offer little or no services. Academic sites
– with data about people, courses, research – are one example. In all these
sites, the focus is mainly on effectively organizing the data in hypertext form,
and on the maintenance of both the underlying data and of the hypertext;

4. finally, the most general class of sites are what we call Web-Based Informa-

tion Systems, i.e., real information systems on the Web that offer access to
complex data and at the same time also provide sophisticated interactive
services. Large electronic-commerce sites obviously fall in this category, as
well as company information systems based on intranet platforms.

The classification is of course a bit crude: many sites may fall in between some
of the categories above; yet it serves the goal of the discussion. Of these four
classes, Web-presence sites can be created and maintained by hand, and usu-
ally don’t need the development of ad-hoc techniques. Service-oriented sites are
to be considered too application-specific to allow for a general treatment. We
therefore will concentrate mainly on catalogue sites and WBIS. If developing
and administering a catalogue site can in some way be considered as a typical
database problem, on the other end it is still unclear what should be the foun-
dation for developing real information systems on the Web, since a full-fledged

proposal, encompassing all aspects of Web-based information-system develop-
ment – namely, data–management techniques, application development and the
associated methodologies – is still missing.

In this paper, we report on the recent advancements of our research on de-
signing and developing Web applications carried on in the framework of the
Araneus project [1]. In particular, we concentrate on two issues we consider
critical in this context:

– the impact of a model-based approach on the site design and development
process (in Section 2);

– the need to evolve from static catalogue sites to full-fledged dynamic WBIS

(in Section 3).

Most of the ideas incorporated in the system stem from an intense development
activity we have conducted on large real-life Web sites in different domains,
ranging from University sites, to civil engineering, to non-profit organizations,
for a total of several thousands Web pages. Such an experience contributed to
refine our approach, on the one side by highlighting the real challenges that a
system has to face in this field, and on the other side by somehow forcing us to
pursue the rapid development of user needs and market technologies.

The Web-site development software discussed in this paper is part of a larger
system, the Araneus Web-Base Management System [13], which in addition
incorporates tools to query and integrate both structured and semistructured
data; we will not report on this here, but simply want to emphasize that cou-
pling data extraction with hypertext generation allows to develop a number of
interesting applications, in which pieces of information are extracted at some
sources, re-organized to create new sites, and these sites are not only browsed,
but also possibly queried back by other applications. We refer the reader to [1]
for references on other aspects of the system.

A distribution package containing part of the software described in this paper
is available for download on the Araneus Project Web site [1].

2 Model-Based Site Development in Araneus

Although the market is nowadays flooded by tools for Web-site development,
ranging from simple HTML editors to very complex DBMS enhancements, these
are mostly rather low-level tools, either oriented to pure-HTML development or
to procedural and SQL programming. On the contrary, our approach heavily
relies on the adoption of high-level models, both at the conceptual and logical
level, for designing and developing sites. Other proposals that share with Ara-

neus this kind of model-based approach are AutoWeb [10], in which conceptual
models for Web-site development are inherited from earlier methodologies for
hypermedia design [11], and, to some extent, Oracle Designer [3].

In our approach, all aspects of the Web-site design process, namely managing
data, hypertext and presentation, are based on the adoption of suitable models.
More specifically:

– we adopt relational technology as a back-end for the site; as a consequence,
data to be published in the site is described at the conceptual level using
the well-established Entity-Relationship Model, and at the logical level using
relational tables. The adoption of relational database — although giving less
flexibility than, for example, using a full-fledged object-oriented database —
has the important advantage of leveraging a wide-spread technology and
drastically cutting the site development costs (in this way, an organization
willing to develop a Web site doesn’t usually need to buy a new DBMS, and
can use its own as a back-end);

– we use a formal data model, called adm, for hypertext description; adm is
essentially an object-relational data model, with untyped links and union
types; each page is seen in the model as a URL-identified object with at-
tributes, i.e., an instance of a type (the page-scheme);

– finally, based on adm, we also have a formal model for describing the graphi-
cal layout of data items in a page; this is based on the notion ofTelemachus

styles for attributes, pages and sites.

In the following sections we first describe in more detail the use of adm and
Telemachus styles for modeling hypertext and presentation, and then, based
on them, we introduce Homer, a case tool conceived to help users in the site
design and implementation phase.

For now we note that, although developed independently, both adm and
Telemachus have somehow been validated by the recent ascent of XML. In fact,
an interesting feature of adm is that it represents a nice abstraction of XML-
dtds modeling primitives, thus providing a natural basis for describing XML
data sources. Similarly, Telemachus styles nicely fit into the xsl paradigm.
As an outcome, our system allows for large flexibility in choosing the actual
implementation for the site; it can easily generate both plain HTML or XML
sites with xsl style-sheets.

2.1 adm: A Logical Model for Hypertexts

We use the Araneus Data Model (adm) [5] to give an intensional description
of a Web site, abstracting the logical features of Web pages. In adm each page
is seen as a complex object, with an identifier, the url, and a set of attributes.
Pages sharing the same structure are grouped in page-schemes; a set of page-
schemes corresponds to a site scheme. Attributes have a type, which can be
either simple, i.e. mono-valued, or multi-valued. Simple types are TEXT, IMAGE,
and LINK. Complex attributes are based on a limited number of primitives,
as follows: (i) structures, i.e. typed tuples; (ii) union types, i.e., disjunctions
of attributes; (iv) lists, i.e., ordered collections of tuples (possibly nested); (v)
forms; forms are seen in the model as “virtual” lists of tuples, with a number
of attributes (the form fields) of different types (text-areas, selections, radios,
checkboxes etc.), and an associated action, i.e., a link to some result page; the list
is virtual in the sense that values for the form attributes are not physically stored
in the page, but rather have to be specified by users before submitting the form.

Filling-out form fields and executing the form action is therefore conceptually
similar to selecting one tuple of values in a list of links.

There are two points we want to emphasize here. First, the use of the adm

data model plays a cardinal role in our approach; in fact, it allows to give a
compact, intensional description of a site structure at an abstract level, and
provides a basis for reasoning about the effectiveness of the chosen hypertext
organization; also, as it will be clear in the next Sections, the site scheme is
essential in all phases of the site design and implementation (all tools are based
on that).

Second, it is worth noting that adm is somehow at the crossroads of tradi-
tional database models and XML. In fact, the fundamental modeling primitives
of the model have a natural counterpart in the ones that are typically offered
by object-database systems, the main differences being the absence of hierar-
chies and inheritance, and the presence of union types. Thus, adm modeling
primitives might somehow be considered as a subset of ODMG and SQL3 data
models, enriched with union types. At the same time, adm can be considered as
a logical abstraction of XML. If, in fact, XML should rather be considered as
a data format than as a data model, yet its modeling primitives do correspond
to the ones present in adm: structures, possibly nested lists, disjunction, links.
In this respect, an XML dtd can be seen as a type declaration for a class of
documents, which has a natural counterpart in adm page-schemes.

2.2 Modeling Presentation with Telemachus

One of the most difficult and underestimated tasks in developing a Web site con-
sists in handling the graphical layout of pages. Nevertheless, people willing to
create their sites are often more worried about having an appealing presentation
than about data management issues; this is not surprising, since Web sites are
becoming a prominent commercial vehicle, and therefore need to attract cus-
tomers. This makes design and implementation of presentation a large part of
the site life-cycle.

Experience tells that there are at least three fundamental requirements in
this field: (i) first, it is very useful to have rapid prototyping tools, to be used to
produce some approximate layout for all pages in a site; this allows to concentrate
on the other aspects of site design with little initial effort on the layout; (ii)
then, at a subsequent step, one should have flexible tools to refine presentation
details and obtain an appealing final result. Finally, (iii) presentation is hardly
developed by coding; it is much more convenient to work on example HTML

pages, that can be displayed using a standard browser to get an immediate
feedback, and then let the system derive the necessary code from examples. To
meet these requirements, also presentation, like data and hypertext, needs to be
handled at a higher level of abstraction with respect to pure HTML code.

These ideas have inspired the development of a framework for handling pre-
sentation in Web sites, made of two components: a logical model for describing
the graphical layout of pages, based on the notion of styles, and an associated

tool, called Telemachus, for presentation design and development, described
in the following.

A fundamental notion in our approach is the one of attribute style, which
specifies how values of a given attribute must be formatted in a page. To be
able to produce sophisticated formatting, an attribute style is made of two arbi-
trary pieces of HTML code, called prefix format string and suffix format string,
between which the attribute values will be enclosed when generating pages. To
give an example, consider the name of a professor in her/his personal page. To
have a simple, boldface style and color red for names in pages, we may specify
the following attribute style:

NAME: [] []

In this way, for each name – say “John Smith” – a piece of HTML code of
the form: John Smith will be produced in the
page. If, however, we want a more elaborate formatting, in which the name is
written in red, “Arial” font, bold face, and preceded by an small image, we may
use the following style (the HTML table is needed to correctly align image and
text):

NAME: [<TABLE BORDER="0" ROWS="1" COLS="2">

<TR><TD WIDTH="30">

</TD>

<TD>]

[</TD></TR></TABLE>]

It can be seen how such a simple mechanism is in fact very flexible. A page-

style specifies all format directives for a given page-scheme; it contains a set of
attribute styles, one for each attribute in the adm scheme of the page, plus a
header section and a footer section. Header and footer specify graphical features
to be associated with the page itself, rather than with a specific attribute, such
as, for example, page background and banners. In the same way as attribute
styles, also header and footer consist of arbitrary pieces of HTML code.

The styling mechanism provided by Telemachus offers a further feature. In
order to guarantee a good compromise between rapid prototyping and accuracy
in the final product, beside attribute styles and page styles, we also have a
notion of site-styles. Site-styles are used at the beginning of the presentation
design phase, in order to quickly produce a first version of page-styles based
on formatting choices that will be common to the whole site. In fact, usually
pages in a site are organized according to some common lines – i.e., background
color, font face, font color, link format etc. A site-style is essentially a generic

page-style, in the sense that it specifies one header and one footer common to all
page-schemes in the site, plus a number of formats, each common to all attributes
of a given adm type – text, image, link, list etc. – in the site. Telemachus uses
site styles as starting directives in order to automatically generate a first version
of page-styles for the different page-schemes. Then, page-styles can be further
customized, by changing header, footer, and attribute styles, in order to vary
the layout from one page to the other.

We are now ready to discuss how Telemachus works. In essence, the pre-
sentation design phase goes from rather general and undistinguished formatting
(as specified by site-styles) to very particular formatting (obtained by customiz-
ing attribute-styles in page-styles). However, as already discussed above, in this
process it would be inconvenient to require the designer to write style code as
the one shown in examples above, but rather work with sample HTML pages,
to be able to check the chosen layout without the need of generating the actual
site.

Telemachus has been conceived to support this process. It makes styles
completely transparent to the designer: it allows to write sample HTML pages,
called templates, from which page styles are automatically produced. A page-
template is a prototypical HTML page; it does not contain actual data, but
place-holders, one for each attribute in the page-scheme. For example, a template
for professors’ personal pages above will not contain actual names, but rather
strings corresponding to attribute names, of the form $NAME. Beside this detail, a
template is a fully standard HTML page, which can be edited using the designer’s
preferred editor (the only limitation being that place-holders cannot be changed)
to refine the presentation, and browsed using any HTML browser to have a
preview of what the corresponding pages in the site will look like. This makes
templates a much more convenient work tool than a style.

Based on these ideas, the presentation design process is sketched in Figure 2.
In essence, designers only work on templates, and Telemachus takes care of
generating the corresponding styles. If the target mark-up language is XML,
Telemachus also generates an xsl style-sheet for each page-scheme, on the
basis of the page-style: for each attribute (i.e., XML element), an xsl rule is
generated, that specifies how to embed the value of the element within the pair
of formatting strings in the style.

2.3 Homer: A Case Tool for Web Sites

It can be seen from the previous sections that designing and implementing a site
is a rather complex task, that involves several aspects and requires to deal with
data under different perspectives, mapping the one onto the others. For large
and complex Web sites, the complexity of the design and maintenance process
can be reduced only through the adoption of a systematic design methodology,
i.e., a set of models and design steps that lead from a conceptual specification
of the domain of interest to the implementation of the actual site.

We have developed a thorough methodological framework for designing data-
intensive Web sites, the Araneus methodology [6]. In essence, by adopting the
methodology, designers start from a conceptual description of the site domain
(an Entity-Relationship scheme) and through a set of precise steps progressively
moves to database logical design (this produces the database relational scheme),
then hypertext design (this produces the site adm scheme), and finally presen-
tation design (producing page-styles).

To simplify this design process, as well as to automate the implementation
phase based on the site design artifacts, we have developed Homer, a case tool

Site Template

Page Template 1 Page Template 2 Page Template n

Page Style 1 Page Style 2 Page Style n

Site Style

Site Pages

editing

editingeditingediting

Telemachus

Telemachus

Telemachus

❄

✻

✻

✻✻

❄

❄ ❄ ❄

❄

�
✁✂

�
✁✂

��
✁✁ ✂✂

✓
✒

✏
✑

❥ ✙

❄✙ s

Fig. 2. Presentation Design using Telemachus

conceived to support the designer through the successive design steps. This is a
natural complement of our approach, in which the site design evolves through
different levels and different descriptions, each based on a formal model.

Briefly, Homer works as follows.

– Through the use of Homer’s graphical interface, the user specifies a starting
conceptual scheme (Entity-Relationship scheme) of the domain of interest,
to serve as a basis for both designing the database and the site hypertext.

– The ER scheme is automatically translated by Homer into a logical (rela-
tional) database scheme.

– Then, based on the ER scheme, the designer progressively specifies how to
shape the hypertext structure. This is done by graphically mapping (with the
help of Homer’s user interface) entities and relationships into page-schemes
and links.

– Once the adm description for the site has been generated, Homer first
helps in choosing the appropriate styles for attributes, and then, based on
the specified transformations, it automatically generates the code needed
during the page-generation phase to map the resulting hypertext onto the
underlying database.

Since all data models involved in the process (ER, relational, adm), can be
described as subsets of a nested-relational model (with object-identifiers and

union types), at the hearth of Homer stands a module that collects transfor-
mations as graphically specified by the site designer, and composes them into
nested-relational queries (with URL inventions) over the original database. These
queries will be run to construct actual pages in the site.

We have developed a tool, called Penelope [5], which is essentially an im-
plementation of a nested-relational algebra with URL inventions. In the current
version, Homer produces as output a bunch of queries which are run by Pene-

lope against the database to extract data items, merge them with Telemachus

styles, and produce pages (either HTML or XML). However, the output produced
by Homer in terms of mapping to the database is essentially independent from
Penelope; it might as well produce HTML skeletons with SQL calls for any
of the major DBMS page-generation tools, as well as for other HTML-oriented
database gateways, like Java Server Pages [2].

3 Towards Web-Based Information Systems

It can be seen how the tools described in sections above represent a flexible
platform for developing data-intensive sites. Still, they provide little support
for adding services and application to the site. Our goal is therefore to extend
the framework to handle application as a further level in the design and im-
plementation phase. More specifically, we would like on the one side to extend
the framework described above with a further level, the one of applications, and
have high-level models and tools for this new level as well; on the other side, we
would like this new level to be as integrated with the previous ones as possible.

In this respect, workflows [12] represent a promising direction. Born to au-
tomate business processes – i.e., coordinated procedures and activities aimed at
realizing some business objective – workflow management system are a natural
solution to deliver services on the Web [14]. Moreover, in adopting workflows we
can leverage on a rather consolidated platform in terms of design and model-
ing [8, 7]. Our approach is to extend the framework developed in the previous
sections with a workflow conceptual model and a workflow management system,
called Neptune, conceived to cooperate with other system tools. The model we
have adopted is the one of [8, 7]. In this framework, the development of complex
information systems is based on the following simple ideas.

A site is made of several intermixed portions: (i) a catalogue portion, of data-
access pages, used to access and browse the site underlying database; (ii) one or
more workflow-execution portions, giving access to one or more services through
the execution of a workflow. To give an example, consider a conference site;
most probably the site will have a part publishing data about accepted papers,
program, organization, and a (private) part to handle the review process; the
latter is naturally implemented as a workflow. A similar argument also holds
for most electronic commerce sites. The two different portions are seamlessly
combined in the site, in the sense that users may want to browse some data
while running the workflow, or starting a workflow after browsing the site.

All the logics of the workflow is handled by Neptune, which generates Java
code to coordinate the various activities, assign tasks to actors, and authen-
ticate accesses to the workflow, if necessary; the site is used as an interface

to the workflow, i.e., all the interaction between actors and workflow manage-
ment system happens through pages in the site; these pages are generated via
a client-server interaction between Neptune on the client side and Penelope

plus Telemachus on the server side, and contain suitable forms to collect user-
inputs and execute tasks. Communication between the site and the workflow
management system is based on the database, which is used to store both the
workflow state and user inputs.

We want to stress the fact that, as well as the data-access part, also the
workflow-execution part of the site needs an hypertext and presentation design
phase, and is fully integrated with the data-access part, to which it can be linked.
The introduction of the workflow therefore changes the overall design process.
Although the implementation of Neptune is still under development, our first
experiences with the prototype of Neptune have shown the benefits of this
approach. The site is in fact a natural platform for implementing the workflow
interface, whereas the design and development of a workflow nicely fits inside
the design and implementation framework presented above.

References

1. The araneus Project Home Page.
http://www.dia.uniroma3.it/Araneus

http://www.difa.unibas.it/Araneus.

2. Java Server Pages (JSP) home page. http://www.java.sun.com/products/jsp/.

3. Oracle Home Page. http://www.oracle.com.

4. G. O. Arocena and A. O. Mendelzon. WebOQL: Restructuring documents,
databases and Webs. In Fourteenth IEEE International Conference on Data En-
gineering (ICDE’98), Orlando, Florida, 1998.

5. P. Atzeni, G. Mecca, and P. Merialdo. To Weave the Web. In International Conf.
on Very Large Data Bases (VLDB’97), Athens, Greece, August 26-29, pages 206–
215, 1997. http://www.dia.uniroma3.it/Araneus/.

6. P. Atzeni, G. Mecca, and P. Merialdo. Design and maintenance of data-intensive
Web sites. In VI Intl. Conference on Extending Database Technology (EDBT’98),
Valencia, Spain, March 23-27, 1998.

7. F. Casati, S. Ceri, B. Pernici, and G. Pozzi. Conceptual modeling of workflows. In
14th International Conference on Object-Oriented and Entity-Relationship Mod-
elling, (OOER’95) Gold Coast, Australia, December 12-15, 1995. Lecture Notes in
Computer Science, Vol. 1021, Springer-Verlag, pages 341–354, 1995.

8. WorkflowManagement Coalition. The workflow reference model. WfMC Document
n.TC00-1003, http:/www.wfmc.org, 1995.

9. M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat
with Strudel: Experiences with a web-site management system. In ACM SIGMOD
International Conf. on Management of Data (SIGMOD’98), Seattle, Washington,
pages 414–425, 1998.

10. P. Fraternali and P. Paolini. A conceptual model and a tool environment for
developing more scalable, dynamic, and customizable Web applications. In VI
Intl. Conference on Extending Database Technology (EDBT’98), Valencia, Spain,
March 23-27, 1998.

11. F. Garzotto, P. Paolini, and D. Schwabe. HDM – a model-based approach to
hypertext application design. ACM Transactions on Information Systems, 11(1):1–
26, January 1993.

12. D. Georgakopoulos, M. Hornick, and A. Sheth. An overview of Workflow Man-
agement: From process modeling to infrastructure for automation. Journal on
Distributed and Parallel Database Systems, 3(2), 1995.

13. G. Mecca, P. Atzeni, A. Masci, P. Merialdo, and G. Sindoni. The araneus Web-
Base Management System. In ACM SIGMOD International Conf. on Management
of Data (SIGMOD’98), Seattle, Washington, pages 544–546, 1998. Exhibition Pro-
gram. http://www.dia.uniroma3.it/Araneus/.

14. J. A. Miller, D. Palaniswami, A. P. Sheth, K. Kochut, and H. Singh. WebWork:
METEOR2’s web-based workflow management system. Journal of Intelligent In-
formation Systems, 10(2):185–215, 1998.

15. F. Paradis and A. M. Vercoustre. A language for publishing virtual documents on
the Web. In Proceedings of the Workshop on the Web and Databases (WebDB’98)
(in conjunction with EDBT’98) http://www.dia.uniroma3.it/webdb98, 1998.

16. G. Simeon and S. Cluet. Using YAT to build a Web server. In Proceedings of the
Workshop on the Web and Databases (WebDB’98) (in conjunction with EDBT’98)
http://www.dia.uniroma3.it/webdb98, 1998.

